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We derive a general expression for the magnetic susceptibility Ot.') of intrinsic semicon-

ductors in the Bloch representation using finite-temperature Green s-function formalism.
It is shown that terms of the same order have been missed in the earlier theories of g. In
order to apply our theory to tetrahedral semiconductors, we construct a basis set for the
valence bands which is a linear combination of the sp hybrids forming a bond in which

their relative phase factors (heretofore neglected) have been properly included. We also
construct a basis set for the conduction bands which are orthogonal to the valence-band

functions. We construct Wannier functions for the valence bands from our Bloch func-
tions and show that the bond orbitals used in the earlier chemical-bond theories are not
the proper choice for the Wannier functions of the valence band. We use our basis func-
tions in our general expression to obtain an expression for g of tetrahedral semiconduct-
ors. Our expression for g is origin independent and is free from any "scaling" parameter,
unlike the earlier theories. A novel feature of our result is that our expressions for Van
Vleck —type susceptibility is proportional to the overlap integral and tends to zero in the
"no bonding" limit. We calculate g of elemental and III-V tetrahedral semiconductors,
and there is good agreement with experimental results.

I. INTRODUCTION

The chemical-bond approach' ' to the study of
electronic properties of solids has recently been uti-
lized to calculate the magnetic susceptibility (X) of
intrinsic tetrahedrally coordinated semiconductors.
This approach, which is much simpler than band
theory, emphasizes the bond aspect of the crystal
structure and is valuable in studying chemical
trends such as covalency, polarity, and metallicity.
Further, this approach has a certain degree of flex-

ibility and is well suited to the study of amorphous
materials as well as periodic ones. In fact, recent
experiments on the large diamagnetic enhancement

of Ge (Ref. 11) and Si (Ref. 12) in the amorphous
state relative to the crystalline state, which is one
of the most fascinating and puzzling properties ex-

hibited by many semiconductors, have generated
widespread interest in these semiempirical
chemical-bond theories of X of tetrahedral semi-

conductors.
Hudgens, Kastner, and Fritzsche' (HKF) first

showed that a simple chemical-bond model de-
scribes the magnetic susceptibility of A 8
semiconductors. Sukhatme and Wolff' (SW) and

Chadi, White, and Harrison' (CWH) have in-

dependently developed chemical-bond theories of X
of tetrahedral semiconductors. According to these
theories, the magnetic susceptibility X can be writ-

ten

X=X~+X„+Xp,

where X, is the core-electron diamagnetism, X„ is a
Langevin-type diamagnetic component due to the
valence electrons which is sensitive to the spatial
extent of the valence charge density, and X& is a
Van Vleck —type paramagnetic interband com-
ponent arising from the virtual magnetic dipole
transition between filled valence- and empty
conduction-band states. SW have incorporated the
effects of a magnetic field into the Hall-Weaire
model' ' by introducing a basis set of gauge-
invariant, sp, atomic orbitals. ' ' They have used
a perturbative approach leading to a power-series
expansion of the susceptibility in the parameter
Vt/Vq where V& is the matrix element of the
Hamiltonian between two orbitals of the same
atom, and V2 is the matrix element between two
orbitals forming a bond. CWH have used a tight-
binding basis' and approximations appropriate to
the bond-orbital model, ' which has also been used
to calculate electric' and optical susceptibilities,
to obtain an expression for X. They have used two
"scaling" parameters y and A, and determined
these parameters by fitting to the experimentally
separated values of X~ and X„ for Si. Then, as-

suming y and A, to have the same values for other
semiconductors, they have calculated X of many
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average-valence-four semiconductors.
However, there is wide disagreement between the

results of these chemical bond theories and the ex-

perimental results. The values of 7 calculated
from SW theory are —3.1 (—6.4) for Si, —12.4
(—15.7) for Ge, and —3.6 (—11.7) for C where the
experimental results are given in the parentheses.
The CWH theory seems to predict reasonably well

the susceptibility of 26 semiconductors. However,
in order to compare their theory with experiment,
one must separate the diamagnetic (XL ) and

paramagnetic (Xz ) contribution since for covalently
bonded tetrahedral semiconductors, XL and Xz are
both large and nearly cancel. Therefore, a theory
which adequately predicts the total susceptibility

may yield individual terms XL, and X~ in substan-
tial disagreement with experiment. If we write 7&

and compare 7 with g
we find that the difference is 100% or more for
a-Sn, CdTe, HgS, HgSe, HgTe, and CuC1 and is
40% or more for GaP, InAs, InSb, CdS, and
CuBr.

In addition, as we shall show in detail later,
there are other substantial deficiencies in these
theories. Firstly, the value of Xz in these theories
is quite large even when the overlap integral S
tends to zero, an unlikely result since one does not
expect any significant Van Vleck —type contribu-
tion if there is no bonding. Secondly, the complete
problem of the magnetic susceptibility of
solids ' has not been considered in these
theories and we shall show that "terms of the same
order" in P have been omitted. Thirdly, in White's
expression' for g, +L, and gz are each origin

2dependent and contain divergent terms R; and R;,
where R; is the position of the midpoint of the
bond. These divergent terms in gl +X& cancel
provided the localized states form a complete set
for the conduction and valence bands. However,
CWH have used as basis states the bonding and
antibonding orbitals and have evaluated the matrix
elements of White's expression for X in the Hall-
Weaire approximation. ' Owing to these assump-
tions, the completeness criteria of the basis states is
not satisfied and the divergent terms do not exactly
cancel. Therefore, X is dependent on the
choice of the local origin. Fourthly, in the CWH
theory, a parameter A,, whose theoretical value
varies from 0.52 to 0.71, has been arbitrarily
"scaled" to 1.13. Since Xz is proportional to A. ,
this "scaling" enhances their Xz by a factor of
300% to 400% of its actual value. Finally, recent
experiments on the temperature dependence of

magnetic susceptibility of materials of intermediate
ionicity and highly ionic alkali halides indicate
that these chemical-bond theories are either in-

correct or incomplete and yield unphysical results
for some materials.

In this paper we derive for the first time a gen-
eral expression for the magnetic susceptibility of
intrinsic semiconductors in the Bloch representa-
tion with the use of finite temperature Green's-
function formalism. We show that terms of the
same order have been missed in White's expres-
sion' for X. In order to apply our theory to
tetrahedral semiconductors, we construct a basis
set for the valence bands which is a linear com-
bination of sp hybrids forming a bond in which
their relative phase factors (heretofore neglected)
has been properly included. We also construct a
basis set for the conduction bands which are
orthogonal to the valence-band functions.

In order to compare our basis functions with the
bond orbitals' ' we construct Wannier functions'
from our Bloch functions and show that the bond
orbitals used in the earlier theories are not the
proper choice for the Wannier functions of the
valence band. We show that the basic assumption
in the bond-orbital models, i.e., that the localized
functions have the character of chemical bonds in
the chemist's sense, is equivalent to ignoring the

ik ~ d
relative Bloch phase factors e ' (where dj is a
bond length) between the hybrids forming a bond.
However, since d&

—dj is a lattice vector, this rela-
tive phase factor plays an important role in solids
unlike in the case of molecules where it could be
neglected.

We use our basis functions in our general expres-
sion for X to obtain an expression for X of
tetrahedral semiconductors. Each term in our ex-
pression for g is origin independent, unlike the ear-
lier theories. A novel feature of our result is that
our expression for Xz is proportional to S and
tends to zero in the "no bonding" limit. We calcu-
late 7 of a large number of semiconductors, and
our results agree quite well with the experimental
results. Our theory is free from any "scaling
parameter" unlike the earlier theories. '

The organization of the paper is as follows. In
Sec. II we derive a general theory for g of intrinsic
semiconductors. In Sec. III we construct a basis
set in the Bloch representation both for the valence
and conduction bands. We also construct Wannier
functions from our Bloch functions and compare
them with the bond orbitals. In Sec. IV we use
our basis functions in our general expression for g
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to obtain an expression for X of tetrahedral semi-

conductors. In Sec. V we numerically calculate X
of homopolar and III-V semiconductors and com-
pare our results with the available theoretical and
experimental results. In Sec. VI, we summarize

. our results.

II. MAGNETIC SUSCEPTIBILITY
OF INTRINSIC SEMICONDUCTORS

A. Equation of motion in the Bloch
representation

We shall derive a general expression for the
magnetic susceptibility of intrinsic semiconductors
since no such theory is available. We consider an
intrinsic semiconductor which has valence bands
(n, n', . . . ) and conduction bands (m, m', . . . ). Us-
ing finite temperature Green's-function formalism,
we obtain the thermodynamic potential
Q(T, V,p, B) for a noninteracting electron system in
the presence of a periodic potential V(r ) and exter-
nal magnetic field B. Q can be evaluated using
Luttinger-Ward expression

H is the one-particle Hamiltonian
'2

H= p+ +V(r),
2m c

(2.4)

G(r, +R, r '+R, «)=G(r, r ',«), (2.5)

where R is the crystal translation vector. The vec-
tor potential in the Hamiltonian destroys this sym-
metry but G can be written as the product of a
"Peierls phase factor" and a part which has the
above symmetry. ' In the symmetric gauge
(A= —,BXr}, we have

G(r, r ',B,«) =exp(ih r X r ')

XG(r, r ', B,«), (2.6)

where h =eB/2iric, and G satisfies crystal transla-
tional symmetry. Substituting Eqs. (2.4) and (2.6)
in Eq. (2.2), commuting the differential operators
through the Peierls phase factor, and then multi-
plying on the left by exp ( —ih r X r '), we obtain

and A(r ) is the vector potential. In the absence of
the magnetic field, G has the symmetry

Q =—Tr ln( —G),1
(2.1) [p+Ah X(r —r ')] —V(r)

2m

where « is the complex energy

«=(2l+1) +p, (2.3)

where G is the exact one-particle Green's function.
The trace involves summation over a complete
one-particle set and over imaginary frequencies. G
satisfies the equation

(2.2)

XG(r, r ',8,«) =5(r —r ') . (2.7)

%'e can write the equation of motion in the Bloch
representation, i.e., in terms of the basis functions

g„z ( r ) =e' "'
U„z ( r ), where n is the band index

and k is the reduced wave vector. Here P„z ( r )

are the eigenfunctions of the Hamiltonian of the
noninteracting electron in the absence of the mag-
netic field. With the use of the Bloch representa-
tion, Eq. (2.7) can be written

Jdrdr 'dr "e '"'U„-„(r) « — [p+A'h X(r —r ')] —V(r)
n, k, k

Xexp[ik".(r —r ")]U„„p„(r)U„*„p„(r")G(r ",r ',B,«)U„,p(r ')e'" ' =5„„. (2.8)

By introducing change of variables Ri ——r "—r ',Ri ———,(r '+ r ") and with the use of partial integration of
the type

g(r —r ')exp[ik" (r —r ')]exp[ik" (r ' —r ")]U„„z.,(r)U„'„k„(r")
II

=gexp[ik" (r —r ')]iV' „exp[ik" (r ' —r ")]U„„„(r)U„',. ..(r "}, (2 9)

Eq. (2.8) can be written in the form
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where

K=k+ih XVk,

H(K, g()= (p+AK)'+ &(r),
2m

and

(2.11)

(2.12)

H'(gI) is the operator

H'(g()= ih—~pP (k,gl)V ~

fP p
"aphygV~V~&ay ~

and

(2.18)

G ., k,P(k', k)
= Jdr dr 'U„',.-„(r)G(r,r ',g~)

)&exp[ —ik' (r —r ')]U„,-„(r ') . (2.13)

Since the U„-„'s form a complete set for periodic
functions, Eq. (2.8) can be written in the alternate
orm

[gl H(K, g—()]G(k,gg) =I . (2.14)

B. Derivation of a general formula for g

We note that similar Green's-function equations
for the orbital motion of Bloch electrons have been
derived by Phillippas and McClure in the
t,uttinger-Kohn representation and Mohanty and
Misra in the Bloch representation. '

where

+ ~ ~ ~ (2.19)

Gp '(k, k)=k —Ho(k, gi) (2.20)

and is diagonal in the basis U„k. It can be easily
shown that

P=—(p+A'k) .
m

Here we have retained terms up to second order in
the magnetic field and h~p e~pz

——br, where e~p& is
the antisymmetric tensor of the third rank and we
follow Einstein summation convention. %e make
a perturbative expansion

G(k gI)=Gp(k gi)+Gp(k gi)H Gp(k gi)

+Gp( k, gl )H'Gp( k, gl )H'Gp( k,fI )

The magnetic susceptibility X is calculated from
the expression

V k Go(kit) =Go(k~k)P Go(kit), (2.21)

1 l. BQ
(2.15)

In order to evaluate 0, we write Eq. (2.12) in the
orm

(2.16)H(Kgl) =Ho(k, gl)+H'(gI),

where Hp(k, g& } is the Hamiltonian in the absence
of magnetic field,

V 1, V+kGp(k, gI )

Gp(k, gi)Gp—(k,(I )5~r
m

+Go(k (I)P Go(k gl)P Go(k gt)

+Gp(k, k}P"Go(k~k)P Go(k, (I) . (2.22)

Hp(k, gi) = (p+fik) +V(r),
2m

(2.17)
From Eqs. (2.19},(2.21), and (2.22) we obtain

G(kg()=Go(k, gI) ih~pGoP Go—P Go

g4 fi 5—h~phrsGo Gp5ur 5ps+ (GoP~GoP +GoP GoP~+P~GoP Go 2P~GpGoP )—
m

+2P GoPyGoPPGoP~ G + (2.23)

The magnetic susceptibility X&„ is calculated from Eqs. (2.1), (2.15), and (2.23). To carry out the frequency
sums appearing in 7&„,we use the identity

—gin1 l 1 I ln
1

P &
(H —g~) 2@i~ exp[P(g —p.)]+1 (H —g)

(2.24)
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where the contour c encircles the imaginary axis in
counterclockwise direction. We define

P(g) = ——lnI 1+exp[ —P(g —p, )]] .1
(2.25)

trf P(g)G(g)dg,

where the latter is obtained by an integration by
parts, and tr is taken over one-particle states only.
One can now substitute the results of Eq. (2.23) in

Eq. (2.27) to obtain Q. The results are precisely
the same as obtained by using the inverse Laplace

(2.27)

From Eqs. (2.1), (2.24), and (2.25), we obtain

0= . tr ln H—1 d()
(2.26)

2ni . ~ dg

transform technique, but the present technique is
simpler.

The one-particle trace is evaluated over U„k
which are eigenfunctions of Ho(k). After evaluat-
ing the trace, we perform the contour integration
as prescribed in Eq. (2.27). We use the identity24

humph„s(M &M2M3M4+M, M/M3M4 )

=h~phrsMlM/M3M4 ~ (2.28)

where M~, M2, M3, and M4 are matrix elements
of P between U„k. We also adopt the convention
that running index means that the sum over all the
bands and all the spin indices shall be taken except
that all band terms equal to s have been explicitly
separated out. After some algebra we obtain

f(E4) 2$(E4)
Q=gih~pP, qPq, +

k qs Eqs

+h phrs 5ps—P—P—rf"(E, ) l 5 P—psf'(E, )
1lrl ~ r „ fi

4m'

f"(En) 2f'(E, ) 6f (E, ) 8$(Eg)+ $$ $$ sq qs + 2 + 3 + 4
Eqs Eqs Eqs Eqs

f'«s) 4f (E, )

qs qs qs

f'(E, ) 6f(E, ) 8$(E, ) Q(E, )

2f(E, ) 4$(E, ) Q(E, )
+PsqPqIPrrPts

E&E E EE EE E

2f (E4) —2f (E4) Q(E, ) Q(E, )
(2.29)

where sums are taken over all the repeated indices s, q, l, and t but s+q, l, t. Thus s takes all the values of n
and m while q, l, and t each takes any of the values other than s. We have also used the notation
Eq, ——Eq(k) —E,(k). By an integration by parts, all the P terms are converted to f terms. Similarly, some
of the f terms are converted to f' terms. Setting f'(E, ) and f"(E,) terms to be zero, f(E„)=1 and

f(E ) =0 (for intrinsic semiconductors), we obtain from Eqs. (2.15) and (2.29)

haphys(1+~@v) fl nm mn nm mn'Pn'm' m'n

Bl „~ m E„ Emn&m nEmn

a y p 5 a y p 5 a p y 5
Pnm Pmn' n'm'Pm'n nmPmn'Pn'm'Pm'n Pnm Pmn Pnm'Pm'n

+
Em'n Emn'Em'n' EmnEm'n Em'n' EmnEm n

a p y S a p y 5 a p y 5
Pnm Pmm Pm'm Pm "n 2Pnn'Pn'mPmm Pm'n Pnn'Pn'mPmm Pm'n+ +

EmnEm'n Em "n Emn Em nEm n EmnEm nEm'
(2.30)
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where repeated indices imply summation. We note
that while summing over n', n'=n is included and
while summing over m', m'=m is included but
n+m W. e further note that we have ignored all

P« terms for nQn' where no corresponding diag-
onal (P„„)terms exist since these terms are small.
It can be shown that Eq. (2.30), which is valid for
any intrinsic semiconductor even when the bands
are degenerate, is equivalent to the terms propor-
tional to f(E„)in a general expression for dia-
magnetism of solids [Eq. (5.36) of Ref. 33] if one
ignores the n'Qn terms (since in the general theory
of Bloch electrons n is just a band index and the
bands have not been grouped into two categories,
i.e., valence bands n, n', . . . and conduction bands

m, m'. . . ) and sums over all indices n, m, m' and
m" but num, m', m" It c. an be shown that the
I.angevin term' is obtained from the first two
terms and the Van Vleck term' is obtained from
the sixth term. The other terms in Eq. (2.39) are
extra terms obtained by us. It may be noted that
each term in our expression for g is origin in-

dependent.

III. LINEAR COMBINATION OF ATOMIC
ORBITALS FORMALISM FOR TETRAHEDRAL

SEMICONDUCTORS

We consider a zinc-blende structure where each
atom is surrounded tetrahedrally by four identical
atoms, which may be of a second type. The stand-
ard primitive cell contains two basic atoms at site
i, with four sp hybrids hi'(r —R;) pointing from
atom I to the nearest neighbors (atom II) along the
directions j (j=l, . . . , 4) and four other sp hy-

2brids hi (r —R; —di } pointing from these nearest

neighbors to atom I. Here R; is a lattice vector for
site i and locates atoms of type I (we choose one of
the atomic sites I as the origin) and di is a
nearest-neighbor vector joining atom I with atom
II. The hybrids can be expressed as

hi'(r —R;)=—,[s)+v 3(gip~t+gfpyi+kjp~& ]

and
(3.1)

where
Xe '], (3 3)

fz"(k)=[N(1 +A, +2Mcosk di)] 'i2, (3.4)

S is the overlap integral, and A, is related to
Coulson's ionicity'9 ~ f, by the expression

(1—S )' (1—i(, )

(1+A, +2AS)
(3.5)

The basis functions for the conduction band XJ. are
obtained by constructing functions orthogonal to
Xi(r, k):

hi(r —R; —di)= 2 [s2 —v 3(gjpxz+gqps2

+kj~ps2)] ~ (3 2)

where g &
——1/v 3(1,1, 1), g~ = 1/ 3(1,1, 1),

g3
——1/V3(1, 1, 1), g4

—1/v 3(1,1,1), and

s~,p„~,p~~,p, ~ and S2,p„2,p~2,p, 2 are the atomic or-
bitals at sites I and II, respectively. We construct
Bloch-type tight-binding sums for valence-band
basis functions by taking linear combination of the
hybrids forming a bond,

Xj(r,k)=gfi(k)e

X [hi'(r R;)+A—,hi (r R; —d—i)

X(irk)=gf (ik)e '[(A, +Se ')hi'(r —R;)—(AS+e ')hi (r —R; —di)], (3.6)

where

ff(k) = A, +Se

N(1 —S )(1+)(, +2AScosk dj)(i(, +Se. ')

1/2

(3.7)

P„(r,k) =g f"„(ak)XJ"( k)r

and

(r, k}=gai~(k)Xi(r, k) .
J

(3.8)

The Bloch eigenfunctions for the valence and con-
duction bands are

t'ai (k)a';+(k)=5i,'. (3.9)

l

Here a's are elements of (4 X4) unitary matrices.
%'e assume that the unitary properties of a" and a'
separately hold good, i.e.,

t'ai„( k )a"„i+'(k ) =5JJ
n

and
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We note that our Bloch functions are different
from the functions of Nucho et al. ' in the sense
that we have included a relative phase factor

ik ~ d.
e ' between the two hybrids forming a bond.
Indeed, it may be argued that in the local represen-
tation the relative phase factors of the hybrids is
included through their origin dependence. Howev-

er, since the hybrids are bicentric, their relative
phase factors must be properly taken into account
while constructing the Bloch function in a linear
combination of atomic orbitals formalism. If the
localized functions (Wannier functions) constructed
from these Bloch functions are written as
a„=+Ic~"P~ where P~ are the hybrids, the Bloch
phase factors are included through cP and not
through the origin dependence of P&. The relative
phase of the two hybrids which is introduced
through their origin dependence arises due to the
position of an atom relative to the others and
would exist even when the atoms are independent.

In order to compare our basis functions with the
bond orbitals, ' '" we construct localized states
from our Bloch functions. %'e define modified
Wannier functions' by mixing valence-band states
as

a]( r —R; —d~ /2)

=FJ[h&'(r R) —+Ah J(r —R; —d )7

+ QFJJ'[hJ'(r R; ——dJ+dJ, )

J XJ

+A,hJ ( r —R; —dJ')7+

where

(3.13)

off(k)cos(k dJ/2)
k

and

Fq~ gf—j—"(k)cosk (dJ' —dJ/2) . (3.14)
k

and Tjj 0 291. Thus the localized functions with
site I as local origin are not the usual bonding orbi-
tals ' ' but there is a much greater admixture of
hz'(r —R;) than hJ (r —R; —dJ ), as it should be.
%e have also calculated the %annier functions
aJ(r —R; —dJ/2) from Eqs. (3.3) and (3.8) —(3.10)
and we obtain

—ik ~ R l

aJ"(r —R;)=g a"„J+(k)g„(r,k) .
N

(3.10)

From Eqs. (3.3) and (3.8)—(3.10), we obtain

+ 0' ~ ~ (3.11)

where

1
TJ = ~ gfJ(k),

k

TJ = gf~"(k)cosk dJ,
k

(3.12)

TJ2J —— gfJ"(k)cosk. dJ' .JJ N J
k

As examples, we have calculated these coefficients
for Si (the details of the calculation have been
described later). We obtain TJ' 0.643, TJ ——0.229, ——

aJ"(r R;)=TJ'h—J'(r R;)+ T~ h—J(r R; —dJ)—
+ T 'h (r —R —d')JJ J & J

J AJ

For Si we obtain Fj ——0.513 and IJJ ——0.132. We
note that aJ"( r —R; —dz/2) are essentially the bond
orbitals ' if we neglect the second term. Thus
it appears that the relative phase of the bond orbi-
tals is approximately included in the CWH theory
if a bond center is chosen as the origin. However,
since there are four bond orientations in a
tetrahedral semiconductor, if we choose the center
of one bond orientation (for example, j) as the lat-
tice origin, the distance between the origin and the
centers of the bonds in the other three orientations
is not a lattice vector. In such cases the Wannier
functions which have the centers of the bonds of j'
orientation (j'+j) as local origin would be dif-
ferent in form from the CWH bonding orbitals, '
i.e., from the %annier functions which have the
centers of the bonds of j orientations as local ori-
gin. Therefore, a more appropriate choice of the
origin would be an atomic site in which case the
Wannier functions would be of the same form in
all the four bond orientations but which would be
different from the CWH bond orbitals.

In order to make a comparison with the field-
dependent basis functions used in SW theory, ' we
use the results of one of our earlier papers in
which it was shown that the set of magnetic Bloch
functions f„(r, k ) can be constructed from the
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g„(r,k) =U„(r,K*)e'"', (3.15)

zero-field Bloch functions U„(r, k )e' "' with the
use of the relation

where U„(r,Kn) is the operator obtained from
U„(r,k) by replacing the wave vector k by the
operator Kn symmetrically. From Eqs. (3.3), (3.8),
and (3.15), we have

Pn (r, k)=gazn(k)fj"(k)e 'exp
l,J 2f

'r B)&R;

+ ik ~ d- gg -+
X hz(r —R;)+le 'exp — r.BXdj hj(r —R; —dj)

From Eqs. (3.10) and (3.16), the magnetic Wannier functions aj„ for the valence band are obtained as

(3.16)

M ~ le 1 1 ~a (r —R )=exp — r BXR T h (r —R .)+expJ» Mc 2fic
r.BXdj TJ hj (r R; d—j)—

~ +exp
le -- - 2 2-

J JJ J i Jr BXd T 'h (r —R —d') + (3.17)

Thus the Wannier functions with site I as local origin are not the SW gauge-invariant bonding orbitals but
there is a greater admixture of h (r —R;) than h (r —R; —dj) as it should be. Similarly we obtain from
Eqs. (3.10) and (3.16) the valence-band Wannier functions aj„(r—R;—dj/2) with the bond center as the lo-
cal origin

M ~ ge -+ + -+a. (r —R —d /2)=exp — r.BXR. F h (r —R )+A, exp — r''BXd h. (r —R.—d )J» J 2~ ~ J J 2iric

g gF~~' exp
J Pi

ge

J J J ~ J Jr BX(d —d') h (r —R —d + d')

+A,exp 2' r BXdj hj(r —R; —dj ) + . (3.18)

We note that the first term in Eq. (3.18) gives essentially the SW gauge-invariant bonding orbitals. We fur-
ther note that this gauge invariance was obtained because of the inclusion of the relative phase factors in our
basis functions. However, for reasons explained earlier, the Wannier functions which have the centers of the
bonds of j' orientations (j'Qj) as local origin would be different from a~„.

IV. MAGNETIC SUSCEPTIBILITY OF TETRAHEDRAL SEMICONDUCTORS

We shall derive an expression for the magnetic susceptibility of tetrahedral semiconductors by using the
Bloch functions obtained in Eq. (3.8). We simplify our results for P in Eq (2.30) by using the relation

Q „=—fU'VpU„dr= (4.1)

From Eqs. (2.30) and (4.1), we obtain

2h haP &5 fP +n y +a y 5 p a y +p S +a y +p 5
Qnm Qmn ~pS+ Qnm Qmn'~n'm'Qm'n +~nm Qmn Qn m'Qm'n 'Q'nm ~mn'Qn'm'Qm'nmnk

+2Qnm Qmn~nm'Qm'n
+a p y S

ga p y S a gp y 5 a gp y 5
Qnm ~mm ~m'm Qm "n 2"~nn Qn m~mm Q'm n'~n'n'Qn''m~mm'Qm'n+ +

E~n Em.

=X)+X2+X3+X4+X5+X6+X7+Xs ~ (4.2)
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We note that we have the choice of evaluating
these matrix elements by either directly using the
Bloch functions, a procedure we have followed, or
by making a unitary transformation to the local
representation and by using the localized states ob-
tained by us. We have used the Ha11-Weaire ap-
proximation'; i.e., we have calculated only the
matrix elements between hybrids at the same site
and between hybrids of the same bond. Since the
Hall-Weaire model yields a poor description of the
conduction band, we have expressed the matrix ele-
ments of Eq. (4.2) in terms of valence-band func-

tions by assuming the completeness relation

2 I~&&m
I

=—5(r —r') —g [n&&n [, (43)

X)+X2+X5=X„+X„, (4.4)

where

thereby neglecting the core states. In X6 and X7
since E~ „and E~ „occur in the denominator, we
sum over m states and in X8, since E „occurs in
the denominator, we sum over m' states. We also
use an average-energy-gap ansatz to evaluate X6,
X7 and Xs. Finally, we obtain

and

4e'
, gfJ[&x'&(+&'&x'&2+2«osk d;&x(x —&~)&~2],

k

4eX„=— QIAAJ[&x —xy &)+A, &x —xy&g+2i, cosk. dJ &x(x —d„—y+dy) &)2]
k

(4.5}

+[BJ(M) A, M2)+—CJ(P) —A, P2}]J . (4.6)

In our approximation,

X3+X4=0 .

We also obtain

(4.7)

X6+X7+Xs=Xp +Xp,

where

(4.8)

2 2 2 g[(1+A, ) —4A, cos k dJ']fJfJ'mcEs(1 —S) z
(4 9)

2e AS Sd
Xq

—— $ D '+ E 2&x&)2.— . +E'(1—A, ) —G-(M) —M2)J 2 2E (1 S2) JJ J JJ JJ
k

+H)J'(M) A, M2)+ J))'(P, —APP)— , (4.10)

Here j is chosen in the (111)direction, j'Qj, and

Ez is the average energy gap,

&0&.=&I; [0)I;&,
&0&„=&A (r) ~0~hJ(r dJ)&, —

Ma=&sa Ix Ipxa& ~

fi=N i
fJ"(k)

i

AJ, B~, CJ. , Dz&, Ez, I'JJ', Gzz, Hz~', and J&z are func-
tions of
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and the above parameters.
We note that our g„' and g& are the results

which can be obtained by using our basis functions
in the Langevin (XL ) and Van Vleck (X~ ) terms of
White. ' X„and P& are new results obtained by us.
We further note that the second group of terms in
both X„and Xz vanish for homopolar semiconduct-
ors (for which 1t,= 1, M~ ——M2, P~ ——P2}.

We shall now compare our results with the ear-
lier results. We note that our expression for X has
been separated into Langevin-type susceptibility 7„,
which is the analog of the diamagnetic susceptibili-

ty of atoms (or hybrids) modulated by band effects,
and Van Vleck —type susceptibility Xz, which is
the analogue of the Van Vleck susceptibility of
molecules. Therefore, our X qualitatively agrees
with the HKF empirical results [their Eq. (3)].
Further, if we consider the extreme tight-binding
case, our X„' agrees with the CWH results [their
Eq. (6)] if we introduce their scaling parameters

y~ and with SW results [their Eq. (12)].
However, there is significant difference between

our Van Vleck —type term (X~ ) and that of CWH
and SW. We note that X~ and X~ are each propor-
tional to S/Es which decreases as the bonding de-

creases and becomes zero in the "no bonding" limit
as it should since one does not expect Van
Vleck —type susceptibility in such limit. In con-
trast, for homopolar semiconductors, the Xz of
both CWH and SW is quite large even when the
overlap integral tends to zero, a result which is not
physically satisfying.

An interesting point to note is that our expres-
sions for X„and X~, which are free from any scal-
ing parameters, are each independent of the choice
of the local origin unlike the CWH results. We
further note that the magnitudes of the diamagnet-
ic terms (X„'+X„),which are independent of Es de-
crease slowly with increase of S. In contrast, the
paramagnetic terms (X&+X&), which are inversely
proportional to Ez, increase rapidly with increase
of S. Therefore, X becomes more diamagnetic
when either S decreases or E~ increases. On the
other hand, when A, increases, 7„' slowly becomes
more diamagnetic, X„rapidly changes from di-
amagnetic to paramagnetic, 7& decreases, and Xz
increases. It is therefore difficult to predict the
variation of X with A, .

Finally, we note that if we would calculate X in
a more realistic model than the Hall-Weaire ap-

proximation, we would have to consider matrix ele-
rnents between the different hybrids, i.e., matrix
elements between hybrids of one atom
(M~, Mz, . . . ), matrix elements between hybrids on
adjacent atoms forming a bond (N~, N2, . . . .), ma-
trix elements between hybrids on adjacent atoms
not forming a bond (P~,P2, . . .), and matrix ele-
ments between hybrids on further neighbors

(Q&, Qz, . . .). Only M and N are accounted for in
the Hall-Weaire model. In general N; & Q; &P;, a
trend which is confirmed by the earlier calculations
of matrix elements of the Hamiltonian. ' ' Fur-
thermore, N;, Q;, and P; are all two-sited integral
terms. In the Langevin-type terms [Eqs. (4.5} and
(4.6)], the two-sited integrals are much smaller
than the one-sited integrals. The major contribu-
tion to the Van Vleck —type terms [Eqs. (4.9) and
(4.10)] are from terms which are proportional to
the overlap integrals (S) but not to any other two-
sited integrals. The two-sited integrals which we
have neglected due to Hall-Weaire approximation
would involve the overlap integrals between the hy-
brids not forming a bond, i.e., S~, S2, etc. We
have calculated S& ——0.093 for Ge for P-type cou-
pling while S =0.662. Thus the contribution to Jz
from these types of terms would be considerably
reduced. In view of the above, we estimate the to-
tal error in making the Hall-Weaire approximation
to be at most 10%.

V. RESULTS AND DISCUSSION

We have calculated the magnetic susceptibility
of the hornopolar semiconductors C, Si, and Ge
and the III-V semiconductors BN, A1P, AlAs,
GaP, and GaAs from our Eqs. (4.4} and (4.8}. The
Hartree-Pock atomic orbitals have been obtained
from Clementi's table. All the two-center in-
tegrals have been calculated with the use of the
spheroidal coordinate transformation technique.
The integration over k was carried out over a
sphere of volume equal to that of the Brillouin
zone. The values of d, Es f„and X, have been ob-
tained ' from Refs. 8, 15, and 25. In order to
guard against rounding errors, the various one-
sited and two-sited integrals and the summation
over k were calculated in the computer using ex-
tended precision method. The various components
of g were calculated in one extended program with
these results. In Table I we present our results of
all the two-sited integrals. In Table II we present
our results for the various components of 7 and
compare them with X' and the available experi-
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TABLE I. Results of two-sited integrals used in g.

Solid (g 0—1)

(x)~2 (x(x —d„))u (x(y —d~))„
(~0) (g 02) d

dX 12

d
12

C 0.646
Si 0.67
Ge 0.662
BN 0.605
Alp 0.63
AlAs 0.641
GaP 0.626
GaAs 0.632

0.16
0.15
0.15
0.134
0.113
0.113
0.117
0.121

0.29
0.454
0.465
0.26
0.408
0.436
0.406
0.433

—0.02
—0.06
—0.07
—0.025
—0.076
—0.079
—0.093
—0.085

—0.19
—0.42
—0.44
—0.186
—0.415
—0.447
—0.41
—0.442

—0.249
—0.212
—0.2
—0.17
—0.146
—0.156
—0.147
—0.151

0.062
0.088
0.093
0.087
0.097

mental results.
We note that our X„' is essentially equal to Xl,

modulated by band effects. These effects increase
the magnitude of the dominant (h&' x

~

hz') term
which is partially compensated by X„. Therefore,
Xi (scaled by y~ ) and our X„are nearly of the
same magnitude for homopolar semiconductors.
In fact, the two values are almost identical for Si,
as they should, since CWH have obtained their
"scaling parameter" y~ in order to fit with the ex-
perimental results of Si. However, there is signifi-
cant difference between Xi and our X„ for the
III-V semiconductors.

The Van Vleck —type terms incorporate both the
bonding effect (through S) and the band effect
(through Eg) should provide a stringent test for
any theory of X. We note that our Xz is different
from Xz . However, Xz and our Xz are nearly

equal for homopolar semiconductors although
there is significant difference between them for
III-V semiconductors. This agreement for homo-

polar semiconductors is not surprising since CWH
have arbitrarily scaled a parameter A, , whose value
varies from 0.52 to 0.71 to 1.13. Therefore, Xz

which is proportional to A, , has been "scaled" by
a factor between 300% to 400%. This scaling
seems to compensate for the terms in Xz missed by
them as well as for the deficiencies in their bond-
orbital model.

Finally, we note that there is good agreement be-
tween our results and the experimental results for
all the semiconductors for which such results are
available. It would be interesting to compare our
predicted results for BN, Alp, and A1As with ex-
perimental results, when available.

VI. SUMMARY AND CONCLUSION

The principal result of our work is the deriva-
tion of an expression for the magnetic susceptibili-
ty 7 of tetrahedral semiconductors by using a basis
set for the valence bands constructed from a linear
combination of the hybrids forming a bond and a
basis set for the conduction bands which are
orthogonal to the valence-band basis functions. In
the process we have also derived a general expres-
sion for g of intrinsic semiconductors. We have

TABLE II. Magnetic susceptibility of tetrahedral semiconductors (P in 10 cm'/mole).

Solid

C
Si
Ge
BN
Alp
AlAs
GaP
GaAs

—0.3
—4.6

—14.0
—0.3
—4.8

—11.2
—9.0

—14.0

—19.2
—42.9
—45.3
—15.7
—35.4
—39.8
—34.7
—39.2

1.7
3.5
3.6

—3.6
—12.0
—11.6
—14.2
—14.3

1

Xp

4.4
14.0
13.8
6.8

22.9
24.3
23.4
24.4

2
Xp

3.5
22.5
25.4
4.0

10.3
13.2
6.7
8.0

gcwH
L

—17.1
—39.3
—42.7
—17.5

—39.6
—42.7

yCWH
p

44
37.5
38.5
4.0

23.7
25.1

+tot
(present
theory)

—9.9
—7.5

—16.5
—8.8

—19.0
—25.1

—27.8
—35.1

a
+expt

—11.8
—6.4

—15.7

—30.0
—33.3

'Reference 13.
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calculated the magnetic susceptibility of homopolar
and III-V semiconductors and there is good agree-
ment with experimental results.

It has been hitherto thought that the great virtue
of Harrison's bond-orbital model ' (BOM) is its
simplicity and possibility of dealing with the prob-
lem analytically. In fact, the BOM has been used
extensively for the calculation of the electric, mag-
netic, and optical properties of solids. However,
we have shown that the BOM in its present form
is inadequate for calculation of X of tetrahedral
semiconductors mainly because the localized func-
tions used as basis set in this model are not the
proper choice for the Wannier functions of the
valence band. We have also constructed Wannier
functions from our Bloeh functions for the valence

bands. Our Wannier functions would be the ap-
propriate choice for the localized basis set instead
of the BOM. Recently we have formulated a
theory for the electric susceptibility of tetrahedral
semiconductors by using these Wannier func-
tions, and we have obtained good agreement with
the experimental results.
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