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We consider impurity collision broadening of electron and hole Landau levels in a mag-
netic field, and the effect of electron-hole correlated impurity scattering to all orders on the
joint density of states of interband transitions in a semiconductor. These renormalization
mechanisms eliminate the divergences in the density of states associated with the unper-
turbed states for electrons and holes at Landau levels. This calculation has relevance in
several physical situations involving interband transitions in the presence of a magnetic
field; in particular, we discuss the calculation of gain for stimulated plasmon emission by
electron-hole recombination in narrow-band-gap semiconductors.

I. INTRODUCTION

An applied magnetic field provides an effective,
controlled, external perturbation for the study of
electron energy levels in solids. The perturbing
magnetic field alters the continuous electron levels
in energy bands in a fundamental way due to Lan-
dau quantization. In the usual theory the level den-
sity displays characteristic infinite peaks at the po-
sitions of the Landau energy levels. These peaks
manifest themselves as infinities in the joint density
of states in intraband as well as interband transi-
tions between magnetic levels in solids. In experi-
mental magneto-optic absorption studies such tran-
sitions between magnetic levels appear as sharp
peaks of finite height in the observed spectra. The
line shapes have traditionally been parametrized
with Lorentzian parameters and the theoretical rep-
resentation of the infinite peak has been used essen-
tially to determine the position of the peak and to
identify it as arising from a specific transition.! A
related problem is the evaluation of the gain in
electron-hole recombination in a magnetic field.
Without the removal of the divergence in the joint
density of states one would be led to an infinite gain
for a solid-state laser in a magnetic field. Thus an
investigation of mechanisms which govern the line
shapes and laser gain in magneto-optical transitions
is of interest.

The first ab initio calculation of finite lifetimes
for carriers in a magnetic field was carried out by
Kubo et al.,> who were interested in galvano-
magnetic effects and the Shubnikov —de Haas oscil-
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lations of the magnetoresistance. An extension of
Kubo’s approach to investigate the line shapes in
magnetoabsorption and interband transitions was
made by Korovin and Kharitonov,? who evaluated
level broadening effects from interactions with pho-
nons. They calculated only renormalization effects
for the self-energy of the electrons and holes, the
“scattering out” terms in a kinetic equation formu-
lation, and neglected vertex corrections which corre-
spond to “scattering in” terms in the driving terms
of the kinetic equation. Later, Sacks and Lax* stud-
ied the recombination process in semiconductors in
a magnetic field and took account only of level
broadening effects arising from interactions with
impurities and phonons. Using this approach they
evaluated the gain in the recombination process in
semiconducting lasers operating in the presence of a
magnetic field. With the level broadening included
in the joint density of states they estimated the fin-
ite gain in semiconducting lasers. Their calculation
was done without including vertex corrections.

In the present calculation we consider elastic
scattering of electrons and holes with impurities as
a mechanism for line broadening and the effect this
has on interband transitions in narrow-gap semicon-
ductors in high magnetic fields. The finite lifetimes
of the quasiparticles arise from elastic collisions of
these particles with impurities which are randomly
distributed in the crystal. The random positioning
of impurities introduces an irreversibility in the
problem thereby providing damping for a quasipar-
ticle wave packet. We use the diagram approach’ to
evaluate the self-energy, and consider correlated
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electron-hole scattering off impurities to account
for renormalization of the polarization bubble dia-
gram. It is well known that the latter are the im-
portant driving terms associated with the scattering
in effects in the kinetic equation approach.

The essential features of the impurity potential
scattering are well represented by the exactly solv-
able model with a 8-function potential of the form
Vod(T). This approximation yields a level density
for the n =0 Landau level similar to that given by a
Gaussian potential in the limit of high fields. The
strength of the potential can be normalized to the
actual scattering cross section by using experimental
data on the mobilities of electrons and of holes.
Under these conditions we are able to evaluate an
infinite set of ladder diagrams in the renormaliza-
tion of the polarization bubble. Our numerical
studies (Sec. IV, below) show that the renormaliza-
tion effects can be substantial.

In Sec. II we give a brief description of the prob-
lem and, for completeness, show the presence of the
infinite density of states in interband transitions for
each n in a magnetic field. In Sec. III, we present a
diagrammatic calculation of the Green’s function
and the dielectric polarization.

II. DIVERGENCE IN THE JOINT DENSITY
OF STATES

Consider a very general situation in interband
transitions in a direct-gap semiconductor in which
we have a distribution of electrons in the conduc-
tion band and a quasithermal distribution of holes
in the valence band maintained, for example, by op-
tical pumping. This would permit us to study
stimulated emission via electron-hole recombination
as well as interband transitions in the intrinsic case.
The typical intraband processes leading to thermali-
zation of the carriers are at least an order of magni-
tude faster than the interband recombination rate,’
assuming a steady pumping rate to maintain elec-
tron and hole number densities. We can then define
quasi-Fermi-levels p. and p, for electrons and
holes, respectively.” Ignoring the dependence on
spin for the present, the energy spectrum is given by
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Here w, is the cyclotron frequency.

The wave functions for the electron, in Bloch’s
form, are given by

¥, o =u,(T)explik,y +ik,z)h,(x —I’k,) ,

(2)
v=c,V

with 4, (x) being the normalized Hermite functions.
The Green’s function for the electrons can be writ-
ten as

G(Z,%",0)=h3 ¥, (%) ,(0,E, Wi (X

v,a

(3)
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where f is the Fermi function.

Let us display the divergence in the density of
states for each n. The number density n, of carriers
can be expressed, with an appropriately chosen con-
tour, as

n,,=—itlsin:)2 -g;—)e"“’sG(i’,i',w)
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The factor of 2 arises from spin degeneracy.
The level density p(E) is given by
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with the expected divergent behavior at the Landau
levels E=E,,(k,=0).

We now consider the contribution of the inter-
band transitions to the dielectric function

€w,q)=€, —(47/¢H(0,q) , (6

where €, is the high-frequency dielectric constant.
Representing the polarization II in terms of Green’s
functions we have

M(x,x",t—t')=—i(e®/#)2G(x,x",t —t')

XG(x',x,t'—t),

and
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For interband transitions the usual selection rules An =0, AG=0 apply so that the transition matrix ele-
ment at the band edge can be considered to be representative of its behavior over the available range of mo-

menta. We then have
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again showing the divergent behavior for energies
matching the difference between the Landau levels
in the conduction and valence bands.

The singular behavior of the level density (5) and
the joint density of states (9) is washed out by a
broadening of the energy levels. Physically, the lev-
el broadening occurs as follows. In high magnetic
fields the electron (or hole) wave packet is elongated
in the direction of the field. In the situation where
the number density of impurities n; is such that
n.'2>>1 the electron encounters fewer scatterers
in the direction perpendicular to the field, than in
the direction of the field, in the time scales of the
order of g !. This consideration makes the scatter-
ing problem essentially one dimensional along the
direction of the field. Since the electron wave func-
tion overlaps many scatterers, an electron which
scatters off an impurity is likely to encounter many
other scatterers in its motion along the field before
reencountering the first impurity. This is taken into
account, as was done by Kubo et al., in the self-
consistent evaluation of the self-energy to all orders
in perturbation theory. Furthermore, the joint den-
sity of states is modified by the vertex corrections.
The electron-hole pair is created at the same space-

time point and they both have similar envelope
wave functions due to the An=0 selection rule in
the interband transition. This implies that they in-
teract with the same scatterers. The effect of this
correlated scattering off impurities can be taken ac-
count of to all orders in the ladder approximation
as shown in the following section.

III. DIAGRAMMATIC CALCULATION
OF THE GREEN’S FUNCTIONS

In the extreme quantum limit the carriers occupy
the n =0 Landau level with specific spin polariza-
tions in the conduction and valence bands. With
the spin magnetic energy in the external field in-
cluded in the energy gap, we have the energy spec-
trum

Eca= cn=0(kz)=Eg+ﬁ2k22/2m: ,
(10
Eua =E,,,,.__O(kz)=—ﬁ2kzz/2m: .

The interaction Hamiltonian density for the po-
tential scattering is assumed to be
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FIG. 1. Perturbation series for the propagator. Here
3 is the self-energy. Dashed lines represent the impurity
potential.

ns N
Hiy(T,1)= 3 W*(T,1)Vo8(F—R)W(T 1) ,

= (11)
where l_ii are the positions of the randomly distri-
buted impurities. The potential strength ¥V, (or
Vo) for electrons (holes) can be related to their
mobilities u=er/m*, since the collision frequency
is expressible as

1/7=ny v Y4m(m* Vy /20, (12)

where (vs) is the average velocity for the Fermi
distribution. The experimentally determined mobil-
ities thus normalize the potential strength.

The full set of diagrams for the electron propaga-
tor after averaging over the impurity positions is
represented by Fig. 1. The self-consistent treatment
of the self-energy consists of evaluating the sum of
the diagrams in Fig. 2 with the series of nested
self-energy insertions. The diagrams of the type
Fig. 1(c2) with crossed legs for the potential are nu-
merically smaller than those without crossings and
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FIG. 2. Diagrams for the self-consistent determina-
tion of the self-energy.

are neglected. Also, the dominant contribution will
be from the n =0 intermediate states since the
higher n states will be much higher in energy in
high magnetic fields. In this limit the Kubo form
of the self-energy obtains. The self-energy here is a
function only of energy and we have

IVOIzns 1
2,(po)= )
el s g 7
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After performing the p, integral we find
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The roots of the cubic equations (14) and (15) are
determined for obtaining the self-energies. The root

corresponding to ImX, 2 0 for p, Z‘uc and ImZ2, z 0
for pg z,u,, is chosen as the physically allowed one.

The modified density of states is obtained on not-
ing that the number density is

nv'_—f dp Sy, Epgy)

(271)?
dE | 2m* 172

=R v9Eva

S Gy | 7 ] el
X : (16)
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so that

p,(E)=(1/7N, | Vo |>ImZ,(E) . 17)

Here (17) follows from (14) or (15). For typical
values of the mobility (of 10*—10° cm?/V sec) the
density of states in the n =0 levels in the conduc-
tion and valence bands is shown in Fig. 3. The in-
teractions with the randomly sited impurities thus
eliminate the infinity in the density of states.

We now turn to the renormalization of the polari-
zation bubble graph. From (7) we have in the ex-
treme quantum limit
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FIG. 3. Density of states in the conduction and
valence bands for the n =0 level after impurity broaden-
ing in Hg,_,Cd,Te for electron concentration of
10'7/cm? and hole concentration of 10**/cm? at 65 kG.

(47 /gD (0, ) =(4me?/q?) | M(G) | 2
xD(@,3) . (18)

With no vertex corrections we have

d
D)= [ (21:;) /
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(19)
with & given by (4). Here we have dropped a spin

G=0)= f

[P(pO)

_f de P(pow)
- (27ri) 1—n,Vo, Vo P(po,) '

where

dp,
P(pow)=f(——pz—hg(po,p,)y(pow,g) .

27l)
(22)

In view of the complicated dependence of = on
Po the energy integral cannot be performed immedi-
ately even for the lowest-order term (19); on the
other hand, contour integration over p, leads to four
terms, two each for the excitation and the deexcita-
tion of the electron across the band gap. Introduc-
ing the notation

* *
o=m, /m; ,

r=lV0v/VOc|2’

(3) (4)
(a)

FIG. 4. (a) Polarization diagrams with vertex correc-
tions. (b) Ladder approximation to the renormalization
of the vertex.

factor of 2 since we are concerned with energy lev-
els of specific spin polarization. The propagators ¥
are the renormalized ones with

G 1=95"—(py) . (20)

The vertex renormalization diagrams are shown
in Fig. 4(a). In the extreme quantum limit the con-
tribution of diagrams with crossed rungs, as in dia-
gram (4) of Fig. 4(a), can be shown to be numerical-
ly smaller than those with no crossing of the poten-
tial lines. In the ladder approximation represented
by Fig. 4(b), we find that the vertex renormalization
terms constitute a geometric series so that

)+P(pg,0 N ngVo, Vo ) P(pg,0)+ -+ * 1,

21

Ni=0r2}(py)+2,(po+w) ,
Ny=0r2}(po+w)+32,(po) , (23)
Dy=(140)po+0ow—E,—=7(py)
—0Z,(po+w),
Dy=(140)po+w—E;—32} (po+w)
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we have
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P(po,)=(|V, |®n) " fe(po)[1—fo(Po+@) NN, /D) +fo(po+@)[1—f,(po) I (N, /D,)
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Further progress requires numerical integration
over pg after substituting (24) in (21), and the con-
sideration of specific processes. In the case of an
intrinsic semiconductor we would set f,=1 and
f.=0 to obtain the dielectric response correspond-
ing to interband absorption.

In order to bring out the physically interesting
features in a specific case, we study in detail the
recombination of electrons with holes across the
band gap and calculate the gain in the emission
mode associated with electron-hole recombination
for an inverted population. Such a case is realized
in the consideration of a solid-state laser operating
in a magnetic field in which electrons are pumped
from the valence band to above the Fermi level in
the conduction band, optically or by using an elec-
tron beam, to create the inverted population. The
recombination of the electrons from the bottom of
the conduction band with holes across a direct gap
leads to emission of radiation farther in the infrared
region from the pump frequency.

While the narrow band-gap materials may be
considered to be ideal for the generation of stimu-
lated emission of radiation in the far infrared region
of wavelengths greater than 20 pum, they have the
following limitation. As soon as the band gap
matches the energy of an internal mode of the ma-
terial, such as LO phonons or plasmons associated
with the collective modes of the carriers, the carrier
lifetime drops to the picosecond range. This makes
the stimulated emission of photons less favorable in
comparison with the dissipation of energy from the
recombination of electrons and holes into these
modes. Recently,® it was suggested that this seem-
ing disadvantage can be turned in our favor by gen-
erating, in the confined geometry of thin films, the
stimulated emission of plasmons which can then be
converted to radiation at the surface of the material.
The numerical results described in Sec. IV include
the effect of plasmons and are for the recombina-
tion process in Hg; _,Cd, Te in a magnetic field.

IV. NUMERICAL RESULTS

We consider n-Hg;_,Cd,Te in the semimetallic
regime with x=0.13. For such a material we have
shown® that the pumping rate for stimulated emis-
sion of plasmons is minimized. In a large magnetic
field this zero-gap material develops a field-induced

T
gap between the conduction and valence bands. For

carrier concentrations of 10'7/cm?® electrons, the
plasmon energy 7w, matches the bandgap for mag-
netic fields of the order of 60 kG. An exact reso-
nance matching for the emission of plasmons can be
achieved by the simple device of varying the mag-
netic field. We evaluate the gain for the stimulated
emission of plasmons under such conditions.

Using an electron mobility of 10° cm?/V sec and
a hole mobility of 10°—10* cm?/V sec we evaluate
the scattering potential strengths ¥, and ¥V, using
(12). The self-energies 2, and 3, are then solved
from (14) and (15). The Kubo density of states for
the n =0 state in the valence and the conduction
bands are as in Fig. 3. The level broadening arising
from impurity scattering leads to the removal of the
Landau singularity in the density of states and to
the encroaching of the density of states into the
band gap. The integration of (21) can be performed
numerically to obtain the dielectric function

€0,G=0)=¢€,(1—w}/w?)

— lim (4me?/q%) | M, (4) | 2D(w,0) .
-0

(25)
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FIG. 5. Plasmon gain as a function of energy, for dif-
ferent hole concentrations, in Hg,_,Cd,Te at 65 kG.
Hole mobility is 10* cm2/V sec.
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FIG. 6. Effect of vertex renormalization on the
plasmon gain. Full curve represents the laser gain with
the vertex corrections and the dotted curve the effect of
neglecting these contributions, for a hole concentration of
10%/cm’.

The plasmon gain is then given by

I'=(w,/2€,)Ime(w,G=0) . (26)

The behavior of the gain as a function of frequency
is shown in Fig. 5.

The gain increases with increasing hole concen-
tration and estimates show that the gain exceeds the
plasmon damping by about a factor of 2 for hole
concentrations of 5X 10'%/cm®. In Fig. 6 we com-
pare the effect of including the vertex renormaliza-
tion on the plasmon gain with the effect of not in-
cluding the infinite set of ladder diagrams. The
gain is reduced by these terms by about an order of
magnitude.

Finally, we present in Fig. 7 the effect of tem-
perature on the gain. The results displayed are ob-
tained by using the full temperature-dependent Fer-
mi distribution functions in (21). The curves in Fig.
7 show the weakening of the stimulated plasmon
mode as the temperature is increased. At each tem-
perature and carrier concentration the Fermi levels
of electrons and of holes are determined in a self-
consistent manner numerically using (16).
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FIG. 7. Temperature dependence of the plasmon gain
at B=65 kG.

V. CONCLUSIONS

We have presented a general approach to the
problems of line shape and of laser gain for the in-
terband transitions in narrow-gap semiconductors
in high magnetic fields, and provided a numerical
study of the dielectric function in the situation with
an inverted population leading to electron-hole
recombination. The importance of the ladder dia-
grams in the polarization bubble has been demon-
strated by quantitative numerical work. As men-
tioned before, these terms represent the scattering in
terms in a kinetic formulation of the Boltzmann
transport equation in the present case. We have
found that the difference between including these
terms and not including them gets more pro-
nounced as the number density of carriers is in-
creased.

Problems for further study are the effect on line
shapes of phonon scattering, and the complete
evaluation of the dielectric function in the intrinsic
case, and the inclusion of more Landau levels in the
analysis for somewhat lower magnetic fields than
those considered here.
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