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Influence of charged impurities on Si inversion-layer electrons
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A theoretical investigation of various effects of charged impurities in the oxide on elec-
trons in an inversion layer in the SiO,-Si(100) metal-oxide-semiconductor structure has
been carried out in the quantum limit. For very low electron density we determine
ground- and excited-bound-state energies and wave functions exactly and show their
dependence on surface field and impurity distance from the interface. In the high-density
limit we treat screening and many-body effects by applying the local-density-functional
method. The self-consistent potential gives very good agreement with experimentally
determined scattering rates and has one fourfold-occupied bound state. The degeneracy
of the bound state is not lifted, even if spin- or valley-density-functional methods are ap-
plied. For interfaces under stress, where another subband can be occupied, we study the
effect of an impurity on the two-component electron gas. While direct comparison with
experiments is not possible, the results seem to indicate that in order to understand mobil-
ity measurements under stress, scattering mechanisms additional to those present without
stress have to be taken into account. The calculations show that there is only a bound
state associated with subband 0’ when no states associated with subband O are occupied.

I. INTRODUCTION

In a metal-oxide-semiconductor (MOS) structure
one forms a channel of carriers in the semicon-
ductor very close to the oxide-semiconductor inter-
face when a voltage is applied between metal and
semiconductor. An important technological and
fundamental problem is to understand the mobility
of the carriers in the channel. In n-channel inver-
sion layers on Si surface roughness, acoustic pho-
non and impurity scattering are thought to deter-
mine the low-field mobility. At low temperatures,
where the phonon scattering can be neglected, im-
purity scattering is dominant for low inversion-
layer densities, whereas surface-roughness scatter-
ing increases with increasing density, so that the
mobility shows the characteristic mobility peak!
for N,,, somewhere between 10'? and 10"3 cm~2

A major step forward in the experimental study
of the mobility has been the technique of drifting
Na* ions through the oxide to the oxide-
semiconductor interface in a controlled manner.
By variation of oxide charge, substrate bias, and
temperature it is then possible to separate the con-
tributions to the scattering rates from the three
mechanisms.* Of course, this allows a much better
quantitative test of theoretical calculations of
scattering rates. Apart from giving rise to impuri-
ty scattering the Na™ ions show other interesting
properties: Near the interface they can form
bound states occupied by inversion-layer electrons;

2,3
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for sufficiently high impurity concentrations an
impurity band can be formed and its conductivity
by hopping can be studied.’ In the last few years
investigations on the impurity bound states by in-
frared absorption have also appeared.®—®

In this paper we study theoretically, in detail,
the influence of such charged oxide impurities on
electrons in the inversion layer at low temperature.
Much theoretical work on this problem has been
done by several authors in various approximations
and models.”~!° The general goal of our work has
been to resort to numerical methods to do as realis-
tic a calculation as seems possible with all
nonessential approximations eliminated. This has
been achieved for two general situations: First, the
number of electrons in the inversion layer is much
smaller than the number of impurities. In this
case the impurities cannot be screened by the elec-
trons, and wave functions and binding energies can
be determined by solving the Schridinger equation
for one electron with a given potential. We show
in Sec. II how we have done this, and in Sec. III
results are presented on wave functions and ener-
gies of the ground state and several excited states
as a function of impurity distance from the inter-
face and surface field. Our results on the ground
state do not differ much from those of simpler
theories,'? but most of the excited states have not
been described before, and we follow the crossover
behavior from perturbed hydrogeniclike states to
perturbed subband states as the depletion-layer po-
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tential increases relative to the impurity potential.
Second, we consider the situation in which the
number of inversion-layer electrons is much larger
than the number of impurities. In this case we
must take into account the interactions between the
electrons. It is well known?*~?? that many-body
effects play an important role even without impuri-
ties, so that these should be incorporated in a
theory of the screening of the impurity potential.
Earlier theories have invariably used linear screen-
ing® >~ and, in most cases, a Born approxima-
tion for the scattering rate. Here we use the local-
density-functional method to calculate self-
consistently the screened potential. Furthermore,
we make a complete phase-shift analysis of the
scattering of electrons on the screened potential.
The method is described in Sec. IV, and in Sec. V
we show that the mobility calculated in this way
agrees considerably better with the experimental
measurement of Hartstein et al.* than earlier
theories do.

Another result of the method is one bound state
lying less than 1 meV below the lowest subband
bottom. This state is fourfold degenerate like all
the subband states, and to investigate this some-
what surprising result we have carried out extend-
ed calculations which, in principle, allow lifting of
the degeneracy. These valley-density-functional
methods are described in Sec. VI, but the results
only substantiate the fourfold degeneracy. Similar
methods can be used to investigate the influence of
an impurity on inversion-layer electrons which, by
application of uniaxial strain, occupy two subbands
originating from different valleys of bulk Si. In
Sec. VII we present results for this case; no direct-
ly comparable experiment exists, but it seems that
additional scattering mechanisms come into play
when two subbands are close in energy. In the
concluding section we also include remarks on
some further calculations meant to illuminate the
fourfold occupancy of the bound state.

Before we go on to the main part of the paper
let us mention the approximations we have made.
If at all possible, elimination of these would re-
quire much more difficult calculations and better
knowledge of the detailed atomic structure of the
interface. We use in all cases the effective mass
approximation and represent the interface by an in-
finitely steep barrier; all electrons other than the
inversion-layer electrons are accounted for by the
macroscopic dielectric constants of the media; the
local-density-functional formalisms are used uncrit-
ically by taking the eigenvalues of the effective
Schrodinger equation to represent one-particle exci-

tation energies of the system; the distance between
impurities is assumed to be so large that multiple
scattering can be neglected, and the impurity is
taken to be a point charge in the oxide. These are
orthodox approximations in most inversion-layer
theories, and we see no reason why they should be
more radical for the problem at hand.

II. SOLUTION WITHOUT SCREENING

We assume a positive ion of charge Ze to be si-
tuated at the distance z, from the interface z=0.
In addition, the depletion charge provides a de-
pletion field which can be taken to be constant
near the interface. Furthermore, an electron in the
semiconductor sees its own image. The system has
cylindrical symmetry around the interface normal
through the impurity which we choose to be the z
axis. Our one-electron Hamiltonian is then the fol-
lowing:

__ 7| 3| # 3
2m, |3x* 3y? 2m; dz?2
+Vdep](z)+Vim(z)+Uimp(Ryz) (1)

where m, =0.1905m, and m;=0.916m, are the
transverse and longitudinal masses of Si;

2
Vdepl =e Ndep]z /Ks€o

where Ny is the depletion charge and x; =11.7,
the relative permittivity of Si, is the depletion po-
tential;

Vim = (ks —kK;) /16K €0(Ks +K; )z

is the image potential with the relative permittivity
of the insulator k; taken to be 3.9; and

Uimp(R,2) = — Ze?/4nke[R*+(z +20)*]"/

is the impurity potential, where R =(x,y) and
K=(ks+k;)/2. In addition, the interface to the in-
sulator is assumed to provide an infinite potential
barrier, so that the wave functions vanish at z=0.
It is convenient to introduce scaled atomic units
in which #=2m, =e?/8mek=1; the unit of length
is the effective Bohr radius ag =aok(m, /m,)
=21.7 A; and the unit of energy is the effective
Rydberg #* =#(m,/m,)/k*=42.6 meV. In
cylindrical coordinates (R,0,z) we then have
H=H)+H,, where
m; 3?

Hy(z)=— po—— +Vaep(2)+ Vim(2) , (2)

__ 9 13 13
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with
U(R,2)=—2Z /(R*>+(z +2))'/? .

In order to solve the Schrodinger equation
H1ip=E1 we first take advantage of the cylindrical
symmetry to classify the solutions according to the
“magnetic” quantum number

m=0,+1,+2,...: ¥(R,6,2)
=eim0p, (R,2) .

Furthermore, solving the one-dimensional
Schrddinger equation corresponding to H, we get
the familiar complete set of subband wave func-
tions Hy§,(z)=E,{,(z). We use this set to expand
the z dependence of the function ¢,,(R,z), i.e.,

Un(R,0,2)=em® 3 FIM(RIE, (2) . @
n=0

Inserting this expansion in the Schrédinger equa-
tion and taking the inner product with §y(z) we
obtain an infinite set of coupled ordinary differen-
tial equations for the radial parts:

d* 1 d m?
ST TR AR+ [E—En =25 | [fa(R)
=3 Uy (RIf(R) (4
n=0
for N=0, 1,2, ..., and with
Una(R)= [ EN(DU(R,2)G,(2)dz . (5)

We have dropped the superscript m in Fi™(R).
If we consider the undisturbed system, i.e.,

|

fy(R)= [ " RdR'Gy(R,R",E) 3, Uyy(R")f4(R")

U(R,z)=0, the differential equations are decoupled
and are of Bessel type. Thus the complete solution
for equation N is

CJ,,(kyR)+SN, (kyR) for E>Ey  (6)
SWR=\cr (kyR)+SK,, (kyR) for E<Ey (7)

where ky= | E —Ey | /%, C and S are arbitrary
constants, and J, N, I, and K are the standard
Bessel functions of integer order m. A permissible
wave function can only be found for E > Ey and
S§'=0, since the other Bessel functions have singu-
larities at O or o0, and we recover the inversion
layer wave functions written in cylindrical coordi-
nates

Ymn(R,0,2)=Cye™8F, (kyR)EN(2) (8)

with the energy E =Ey +k3.

Suppose we search for a solution to Egs. (4) and
(5) representing a bound state, i.e., a state with
E <E,. The Green’s function Gy(R,R’,E) corre-
sponding to the Nth equation
d> 1.4

e e

E—E m?
ar: TRaR T | ETEY e

Gy(R,R',E)

_8(R—R")

R 9)

is then given by
—K,,(kyR'),,(kyR), R <R’

R ©
=_K,,,(kNR)f0 R'dR’ ,,,(kNR')EUN,,(R’)f,,(R')—I,,,(kNR)fR R'dR'K,,(kyR’)

If we express the solution in the form analogous to
(7)

SIN(R)=CnN(R),,(kyR)+Sy(R)K,(kyR) ,
(12)

we have

Cy(R)=— [~ R'dR'Kp(kyR") S, Uya(R'f(R")
n

Gy(R,R"E)=
—I,(kyR")K,,(kyR), R'<R
(10)
so that we can write the solution as
xZUN"(R’)f,,(R’) . (11)
n

[

R
Sy(R)=— [ R'dR'I,,(kyR") 3, Uns(R'}fn(R")

o (13)
dC
—Jk’i=RK,,,(kNR)2 Una(R)f(R) ,
s " (14)
ﬁ“’—:—RIm(kNR)E Upa(R)fn(R) .
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The boundary conditions are Cy( o0 )=Sy(0)=0 to
obtain a normalizable wave function. Further-
more, the solution must be continuous and have a
continuous derivative, which is equivalent to hav-
ing Cy(R) and Sy(R) continuous everywhere. All
these conditions can only be fulfilled for special
values of E, so that the energy spectrum below E,,
is discrete.

In practice we have to make the controllable ap-
proximation of truncating the system of equations.
For a given energy we first choose C,(0)=3§,,, and
S,(0)=0 and integrate Eq. (14) from R=0 to some
intermediate point R, with the results C,,(Ry—)
and S,,(Ry—). Similarly, we choose S, (o )=35,,
and C,( o )=0 and integrate from R =« to R,
with the results C,,(Ry+) and S,,(Ro+). This is
done for all n’. The condition of continuity at R
now requires that we choose C,(0) and S, (o) so
that for all n’

S Con(Ro—)Cp(0)="3, Co(Ro+)S,(0) ,

(15)
S S (Ro—)Cy(0)=3, Sy (Ro+)S,(a0) .

This is a set of homogeneous linear equations to
determine C,(0) and S,( o). It only has a nonzero
solution when the determinant, which is a function
of the energy, vanishes. We therefore find the en-
ergy of a bound state by iterating the procedure
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until a zero of the determinant has been found.
Then the boundary values C,(0) and S,,(0), and
thereby the total wave function, are determined
from (15) and from normalization.

There are two sources of inaccuracy in this
method. First, we must truncate the system of
equations to a finite number; this inaccuracy can
be checked by trying different numbers of sub-
bands. Second, we do not integrate to infinity but
only to a finite R,,,. This corresponds to setting
the potential equal to zero for R > R,,,, and plays
no role for states that are tightly bound inside
R,..x. For the long-range Coulomb potential one
would expect infinitely many bound states and the
very shallow states cannot be described correctly
for a finite R,,. Trying to determine these would
be an academic exercise which does not interest us
here. The states are not lost; they are pushed up-
wards in energy into the continuum when we cut
off the potential at R,,,.

For energies between E, and E; the Green’s
function Gy(R,R’,E) defined by (9) is not given by
(10) but by

%Nm(koR’)Jm(koR), R <R’

GO(R,R ,9E)= T (16)
T dm(koR" W (koR), R'<R

where ko=(E —E,)'/2, so that for fy(R) we get

R
folR)= lzT—Nm(koR) [, R'dR'T, (koR") 3, Uon(R)f 5(R)

+ T Im(koR) [" R'AR'Npp(koR") 3, Uon(R)fn(R)+C o m(koR) . (17)

By analogy with Egs. (12) —(14) we write
So(R)=Cy(RW,,(kogR)+So(R)N,, (koR)

and obtain
dcC
d_R"= -%RNm(koR)g Uox(R)fA(R) ,
dSo
R =% RJ,,,(koR)? Uon(R)fA(R) ,

(19)

where the boundary condition is now only S¢(0)=0. The method of solution is the same as for bound states
but, in addition, we also choose Cy( o0 )=Sy (00 )=0 for all N except Cy( o0)=1, and integrate from infinity
to R, with the results ¢,(Ry+) and s,(Ry+). The continuity conditions at Ry now require C,(0), S, (),

and Cy( w0 ) to fulfill for all n'":
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S Co(Ro—)Cp(0)="3, Con(Ro+)Sn( 0 )+¢(Ro+)Col ) ,
n n

(20)

S Spn(Ro—)Cp(0)="3, S (Ro+)Sy(00)+5,(Ro+)Col 0 ) -

In these linear equations there is one more variable
than there are equations, so there are solutions for
any energy, i.e., the spectrum is continuous. The
constants C,(0), S,( o), and Cy( o) are determined
by (20) to within a constant factor which has to be
obtained from normalization of the wave function.
Asymptotically we have the following:

fo(R)=Cy( 0 W,y (kgR)+So( 00 )N, (koR) ,
f2(R)=0, n>0 21)

i.e., the undisturbed subband wave function with a
phase shift

1= —arctanSy( o0 )/Col o) .

If we choose the normalization of the extended
wave functions to be

(E'm'|Em ) =8,y 8(E —E') ,
we have
Col 0 )2 +So( o0 ) =(4m)"1,

so that, asymptotically, our total wave function of
energy E is

Vme(R,0,2)= (41r) /%m0
XJm(koR +1m (ENG(2) , 22)

and the scattering solution is completely deter-
mined.

The standard derivation?® yields the induced
density of states in the lowest subband to be

&8 & dn,
D(E)=>22
8D (E)==" > 1E

m=—o

(23)

where g, =2 is the spin degeneracy and g, is the
valley degeneracy (g, =2 in (100) Si).

III. RESULTS WITHOUT SCREENING

In Fig. 1 we show the energy of the lowest-lying
bound states for m=0 and m=1 as a function of
the distance z, of the impurity from the interface,
and with the depletion-layer density as parameter.
The binding energy E,—E increases as the electron
gets closer to the impurity, either when the impuri-
ty is closer to the interface or when the depletion

|
field presses the electron towards the interface.

The energies agree fairly well with those of Martin
and Wallis.'? A direct comparison® showed our
binding energies to be about 5% larger than theirs.
That their error is not larger is, to a great extent,
due to their use of a different value of the varia-
tional parameter for the z dependence of their wave
function. Our binding energies. agree very well
with those of Lipari.!* Obviously, his expansion is
more efficient when the depletion field is small,
whereas ours is more efficient when the impurity
potential is small. With sufficiently many terms in
the expansions, both methods are exact, of course.
We have used five subbands in all the calculations
presented here. For Ny, =2X 10" cm~—? and

2o =0, which may be considered a bad case for our

15 T T T

m=0

Ngepl102cm-2)

Eg (Ry*)

zpla%)

FIG. 1. Binding energy Ez=E,—E of lowest-lying
bound states as a function of distance z, of impurity
from interface for various values of depletion-layer den-
sity Ngepi- Upper frame: states having quantum num-
ber m=0; lower frame: states having m =+1. Values
of Ngep are the same in lower as in upper frame.
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method, the binding energy of the lowest state
changes by 1%, if we use four subbands instead of
five.

The interplay of the impurity and depletion po-
tentials is illustrated in Fig. 2, where we compare
the probability densities | ¥(R,z) |2 of the three
lowest lying states having m=0 for N e, =5X 10"
cm ™2 and for zo=0 and zy=1 a.u., respectively.

In both cases the ground state looks qualitatively
the same; it is essentially half a 2p-like hydrogen
wave function which has been squeezed closer to
the surface by the depletion field. The second ex-
cited states are, qualitatively, completely different:
for zy=1 a.u. the wave function is essentially a
product of the lowest subband wave function and a
radial function which has two nodes; for the z,=0
a.u. case, however, where the impurity potential is
stronger, the wave function looks more like half an
excited p state of hydrogen squeezed in the z direc-
tion. Finally, the first excited state in between is a
mixture for zo=0. For m=£0 states, the wave
functions are zero for R=0, so the influence of the
impurity potential is not so strong and, effectively,
the depletion field dominates.

IV. THE DENSITY-FUNCTIONAL METHOD

We now turn to the problem of the effects of an
impurity when there are many electrons in the in-
version layer. We assume that there are so many
electrons that the impurity potential is completely
screened out within the distance between impurities
and, effectively, we treat just one impurity with in-
finitely many electrons.

Even without the impurity the electrons contri-
bute substantially to the inversion-layer potential as
first calculated by Stern and Howard® and Stern,?’
and furthermore, it has been demonstrated in
several works?®~?2 that effects of exchange and
correlation also play an important role in the sys-
tem. The most versatile simple approximation to
treat all these effects is the local-density-functional
formalism derived by Kohn and Sham?® and first
extended to the inversion layer problem by Ando.2!
In that method, the direct Hartree potential of the
electrons is treated exactly, and all effects of ex-
change and correlation are approximated by a local
potential which mainly depends on the local three-
dimensional density. It is then, in principle, simple
to write down the equations when the impurity is
included; the effective Hamiltonian can be written
analogously to Eq. (2); H=H,+H,, where

m; g?

H, =
o(Z) m azz

+ Vet (2) + VR (2)+ V% (2) , (24)

@ 193 1
3R> R OR R? 3¢?

+URD+Vi(R,2)+Vi(Rz), (25

where the new terms are the Hartree potential
Vi =V5+ Vi to be found from Poisson’s equation
and the exchange-correlation potential V,, = V2,

+ VL to be derived from homogeneous electron-
gas properties. We have divided these potentials,
so that Vj and V2, are the potentials if no impuri-

E=-0122 Ry* zy=0a.u E=-0.089 Ry* 1 Zg=1au.
D D ©
E 0252 Ry* ] Zp=0a.u E=-0183Ry* 12zg=1au
e — //f~ ,R
e ) @

E=-0827Ry* zy=0au | E=-0497Ry* 1zy=1au.
i
/77/%?\\
T T r e —— ,_%
10 -8 6 4 6 8 -8 -6 -4 10
R(c.u.)

FIG. 2. Probability density plot of three lowest states having m=0. Left frames: distance of impurity from inter-
face zo=0. Right frames: zo=1 a.u., Ngeu=5X10"" cm~2 The contour plots are logarithmic with three contours per

decade.
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ty were present, and V5 and V), are the changes
induced by the bare impurity potential U(R,z).
The density-functional method requires that the
equations be solved self-consistently with the
ground-state density determined by

p(Rz)= 3 |ve(R,6,2)|%, (26)
E <EF

where 9 is an eigenfunction of H with energy E,
and the sum runs over all states with energy less
than the Fermi energy Er. On the other hand, the
density determines the Hartree and exchange-
correlation potentials as described later in this sec-
tion, so the solution has to be found by iterating
Eqgs. (24) —(26) until the potentials and density do
not change.

We see that in order to solve these equations (i)
we must be able to solve the effective Schrodinger
equation Hyy =Eyy, for all energies below Ef; (ii)
when the density is given by (26) we must be able
to solve Poisson’s equation to determine the Har-
tree potential; (iii) from the density we must be
able to determine the exchange-correlation poten-
tial; and (iv) we must have a converging iteration
procedure to obtain self-consistency.

The first point is solved by a natural extension

a complete set of subband wave functions
Hy(,(z2)=E,{,(z). In contrast to the calculation
in Sec. II we have to do this self-consistently, i.e.,
we find the Hartree potential by solving a one-
dimensional Poisson equation and an exchange-
correlation potential from the density given by

po(z)zNinv | §0(Z) I 2
=8,8;(Er—E,) | Eol2) | 2/, 27)

where we have restricted our calculation to
inversion-layer densities N;,, for which only the
lowest subband is occupied. This is the subband
problem without impurity treated first by Ando.2!
To solve the Schrédinger equation with the impuri-
ty (24), (25) we proceed as described in Sec. II and
use the subband wave functions to expand the
wave function ¥z. The perturbing potential is
then the screened impurity potential
U(R,2)+Vi(R,2) + VL.(R,z) instead of just the
bare potential U(R,z), but in other respects Egs.
(4) and (5) remain structurally the same and can be
solved by the methods described previously. Once
we have the wave functions we obtain the density

p(R,z2)=p%R,z)+p'(R,2) ,

of what was done in Sec. II. We use (24) to obtain where
1
1 2 Er
P (R,2)=8,8 |3 | ¥Em(R,0,2)|°+ 3 fo [ | ¥Em(R,6,2) | *— | Ju(koR)Eo(2) | 2/47)dE (28)
BS m

where the first sum runs over all bound states,
k3=E —E), and the normalization defined in Eq.
(22) has been used. Because of our assumption of
having infinitely many electrons per impurity we
have the same Fermi energy Ep —E(=4mN,,,/g,8;
as in the undisturbed system.

Second, we have to solve Poisson’s equation for
the change in the Hartree potential ¥} (R,z) due to
the induced charge pl(R,z):

vk = — sﬂKipl(R,z) , 29)
s
valid in the semiconductor z >0. The asymptotic
behavior for R— w0 or z— o is
Vi(R,z)~2Z /(R?422)!/2 (30)

to secure macroscopic charge neutrality. On the
insulator side the potential should fulfill Laplace’s
equation with the same asymptotic behavior. The

boundary conditions at the interface require the
continuity of V}; and kdV} /9z. The latter boun-
dary condition is taken care of by the method of
images: to obtain the potential in the semiconduct-
or we replace the two media by one with permit-
tivity «; and add the image charge

Pim(R,2)= (kg —K;) /Uiy +;)p (R, —2)

for z <0, so that Eq. (29) becomes
VVi=—87-—[p~ (RD+p(RD], (1)
s

to be solved in the whole space with the asymptot-
ic behavior given in Eq. (30).

We could now proceed the solve the Poisson
equation by some method. However, we have to
construct an iteration towards self-consistency and
the long range of the Coulomb interaction is incon-
venient, since a small deviation at one point affects
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the potential essentially everywhere. We therefore ous iteration. After convergence the potential does
introduce the trick suggested and employed in not change from one iteration to the next and Eq.
spherical symmetry by Manninen et al.?’ and add (32) is exactly the same as the Poisson equation
—k2V}; on both sides of Eq. (31): (31).
_ In order to solve Eq. (32) we expand in spherical
(V2KV} = _gﬁ—'(—[pl +Pim] —k2Vy  (32) harmonics. Setting R =r cos6 and z =r sinf we
Ks have
where k? is a parameter that can be freely chosen. -
The Green’s function corresponding to the left- Vi(R,z)= S Vi(nY,6),
hand side is now a screened short-range interac- 1=0
tion, so that small deviations in one point only af- (33)
fect the potential in the neighborhood. On the p'(R,2)+pim(R,2)= 2 p1(NY(0) ,
right-hand side we insert the charge of the present =0
iteration and the Hartree potential from the previ- so that
J
m . 1
pi(r) =27 f sin@d6[p\(r,6) +pim(r,0)]¥;0(6)
=V7r f P\ )P )dp 4 = P f p(r, —p)Py(p)dp (34)
1
1+ (025 [ o By)d
PR o P (p)P(p)dp
where Pj(u) are the normalized Legendre polynomials. Inserted in Eq. (32) the expansions lead to uncou-
pled differential equations for each I:
d*v, 2dV 1(141) R
— |k —=——— |V =—8r—p;(r)—k2V)(r) . 35
dr? t rodr + r? ! §m K pilr)—k=Vi(r) (35)

The Green’s function corresponding to the left side is

r'z—%il(kr’)kl(kr), r>r'

Gi(r,r')= (36)
r’z%kl(kr’)il(kr), r<r'

where i; and k; are the spherical Bessel functions. The solution of Eq. (35) is then

Vi(r)= —z, (kr) f 2k (kr') 877——p1(r )+k2V,(r') |d 37)
—Zlc—kl (kr) frr'zi,(kr’) 81T£p1(r')+k2V1(r') ‘dr' ,
0 K
I
or The boundary conditions are C;( o )=5;(0)=0.
_ , In practice we restrict the calculations to r <r,,
Vilr)=C(rliy(kr)+S;(r)k;(kr) (38) with some large r,, and assume that the potential
with outside ,, has the form given by Eq. (31). We
dc, ok _ therefore integrate (40) from r=0 to » =r,, and
—_—__ £k 81r—K—p1( r)+k2Vy(r) (39) thereupon integrate (39) backwards using the boun-
dr K dary condition which follows:
as; 2k [ [Vo 7 )810—Si (P Yy (kP )]
—— === |8m—py(r)+k*V(r) (40) Cilrm)= & = " 41
dr T ﬂ-Ks pr ! 1rm) i(kr,,) > 4D
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with Vo(r,,)=V4m 2Z /r,,. In Egs. (35)—(40) ¥,
on the right-hand sides is taken to be the potential
from the previous iteration.

The third point to be treated is the exchange-
correlation potential. According to the general
theory of Kohn and Sham?® the best local potential
in the limit of slowly varying density is the ex-
change correlation contribution to the chemical po-
tential of a homogeneous electron gas having the
local density. In our case we have the problem
that our electrons are moving in a polarizable

e? 1 Ks—K;

background and that we have two media of dif-
ferent polarizability. Thus two electrons deep in
the semiconductor interact in a background of
dielectric constant k; while two electrons very close
to the interface effectively have a background
dielectric constant k. This makes a substantial
difference, and one must somehow incorporate this
dependence on distances from the interface. Here
we follow completely the approximation used by
Andoil; two electrons at Flz(ﬁl,zl) and
1,=(Ry,z,) interact via the Coulomb interaction as

(42)

V(F,,T)

 dmeoks | | Ty

where the image term makes the interaction de-
pend not only on T;—T’, but also explicitly on z,;
and z,. The approximation now consists of taking
z,=2z,=z in the 4z,z, term and then calculating
the contribution of exchange and correlation to the
chemical potential of a homogeneous electron gas
with the interaction described by (42), where z
enters as a parameter. We then obtain an
exchange-correlation potential which depends on
the local density p(R,z) and explicity on z.

For the results presented in the next section we
have directly taken over the exchange-correlation
potential calculated by Ando.?! It is a special case
of the various potentials which will be derived in
Sec. VI and we shall postpone details to that sec-
tion.

The final point is how to obtain convergence in
the iteration of the potentials and the density. We
have already incorporated this in the discussion of
the Hartree-potential calculation. By choosing a
large enough free parameter k the changes from
iteration to iteration are slow and gradually vanish
independent of the starting potential. A value of k
between 1 and 1.5 turns out to give the fastest con-
vergence; smaller values of k lead to divergence
and greater values slow down the convergence rate.

V. RESULTS WITH SCREENING

We first show some representative results for an
impurity of charge Z=1 situated on the interface
29=0. For Ny, =3.6X 10" cm~2 and an inver-
sion layer density N;,, =3X 102 cm~2 we show in
Fig. 3 the total charge distribution

p(R,z)=p%z)+p(R,z)
and the induced charge density pl(R,z). It can be

Ks+K; [(F]~F2)2+42122]l/2

T
seen that there is a pileup of charge near the im-

purity, and also that the charge moves closer to the
surface there. This is most evident in the induced
charge, where there are regions behind the pileup
which are depleted of charge. In the direction
parallel to the interface these regions gradually
lead to Friedel oscillations?® of period /kp where
krp=Eg'/? is the Fermi wave vector.

In Fig. 4 we show the phase shift 1y(E) for
m=0 wave functions and the total phase shift
> o Mm(E). The arrow below O (the edge E,
of the lowest subband) represents the bound state
which has m=0. According to Eq. (28) the bound
state contains four electrons because of the spin
and valley degeneracy. The theory as formulated
in Sec. IV does not allow a lifting of this degenera-
cy, so at first one might consider this an artifact of
the theory. However, more refined methods which
we describe in Secs. VI and VII and which do not
have this degeneracy built in also lead to a fourfold
degenerate bound state, so one should not discard
the result even though it is unexpected. The sum
of the phase shifts in the continuum are therefore
negative, and we see that the Friedel sum rule (see,
e.g., Ref. 9) is very well fulfilled; at the Fermi en-
ergy the phase shift is —3m/4, which means that
three electrons have been taken out of the continu-
um, so the total induced charge is + 1 electron.
This is a necessary condition for self-consistency of
our results. The induced density of states is
«dn/dE [Eq. (23)], so, mainly, states near the
bottom of the subband have been taken out to
form the bound state, which is very shallow.

The scattering of the subband wave function
leads to a finite mobility parallel to the interface.
The transport scattering time 7, has been shown
by Stern and Howard® to be given by (in SI units)
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N, =3x10%cm™
Ngep=3.6x 10"cm?

R{a u.)
FIG. 3. Electronic density in the inversion layer near an impurity at the origin. Ni,,=3X 102 cm 2

2

Naepi=3.6X 10" cm~2 Upper frame: total density. Lower frame: induced density. The contour plots are logarithmic
with three contours per decade, lowest value 10~2 electrons/a§ > in the induced density negative values are denoted by

broken curves, and the contour for zero density is also shown.
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FIG. 4. Phase shift 17, for m=0 states and total
phase shift ¥,7,, vs energy measured from the bottom
of the lowest subband. Nj,,=3X10"? cm~?

Naep=3.6X10"" cm =% Ej is the Fermi energy. The

bound state below the subband is denoted by an arrow.

4% & .
—=N0x7 2 SInz[nm(EF)—nm—f-l(EF)]

Tir t m=0
(43)

where N, is the areal density of impurities in the
oxide.

In Fig. 5 we compare our results, assuming the
impurities to lie on the interface, with the most re-
cent and most relevant experimental results by
Hartstein et al.* By drifting known amounts of
Nat to the interface they were able to separate the

u

Nox Hox (10°V's™")

Niny (102 cm2)

FIG. 5. Mobility due to scattering by oxide charge as
a function of inversion-layer density. Full curve:
present work. Broken curve: linear screening (Mori and
Ando, Ref. 18). Experimental points determined by
Hartstein et al. (Ref. 4). Ny =3.6X10" cm™2
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surface roughness, oxide charge, and phonon
scattering contributions, and the figure shows the
oxide-charge scattering contribution linear in N,
i.e., the impurity scattering in the limit of few im-
purities. Also shown is the most recent linear-
screening theory by Mori and Ando.!® It can be
seen that our calculation is a considerable improve-
ment, and that the population of subband 1 in-
voked by those authors for N;,, >7.3% 10?2 cm—2
is not necessary to obtain quantitative agreement
with the experiment. When exchange and correla-
tion are taken into account, subband one is not po-
pulated below 10X 10!2 cm~2 in this case.

The energy of the bound state is shown in Fig.
6. The state is very shallow and has a long range.
The binding energy — Ej increases with N;,, be-
cause the electrons are pressed closer to the impur-
ity at higher densities. For the mobility, however,
this effect is more than balanced by the increase in
Fermi velocity of the electrons, so that the mobili-
ty increases with Nj,,.

VI. VALLEY-DENSITY FUNCTIONAL
METHODS

The fourfold degeneracy of the bound state
which comes out of the calculation described in the
preceding section leaves one with an uneasy feel-
ing, since one is used to having only one electron
bound to an impurity in a semiconductor. For this
reason and for other purposes we want to extend
the method to allow for a lifting of the degeneracy.
The spin-density-functional method*»* is an ex-
tension of this type and here we can proceed analo-
gously because the valley degeneracy acts very
similarly to the spin degeneracy. The reason for
this can be understood by considering a homogene-
ous Si crystal. The conduction electrons have the

20 T T T T

-Eg (mRy*)
T
Il

Niny (10Z%cm™?)
FIG. 6. Energy Ejp of bound state relative to bottom
of lowest subband as a function of inversion-layer densi-
ty. Ndcp1=3.6>< 10" cm~2,

following wave functions close to the valley mini-
ma at +ky%
ii’.—r'e tikyz

P+ (T=e u(tn; , (44)

where X is the wave vector measured from the val-
ley minimum, 7, is a spin function, and u (T) is a
cell periodic function. For such functions the
Coulomb-interaction matrix element is calculated
to be

e’ 84’ for intravalley scattering
Ks€o4d
Vig)= o2 (45)
Sss’
4xsep(m/a —ko)2
for intervally scattering .

Here q is the momentum transferred in the
scattering process and  /a is half the Brillouin-
zone size in the [100] direction. Because of the
large finite value of 7 /a —k the intervalley
scattering process is much less important and we
shall neglect it completely. It is then clear that the
valley index + is analogous to the spin, which also
cannot be changed by the electron-electron interac-
tion.

Because of this analogy it is now straightforward
to use the methods applied earlier to the spin-
polarized homogeneous electron gas®>3 in the sys-
tem of a homogeneous electron gas which has val-
ley degrees of freedom and is allowed to have un-
equal population of the valleys. For our present
purpose we can assume that the spin degrees of
freedom are equally populated and only two valleys
are occupied. The homogeneous electron gas is
then described by the parameter density
n=n%4n" and “valley polarization”
E=(n*—n")/n, where n* is the electron density
in each valley.

In order to construct an exchange-correlation po-
tential we need to calculate the contributions of ex-
change and correlation to the chemical potential
pi(n,€) of the homogeneous valley-polarized elec-
tron gas. To obtain manageable expressions for
these energies we have to assume that the valleys
are isotropic with an effective mass m. The Fermi
wave vector in each valley is then
173

2
kif=(mn )= i’zr—n (146)1

=kp(1+E)3. (46)



Furthermore, we shall make use of the plasmon-
pole approximation,*"3? so with careful considera-
tion of powers of 2 we essentially take over the ex-
pressions of Gunnarsson and Lundqvist*® and of

8€F
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Lundqvist®' for the effective plasmon w, and for
the exchange and correlation contributions to the
chemical potential uf =pF +puZ as follows:

(47)

2__ 2
(ﬁwq) _(ﬁwp) + 1+§)l/3+(1__§)1/3 2m

1
“’%z_ZTZT;—* [ adav <q)f

p dp ©(kF —p),

q +2qu +2maoy /#

(48)

mao
P L [fo " L9y gin
Wq

ZkF —2qu/ﬁ
q*+2kfq +2moy /#

+f V( )In

q*—2kirq +2moy /#

where w: =ne’ /K eqm, €p=#kE/2m, and V(q)=e>/ks€epq>.

As mentioned in Sec. IV the presence of the insulator presents a further complication because electrons
closer to the interface interact more strongly than electrons deep in the semiconductor. We make the same
approximations as Ando,’! i.e., we replace the actual electron-electron interaction of Eq. (42) by

eZ

1 Ks —K;

L 49)

Vgl | T1—T2 | ,2)=
ere | E AK€y

— —
| T —T1> |

so that for each z we have a homogeneous electron
gas with the interaction given by Eq. (49). We can
then still use Eqgs. (47) and (48) for g, if we re-
place V(g)=e?/k,€0q? by the Fourier transform of
Vets:

2

K;
Verrlg,2)=—"— :
K€

1+—

Ks

1
2

K
+ 1—— |2¢zK;(2¢gz)

b

1
2

(50)

where K(x) is the modified Bessel function of the
second kind.

In Fig. 7 we have plotted some results on the
exchange-correlation potentials uZ.. We have in-
troduced scaled atomic units ay = 4mke i /me?
and #'=e?/8nKeqa, and the usual dimensionless
parameter 7, =(3/4mwn)/3/aj. Qualitatively, the
results resemble those of the spin-polarized electron
gas, and for a thorough discussion of the implica-
tions of these results on the homogeneous gas we
refer to that work.>® Quantitatively, it is impor-
tant to notice that our results for £=0 agree very
well with those of Ando,?! who used a more com-
plicated and supposedly better approximation for

+
Ks+K; [(?1—?2)24—422]1/2

I
the screened interaction. It is therefore safe to as-
sume that the plasmon-pole approximation is quite
sufficient.

In the actual calculations we have used the fol-

0 . r T -
rg=2
-02t
04 f -
zke=1
-08 | Zke=0 o
~>\
« 0
" rs=b
T J
-0.2 +
ZkF=1 -
0L o .
_05 1 1 1 1

0 02 04 06 08 10

FIG. 7. Exchange-correlation potentials for a valley-
polarized electron gas as a function of polarization £ for
two values of density and two values of z. + denotes
the more- and — the less-occupied valley.
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lowing interpolation formula for p:

Blry)tL8(r)—5— } :

+__
pE=flkpz)p,(r;) 1+0.3¢

(51)
My =—2kp/m,
B(r,)=140.0862r,In(1+15.24/r,) ,
8(ry)=1—0.012r, —0.404r, /(1-+0.597,) ,

2kpz
/[1+ g
A(rg)=2.2—0.17r, ,

1.3
A(rg) ’ ’
where pl. is in #' and kp=(97)'3/2r,.

For z=0 and z = « this expression is accurate
to better than 2% for 1 <r; <5. For intermediate
values of z the agreement is not quite so good, but
in view of the approximate treatment of the in-
teraction via the image we are content with a z-
dependent factor on the expression for z=0. It
should be mentioned that our results on the inver-
sion layer do not depend much on whether one
uses the conductivity mass or the density-of-states
mass for m in ay and #'.

For the problem of the inhomogeneous system
of electrons in the inversion layer and in the poten-
tial of an impurity it is now straightforward to ap-
ply the general theory of Kohn and Sham?® as ex-
tended to the spin-density-functional formalism.>
Instead of the Hamiltonian of Egs. (24) and (25)
we get effective Hamiltonians for each valley:

_E

Ks

f(sz)=KL+

s

m; 3?

Hf=——"—5 4 V(@) + V(2D + V35 (D),
m; oz
(52)
3 19 1 9
Hif= - _— % _ 2 LU(R,
'="%r? ROR R?ap U RA
+VER,2)+VIE(R,2), (53)
in which

Vi(R,2)=pi(n(R,2),E(R,2);z)

are the local exchange-correlation contributions to
the chemical potential, which, as shown above, are
functions of the local density, the local valley po-
larization, and z. Correspondingly, we obtain dif-
ferent solutions to the effective Scrodinger equa-
tions H i:p,}—f =E*y; and the total density is given
by

pR.2)= 3 ([YF I°+ Y5 %), (54)

E<Ep

where the sum runs over all states below the Fermi
level. In order to solve Egs. (52)—(54) we can use
the same methods as in Sec. IV; essentially the
work has only been doubled by treating the two
valleys separately. Clearly this formulation has the
possibility of different population of the two val-
leys and of only doubly degenerate bound states.

Before we discuss our results in Sec. VII let us
mention two further analogous extensions of the
local-density-functional formulation which we have
also applied. First, the valley polarization in Egs.
(52)—(54) is not the most general, since each state
is still doubly spin degenerate. In principle, one
could introduce a formalism in which each spin
and valley is treated separately, but what we are
really searching for is a solution in which we have
just one nondegenerate bound state; to allow such a
possibility we can restrict the general formulation
to having one valley and spin (+ 1) locally occu-
pied differently from the three other [(+ 1), (—1),
(—1)] possibilities. This division leads to equa-
tions of the same kind as (52) —(54), only the
exchange-correlation potentials are different and
must be calculated anew. We shall not present cal-
culations in detail but only show a typical result in
Fig. 8. The exchange-correlation potentials are
shown for a fixed density ;=2 and for z=0 as a
function of the “polarization” defined as

ny—n;

§=3 P (55)

where 7, is the density in (4 1) and n, is the den-
sity in each of the three other combinations, so
that n =n;+3n,. It can be seen by comparison
with Fig. 7 that one gains exchange-correlation en-
ergy by having all electrons in (4 1), i.e., by mak-

Hxc(Ry ")

FIG. 8. Example of exchange correlation potentials
for a spin- and valley-polarized electron gas as a func-
tion of polarization £ defined in Eq. (55).
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ing kr in (+1) as large as possible. Of course,
this gain occurs at the cost of a higher kinetic en-
ergy.

The second application goes beyond what we
have described up until now. It has been shown
most directly by Stallhofer et al.** that by applying
a suitably directed uniaxial strain on the interface
one can lower two of the four valleys which give
rise to the primed subbands relative to the two
from which the unprimed subbands originate. It is
then possible to populate the lowest subband of the
primed set. In the natural extension of the local-
density-functional method one introduces one
exchange-correlation potential V. for the electrons
in the unprimed subbands, and another V'  for
those in the primed subbands. As described in
Ref. 34 these potentials then depend on the total
density n +n’, the polarization £ =(n —n')/

(n +n'), and explicitly on z because of the image
interaction. We have calculated these potentials
analogously to Egs. (47)—(50) with appropriate
changes to take into account the total of four val-
leys instead of two. For £=1 we get, with very
small deviations, the results of Ando?! who also
calculated the potential V', for £=1.

When an impurity is present at the interface it
scatters electrons in both unprimed and primed
subbands and the electrons contribute differently to
screening. To describe this situation self-
consistently we solve the equations analogous to

(52)—(53), HYy=Ey and H'Y =(E'+S)y', where

2 2 2

Ho_ |, 8| m @

ax? ay2 m; 9z>
+Vdepl+VH+ch ’ (56)

m | 3> 9’

H=—— |54 5|2

mg |3x* 3y | dz?
+Vdepl+VH+V;(c ’ (57

S is the strain induced bulk shift of the valleys
from which the primed subband originates, and
mg=(m,m;)'/? is the density-of-states mass paral-
lel to the interface for the primed subbands. The
mass for motion perpendicular to the interface is
m,.% In these equations we have neglected the an-
isotropy parallel to the interface in order to keep
the cylindrical symmetry. The equations can be
solved by the methods described in Sec. IV.

VII. VALLEY-POLARIZED RESULTS

We have shown earlier®® that when there is no
impurity the Hamiltonian Hg [Egs. (52)] leads to a
lifting of the valley degeneracy at low densities
Niny <3X 10" ¢cm~2 This valley condensation is
due to the fact that for low densities it is favorable
to increase the Fermi level and thereby the magni-
tude of the exchange energy by having all electrons
in one valley. The gain in energy is larger than the
loss in kinetic energy. This transition, which can
only occur at low temperatures,>® has many impor-
tant implications as discussed in Ref. 35. It has
not yet been observed on Si(100) surfaces,?’ but in-
directly, various measurements indicate that the
valley degeneracy is lifted in the localization re-
gime, e.g., Ref. 38. This is not the problem we
want to investigate here, but for our purposes it is
important to notice that it is possible within our
formalism to lift the valley degeneracy.

With an impurity on the interface we have
solved Eqgs. (52) and (53) for densities above
Ninw =102 cm~2. We have earlier reported® that
the only self-consistent solution that we have been
able to find is the completely unpolarized one in
which the bound state contains four electrons. If
we run the calculations with the constraint that the
bound state be only doubly occupied, we find a po-
larized solution which, however, has an unq;ccupied
state below E, i.e., it is not the self-consistent
ground state but represents an excited state with a
double “core hole.” Similar results are obtained, if
we allow only one electron in the bound state and
use the exchange-correlation potentials described in
connection with Fig. 8, where a polarization of one
valley and spin is assumed. We do not expect that
a calculation in which all four spin and valley de-
grees of freedom were allowed to polarize indepen-
dently would lead to any other result than the
completely unpolarized one which we discussed in
Sec. V. We therefore conclude that the ground
state of our model has a very shallow fourfold de-
generate bound state. The very good agreement
found with the mobility data (Fig. 5) indicates that
this is probably the true ground state, and that the
bound state is so shallow that it is difficult to dis-
tinguish from a continuum state.

A comparison with the corresponding problem
of a charged impurity in a three-dimensional metal
is valuable. Self-consistent calculations show that
a bound state below the continuum is doubly de-
generate, even when spin-density functional
methods are used*®; this is analogous to our situa-
tion. In jellium with high density the impurity po-
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tential can be so strongly screened that no bound
state exists*!; for strictly two dimensions an attrac-
tive potential is expected to have at least one
bound state,*? and because our system is strongly
two-dimensional we probably cannot avoid having
a bound state.

In Sec. VIII we briefly report some results which
further substantiate our claim that the bound state
is fourfold degenerate. Experimentally, no bound
state has been observed at such high densities; the
measurements of McCombe and co-workers®’
show only a bound state at low densities, which for
higher densities (> 1.5X 10'? cm~2) merges with
the subband transitions. This is at least not in
contradiction with our results.

For an inversion layer under uniaxial stress we
have earlier reported results*® on the mobility and
bound state when only subband 0’ is occupied.

The scattering time 7" was found to be consider-
ably larger than in subband O because the electrons
are at a greater distance from the impurity. If we
take the anisotropy of the mass parallel to the in-
terface into account by defining a longitudinal mo-
bility u;=e7’'/m; and a transverse mobility
p,=et'/my, it was found that the longitudinal mo-
bility lies below and the transverse mobility lies
above the mobility one has when only subband 0 is
filled. The bound state is even more shallow when
0’ is filled than when O is filled, because of the dif-
ferent distances from the impurity.

In Fig. 9 we show results for a fixed density
Niny=3X10" cm~? in the intermediate case when
the strain is such that both subbands 0 and 0’ are
occupied. As a function of the strain-induced en-
ergy shift S of the valleys from which the primed
subbands originate relative to the valleys of the
unprimed subbands, we show in the upper frame
the position of the subband edges and the bound
state. In the lower frame is shown the mobility of
the electrons in subband 0, the longitudinal mobili-
ty of the electrons in subband ', and the average
(longitudinal) mobility. The trends are not very
surprising in view of the model; as long as there
are electrons in subband O they screen the impurity
so well that when one starts filling 0’ the electrons
in 0’ have a very high mobility of about 50 times
that of the electrons in 0. With increasing strain
the screening by the electrons in subband O be-
comes less and less efficient, which leads to a
reduction of all the mobilities and to an increase in
binding energy of the bound state relative to the
subband bottom. Finally, for S > 60 meV, when
the bound state associated with subband O is also
empty, we have the lower longitudinal mobility
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FIG. 9. Results on the system under uniaxial stress.
S is the stress parameter defined in Eq. (57). In the
upper frame we show the positions of subband edges
and bound states relative to the Fermi energy. The thin
columns represent subband O, the thicker columns
represent subband 0. In the lower frame we show the
impurity contribution to the mobility of electrons in sub-
band O (u), in subband 0’ (1), and the average mobility
(tay). The mobility is calculated for N, =102cm~2
Ninv=3X10" cm™2, Ny =3.6X 10" cm™2

and the very shallow, fourfold-occupied bound
state associated with subband 0'. It should be
mentioned that since intervalley scattering is
neglected in our approximation, resonances below
0’ in the continuum of subband 0 would show up
as bound states.

The trends in the mobility are the same as those
found by Takada,!” but there are important differ-
ences between his work and the present work, espe-
cially with respect to the bound states; Takada as-
sumes that only one electron can occupy one bound
state. He then finds relatively strongly bound
states (Ep ~ 10 meV), one associated with subband
0 and one associated with subband 0’, and assumes
that only the lower of these two states is occupied.
Clearly, this involves rather unfounded assump-
tions about the interaction between electrons in
bound states and between the electrons in the sub-
bands and a bound electron. In our calculation the
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screened potentials are determined self-consistently,
and as long as the bound state associated with sub-
band 0 is occupied, the potential has no bound
state associated with subband 0'. Also, the scatter-
ing by the neutral impurity treated separately by
Takada is consistently included in our calculation.
Experimentally, there have not been investiga-
tions on the separate effect of oxide-charge scatter-
ing under stress, so it is not possible to compare
directly with our calculations. Gesch et al.** have
observed that the mobility as a function of
inversion-layer density has two maxima at inter-
mediate strain which indicate population of two
different subbands, but at the lower densities,
where impurity scattering is thought to dominate,
they see an increased resistivity when both sub-
bands are occupied, which is contrary to the results
of both Takada!” and the present calculation. Re-
cent measurements by Kastalsky and Fang* show
qualitatively the same behavior. The marked de-
crease in mobility at lower densities, even for
strains so low that one would not expect transfer
of electrons to subband 0, led the latter authors to
suggest that tail states below E( can be occupied
by a localized electron, which acts as a charged im-
purity.*> We should like to point at yet another
possible explanation. Suppose the interface con-
tains built-in strains which are randomly distribut-
ed in size and direction.*® Then Ey, is not fixed
but varies in the inversion layer, and for a
moderate extra strain, domains of the inversion
layer get into the mixed state. With increasing
external strain the domains increase until some
domains contain only electrons in 0’, and at suffi-
ciently high strain all electrons are in 0’. In the in-
termediate regime the conductivity is now also a
percolation process for electrons in subband 0 and
0’ separately, analogous to what has been suggest-
ed in simple (100) surfaces at valley-condensation
densities.*” The fact that the mobility reduction is
more pronounced at lower densities can be under-
stood as an effect of exchange and correlation
which enhances | Eyy |, so that each domain con-
tains mainly one type of electron and is highly
resistive for the other type. It is difficult to distin-
guish this model from that of Kastalsky and
Fang* on the basis of the mobility results alone,
but the model presented here explains also the
Shubnikov—de Haas results both when the direc-
tion of the external strain is such that the 0’ sub-
band is doubly valley degenerate and when it is
such that 0’ is fourfold degenerate.*® After this di-
gression let us note with satisfaction that the
mobilities measured when only 0’ is occupied agree

qualitatively with our calculation: The longitudi-
nal mobility is lower and the transverse mobility is
higher than the mobility measured when only sub-
band 0 is occupied.®?

VIII. CONCLUSION

We have studied the influence of impurities on
electrons in an inversion layer on Si(100) in two
limits. First the very low density limit where there
are fewer electrons than impurities, so that the sys-
tem can be treated as a one-electron problem. Our
results for the most deeply bound states agree very
well with those of more approximate theories; for
excited bound states with m =0 our results are new
and illustrate nicely the interplay of impurity po-
tential and depletion-layer potential. The excita-
tion spectrum of such bound electrons shows an in-
teresting dependence on polarization for which
some results have been published,*® but we post-
pone details of those calculations and comparison
with experiments to a later publication. Second,
we have studied the limit of many electrons com-
pared to the number of impurities and used several
versions of density-functional methods to investi-
gate scattering and binding of electrons, when
screening is of decisive importance. For the
impurity-limited mobility of electrons in subband 0
we have obtained considerable improvement, over
simpler linear theories'®'® when compared to the
most recent measurements.* Detailed calculations,
which allow valley and/or spin splitting, all lead to
the result that there is one bound state below the
lowest subband, which is fourfold occupied and so
shallow that it is difficult to distinguish from a
state in the bottom of the continuum. One might
raise two objections to this result. The first might
be that even valley-density-functional methods can-
not describe these questions of degeneracy correct-
ly. We tend not to believe this objection, mainly
because the methods do show a lifting of the de-
generacy for the system without impurities,35 and
because of the success the spin-density functional
method has had in correctly describing, e.g., mag-
netic impurities in metals.* Also a more strongly
bound, singly occupied bound state would probably
lead to stronger scattering and ruin the good agree-
ment for the mobility.

The second objection might be that since the
bound state is very extended the model of just one
impurity cannot be valid and interaction with other
impurities might twist the potential in such a way
that a polarized solution emerges. We have made
a simple attempt to investigate this point; it is not
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possible to calculate the self-consistent potential of
an arbitrary complex of impurities without going
considerably beyond the cylindrical symmetry we
have made heavy use of up until now, so instead,
we have considered two distributions of impurities
with a total charge of four: one positive point
charge surrounded by a circular line charge with a
total of three elementary charges, and a circular
line charge containing four elementary charges.
These distributions conserve cylindrical symmetry
and no serious change in the programs is neces-
sary. For both distributions the results are as fol-
lows: When the radius of the ring is small, we
find one strongly bound state which is fourfold oc-
cupied. With increasing radius this state becomes
more and more shallow but remains fourfold de-
generate. When the radius becomes of the order of
8 —10a}, the binding energy is about the same as
for a single impurity and an additional bound state
having m =+1 emerges. While not being a proof,
these results are a strong indication that in the lim-
it of very few impurities there is more than one
electron in the bound state around each impurity
in support of the seemingly unusual occupation of
the bound state found in the earlier sections.

Also in the high-density limit we have studied
the effects of an impurity on the inversion layer,
when external stress allows occupation of subband
0'. As one could expect from earlier calculations!’
the results showed a strongly increased mobility
for the 0’ electrons when the electrons in subband
0 very efficiently screen the impurity potential. As
for the bound state our calculations show always
one fourfold-occupied bound state; as long as there
is an occupied bound state below subband 0, the
potential does not have a bound state below 0’. It
would be highly interesting to see drifted Na™t ex-
periments similar to those of Hartstein et al.*
under stress, so that the impurity scattering could
be measured separately. At the moment a direct
comparison with experiments is not possible, but
our results do not seem to be observed, so our
model is probably too simple.

There remains the most difficult problem of
describing the intermediate range between very low
inversion-layer density and high density
Niny >2X 102 cm =2 The outstanding challenge
here is how to handle the incomplete screening and
the details of occupation of more than one bound

state at an impurity, when the number of electrons
is somewhat larger than the number of impurities.
Coming from the low-density side one must
describe the system within a Hubbard mode
which, however, contains essentially unknown
parameters and can at most give a qualitative idea
of the behavior of the system. Apart from such
general work the only attempt to discuss in a self-
consistent way what happens was done by Stern.'®
He used a linearized screening model and assumed
the impurities to give rise to a fluctuating potential
which causes band tailing on the subband and pos-
sibly an impurity band. Furthermore, he assumed
at most only one singly occupied bound state per
impurity with a chosen binding energy independent
of the number of electrons. With this scheme he
could only qualitatively model the impurity peak
observed below threshold by Fowler et al.’ in dc
conductivity. But the model does not address
problems like changes in binding energy and occu-
pation of bound states with increasing screening.

Our methods do not seem easily adaptable to
this problem. If we try to lower the inversion-
layer density below N;,,~10'?> cm~? we run into
numerical problems and cannot obtain conver-
gence. At present it is not clear whether this is
purely numerical and could be solved or whether it
is due to a too small area of integration around the
impurity. Anyway, a model having only one im-
purity whose potential cannot be perfectly screened
must miss essential features of the physics, so we
have not pursued this direction with much effort.
The problem of realistically describing the screen-
ing and occupation of impurities at low densities
thus remains a challenge. Needless to say this is
not the only problem in connection with electronic
transport in inversion layers at low densities. The
most prominent ones are the questions of weak lo-
calization and the Anderson transition in two di-
mensions. The literature on these subjects is ex-
panding so rapidly that we shall only refer to Gold
and Gotze®! and references therein.
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