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Wannier-Slater theorem for solids with nonuniform band structure
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The Wannier-Slater theorem for the Hamiltonian of a solid in an external field of force is
generalized for solids with a nonuniform band structure, such as graded-gap mixed semi-

conductors. Our formulation is related to that of Gora and Williams, and their effective-
mass equation is obtained if a k-space Taylor expansion is permissible. This paper extends
a too-restricted, earlier discussion by us in connection with transport in position-dependent
band structures. The concept of a graded effective mass M and position-dependent band
bottom E, is derived from this treatment. It is pointed out, however, that the concept of a
position-dependent effective mass has no strict quantum-mechanical validity. In the
correspondence limit, Hamilton s equations lead to an acceleration which contains the ef-
fect of an external field M 'F, plus a dissipative term which stems from the deviation in

periodicity of the crystal potential.

I. INTRODUCTION

Transport in solids with a nonuniform composi-
tion is important in various types of devices, such
as graded mixed semiconductors, graded hetero-
junctions, and others. In these cases the band struc-
ture is nonuniform, which means that the band con-
tours such as the bottom of the conduction band or
the top of the valence band depend on position, even
in the absence of external fields of force. This is ex-

pressed by writing the band energies as I'(k, r),
where k denotes the crystal momentum in the Bril-
louin zone and r is the position. In the presence of
external fields of force with potential energy %(r),
the total energy is denoted as E ( k, r )

=8'(k, r)+%(r). The validity of the concept of
position-dependent band structure needs further elu-

cidation, however, since clearly the solution of
Schrodinger s equation involves position-
independent energies. This matter can be best han-
dled with the Wannier-Slater theorem, which pro-
vides an effective Hamiltonian operator H~ for an
electron in such a band structure. The total energy
E(k, r) then follows from Hu. by the correspon-
dence rule. Needless to say, E(k, r) is a semiclassi-
cal concept, the band contours providing the classi-
cal turning points for electrons in the band; these
turning points occur where the quantum-

mechanical wave function damps out.
The expansion, up to orders k, of I'(k, r) about

the extrema of the band provides a position-
dependent effective mass m "(r). This concept is,
however, not without difficulty since, usually, no
wave packets can be constructed from particles with
variable effective mass. Clearly, the Hamiltonian
operator must remain Hermitian.

The problem has been considered by a number of
investigators, in particular in two basic papers by
Gora and Williams. ' Their papers, however, cast
the problem directly in the less general effective-
mass approximation. Leibler provided an explicit
proof of their results, but unfortunately this paper
follows a very terse method, involving many details
which obscure the result, and an experimental veri-
fication will scarcely yield the parameters which
enter this theory. Therefore, we believe it to be use-
ful to provide a simple proof using the method of
Slater's original paper for Wannier's theorem. '
This proof also improves an earlier too-restricted
computation in one of our papers on transport
theory for which this problem arose (see, in partic-
ular, Appendix A of Ref. 6). Other papers involv-

ing graded band structures deal with conductivity
and intraband magnetoabsorption. Transport ef-
fects in nonuniform band structures involve terms
described by "quasifields"; see our papers ' and the
references therein.
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II. DERIVATION OF THE THEOREM

We consider band electrons in the virtual-crystal
approximation; in this view the crystal potential is
equal to the macroscopic weighted average of the
potentials of the contributing chemical constituents.
We denote the Hamiltonian due to this potential by
Ho(A, )+W( r )H

& ( r, A, ); here Ho(I(, ) involves the
crystal potential due to the composition A, prevail-

ing at some lattice site 1. In a hypothetical sample
in which the composition A,(1) were periodically
extended through all space, the crystal potential
would everywhere be that of Ho(A, ). In the actual
sample, the deviation from this potential is given by

W(r)H&(r, A, ). Here W(r) is a slowly varying
grading function, while H, ( r, i, ) is the difference in
crystal potential at a point r, caused by the fact
that the composition varies with respect to the com-
position A, . As an example, consider a linearly grad-
ed mixture of two constituents A and 8 with crystal
potentials Vq and Vz, respectively. Then, letting A,

be the composition at x =0 where we have 100%
constituent A, while at x =d we have 100% consti-
tuent 8, we find

W(r)H~(r, A, ) =(x/d)( Vz —Vq ),
while

Ho(A, ) = Vg —(fi /2m)V

In special cases, e.g. , that of strain or nonuniform
temperature, the kinetic-energy operator must also
be graded.

We assume that the band electrons are also sub-

ject to potential energy due to external forces,
denoted as qt(r ). Then quite generally we have

P(r)= g F~(1 ')W&(r —1 ', A, ) .
I Pt

(2.4)

Substitution into the Schrodinger equation
Httt=EItt, where E is the total energy eigenvalue,
gives

g Fp(1 ')HWp(r 1',A)—
7I Pt

=E g F&(1 ')W~(r —1 ', A, ) . (2.5)
I Pl

This is multiplied by Wp(r —l, i,) and integrated
over all space. We then obtain, using the ortho-
gonality of the Wannier functions,

g Fp ( 1 ')f Wp(r —l, A, )HW~ ( r —1 ', A)d r,
I pl

tized in the first Brillouin zone, and P is the band
index. For our present purpose the Bloch functions
which extend throughout the crystal are not an ap-
propriate representation. Thus we also introduce
the localized Wannier functions Wp(r —1,A, ); these
functions peak near r= 1, where 1 is a lattice
vector. The Wannier functions for variable 1 form
a complete orthogonal basis, related to the Bloch
functions by '

P k &(r,A, ) =N 'r ge'"' ' Wp(r —l, l,),
7 (2.2)

Wp(r —I,A, )=N '~'ge '"' 'Pk p(r, A, ),
k

(2.3)

where X is the number of unit cells in the sample.
Following Slater, we expand the electron wave
function g for the actual sample in the Wannier
functions W(r —l, A, ),

H =Ho(A, )+W(r)H](r, I(,)+e(r) . (2.1) =EFp( 1 ) . (2.6)

For the hypothetical homogeneous sample of com-
position A. the Bloch functions will be denoted as

P k &(r, A, ), where k is the crystal momentum quan-

The left-hand side contains three terms, obtained by
substituting (2.1). For the first term of (2.6) we

find, using (2.3),

)& g e'" '" '''fP-„'p H(oA, )gk, p, d r
k, k'

=N ' g e' " '
8'~o(k, A )Fp( 1 —L), (2.7)

L, k

g Fp(1 ') f Wp(r —1,A, )HO(A, )Wp(r —1 ', A, )d r =N ' g Fp.(1 ')
I Pl

where we set L = 1 —1 ', 8'po( k, I(, ) is the band energy in a sample of homogeneous composition A, .
For the second term of (2.6) we must evaluate
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g Fp(1')f Wp(r —1,A)W(r)Hi(r, A)Wp(r —1 ', X)d r . (2.8)
I Pl

Since W(r ) is a slowly varying function, and W~(r —1 ) is only appreciable for r close to 1, we write, with
Gora and Williams,

f 8'p(r —1,A, )W(r)Hi(r, i, )Wp(r —1 ', A)d r

= —,[W(1)+W(1 ')]f W~(r —l, i, )Hi(r, i, )WIi.(r —1 ', A, )d r

= 2N '[W(1)+W(1 ')] g e'" ' " ' ' 'f p k pH, (r, A, )p k, Ii,d'r .
k, k'

(2.9)

Since Hi is similar to the crystal Hamiltonian Ko(li, ), we may, to a first approximation, assume that states of
different k values are not mixed; likewise, we assume that no band mixing occurs (the latter can be easily in-

cluded, however; see Ref. 1). We then write

(2.10)

With (2.9) and (2.10) we obtain, for the second term of (2.6),

i g e'"' S~(k,A)Fp(1 —L)[2'(1)+W(1 —L)] .
L, k

(2.11)

The third term is treated as in Ref. 6. We assume that 0' induces no band-band transitions (Zener effect),
and so 13'=P; also, 4 must vary slowly over a unit cell. We then have

Vpp(1, 1 ')—:f Wp(r —1)%(r)W~(r —1 ')d r

= —,[0'(1)+0'(1 ')]f W~(r —1)W~(r —1 ')d r=+(1)5 i 7,5' . (2.12)

Hence the third contribution becomes 4( 1 )Fp( 1 ).
Finally, we collect terms and we assume that there is a continuous function Fp(r ) which at the lattice sites

1 takes the values F&(1). This is not unreasonable since in the absence of Hi and 4 expansion of a
Bloch function yields F~( 1 ) ~ exp(ik 1 ); see (2.2) and (2.4). These are the lattice projections of plane waves,

F&(r ) ~ exp(i k r) .W.e thus obtain

~—i g e'"'Lg'&0(k, g)F&(r —L)+ —,& ' g e'"'"S&(k,A)F&(r —L)[W(r)+W(r —L)]
L, k L, k

+%'( r )F~( r )=ELF~( r ). (2. 13)

The final reduction goes as in Slater s paper. Since 8'po(k, A, ) is periodic in reciprocal-lattice space, it per-

mits a Fourier series on the direct lattice. Thus, for the first term in (2.13) we have

N ' y e'"' + 'A (i' )F(r —i)=/A (i')O' ' ' 'F (r)=S' ( iV A, )F (r)—.
L, L', k L '

The second term is similarly treated. Expanding S~(k, A, ) into a Fourier series on the direct lattice, we obtain,
for the second term of (2.13),

2 [W(r)Sp( i V, A)+Sp—( —i V, A, )W(r)] Fp(r) .

Note that the operator Sp( i V, A, ) works on everythi—ng to its right.
The full result for (2.13) now becomes

(2.15)

[ 8'po( i V, A )+ ,—[W( r )Sp(—iV, A )+S~( i—V, A )W( r )]+—%(r ) ]Fp( r ) =E~F~(r ) . (2.16)

This is the generalized Wannier-Slater theorem. The factor in curly brackets is the new Wannier Hamiltonian,

H~p ——8'~0( i V,A)+ —,—[W(r)S, &( i V, X)+S—p( —i VA, )W(r)] +%(r) . (2.17)
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III. DISCUSSION

The Wannier Hamilton operator must remain
Hermitian. That this is so is most easily seen from
the Fourier series for Sii(k, A, ). Expanding the
exponentials in powers of k, we notice that the
operator in the square brackets in (2.17) contains
terms of the forin

Q„=W(r)(iV)"+(iV)"W(r) . (3.1)

These operators are Hermitian; they are also self-
adjoint if the proper periodic boundary conditions
are used on the boundary of the sample. Thus the
eigenvalues of (2.17}are real.

In the effective-mass approximation we write, ex-
panding about the extrema k in the Brillouin
zone,

N'pp(k, A, )=N'pp(k~, &)

+ —,'g (k —k~)(k —k~):M p()' . (3.2)

Here N'iip(k~, A, } is the band energy of a hypotheti-
cal homogeneous sample evaluated at the extrema
of the band; Miip is the effective-mass tensor of
such a sample. The plus sign holds near the bottom
of a band (electrons) and the minus sign holds near
the top of a band (holes). Further, we write

Sp(k, A, )=ap+ —,(k —k~ )(k —k ):yp,
(3.3)

where for simplicity we assume that the curvature
of the S function is similar to that of I'pp( k, A,). We
now find for the Wannier Hamiltonian the
effective-mass form, placing the origin of k space
at km,

Hgp=S'pp(O, A)+&(r)ap++(r)+ , A' M p().V V—
+ —,yp. [W( r )V V+ V V W(r)] . (3.4)

g'p„„to„,(r)=$'pp(O, A)+W(r)ap . (3.5)

This is basically the same as in Eq. (7) of the paper
by Gora and Williams. The first two terms define
a position-dependent band bottom or top,

ap=Sp(O, A)= fPppH, (r, A)gppdir

(3.7)

where H]p is a matrix element between Wannier
functions. Thus in (3.5) the spatial dependence of
the band minimum becomes W(r)H&p. This is the
same as in Ref. 6 [our

H i' of Eq. (A18) there corre-
sponds with our present W(r)H&ii]. We note, how-
ever, that the spatial effective-mass dependence was
missing in Ref. 6. The result (3.7) was used in Ref.
6 to compute the deformation potential for the case
of elastic strain. ' '"

We finally consider the classical or correspon-
dence limit. We then can introduce the classical
equivalent Hamiltonian by replacing in (2.17) i V—
by k=p/iri. Then we find

H,qli(k, r)=S'&p(k, A)+W(r)Sp(k, A)++(r) .

(3.8)

The symmetrizing in the second term on the right-
hand side has now disappeared. In (3.8), 8'~(k, A, )

is still the band energy of the hypothetical homo-
geneous sample of composition A, . It is now ap-
propriate to introduce the position-dependent band
energy 8'ii(k, r) by

g'p(k, r)=g'pp(k, A)+W(r)Sp(k, l) . (3.9)

We note that this is independent of the arbitrarily
chosen composition parameter A,. The total electron
energy is denoted, as in our previous papers, by
Ep(k, r):

Ep(k, r)= g'~(k, r)+4(r)
=H,q p(k, r) . (3.10)

Let Eii( k~, r ) refer to the minimum E, ( r ) for the
conduction band or maximum E„(r ) for the valence
band. Then noting that the remainder of the energy
is kinetic energy, we have

The last two terms define a position-dependent
effective-mass tensor,

(3.6)

E(k, r)=E,(r)+ W(k, r)

for the conduction band, and

E(k, r) =E„(r)—W&(k, r)

(3.11)

(3.12)

This effective-mass tensor has only classical signifi-
cance, however (see below); in the quantum-
mechanical treatment appropriate symmetrizing,
not evident from (3.6) by itself, must occur.

From (3.3), (2.10), and (2.2), we also notice that

for the valence band, where 8'I, is the hole kinetic
energy ( W~ & 0). These equations, containing
position-dependent kinetic energy for electrons or
holes, were our starting point for the solution of the
Boltzmann transport equation in Ref. 6. These re-
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aa~
tgr t)p

=vp= = V gSp,

BHp-
Fp ——— ——A = —VEp .

dt

(3.13)

(3.14)

In view of (3.11) and (3.12), we also have

suits have therefore been fully justified by the
present quantum-mechanical treatment.

In the correspondence limit, the motion of wave
packets centered about some ko satisfies Hamilton's
equations; thus we have, from (3.10),

-+
2where M p

——+ V k V k 8'It/fi is the position-

dependent effective mass and where T p
———V vp

is a position-dependent relaxation-time tensor. %e
note the extra term Fp

'
v p over the result for the

position-independent band structure. This extra
term indicates that the acceleration does not stem
solely from the external field, but also from the de-
viation in periodicity of the crystal potential, ex-
perienced by the electrons or holes. This term pro-
vides a dissipative force, characterized by the
relaxation-time tensor T.

F„=—VE, —V8',

Fp ——+ VE„—V 8'I, ,

(3.15)

(3.16)

for the conduction band and valence band, respec-
tively. These equations give the total external force
acting on the electrons or holes. Since the Bloch
velocity is now a function of position,

vp=vp(k, r),
(3.17)

=(Vv~) v~+ &V ~V k—~~ F~

=—Tp vp+M p Fp,
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