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Screening of impurities in semiconductors: Muonium in germanium, silicon, and diamond
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With the use of the density-functional formahsm and the pseudopotential description of
the electronic structure of a semiconductor, a new simple theory is derived for calculating
the ground-state impurity level for deep donors. It is shown that within well-defined ap-
proximations the wave function of the impurity level can be determined self-consistently

from a set of equations involving the dielectric function and the pseudopotential of the host
lattice. The model, which is further simplified by the replacement of the potential by its

spherical average around the impurity, is applied to muonium in diamond, Si, and Ge, and

it is shown that the meon zero-point motion is essentially important in calculating the hy-

perfine frequency. The calculated results are in a qualitative agreement with the experi-
ments.

I. INTRODUCTION

Two different paramagnetic muon states have
been observed in diamond, silicon, and germanium.
The hyperfine spectrum of the so-called normal
muonium state (Mu) is analogous to that of vacuum
muonium but with a reduced hyperfine frequency.
The observed spectra of the anomalous muonium
state (Mu') are describable by an axially symmetric
hyperfine interaction which is much smaller than
the one for Mu and is strongly anisotropic.

Whereas no satisfactory model of the electronic
structure of Mu* has been reported so far, various
models have been proposed to explain at least quali-
tatively the observed reduction of the spin density
of Mu which is given by

(0

Here
~
ft(0)

~
is the spin density at the is+ in the

host and g„„is the electron wave function of the ls
muonium state in vacuum which, except for a
slightly enhanced effective mass, corresponds to the

1s hydrogen wave function. The measured values at
low temperatures are'

Ac =0.831

for dlaGlond,

~s =o 450

for silicon, and

AG, ——0.529

for germanium.
An interstitial hydrogen or muon forms a deep-

level impurity and the effective-mass theory used
for shallow impurities is totally unable to describe
its electronic structure. A qualitative understanding
of the impurity level can be obtained by the use of
an r-dependent dielectric function to screen the 1/r
potential of the hydrogen. The simplest of these
kind of models is the so-called cavity model which
assumes that the potential is 1/r inside the cavity
radius and 1/sar outside the cavity, eo being the
static dielectric constant. Wang and Kittel ob-
tained reasonable values for the hyperfine constants
of Mu in Si and Ge both with a cavity model and
with a space-dependent dielectric function, provided
that the electron mass was taken as the free-electron
mass. The latter assumption, however, cannot be
justified, as has been discussed by Pantelides.
Moreover, new calculations' for diamond, Si, and
Ge have shown that neither the cavity model nor
other approaches using various r-dependent dielec-
tric functions are able to reproduce the observed or-
der of the contact interaction: A c &A 6, &A s;.
These simple models also neglect the actual lattice
structure and do not take into account explicitly the
site of the interstitial muonium in the lattice (except
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if the ad hoc assumption is made that the cavity ra-
dius is related to the size of the interstitial hole).

The Green's-function methods which have been
developed to calculate electronic states associat-
ed with deep impurities and localized defects in
semiconductors have so far not been applied to
study interstitial hydrogen. A self-consistent pseu-
dopotential calculation of hydrogen in Ge has been
reported by Pickett et al. , who found that a singly
occupied H 1s deep donor state exists in the valence

band. Recently, Sahoo et al. ' performed a
Hartree-Fock cluster calculation for muonium in
diamond where the simple models tend to underesti-
mate the contact spin density. However, the
Hartree-Fock method has not been applied to
muonium in Si or Ge.

In the present paper we develop a new simple
theory for calculating a deep impurity level. Start-

ing from the density-functional formalism and a
pseudopotential description of the semiconductor
we derive within well-defined approximations a
self-consistent equation for the impurity bound

state. The host semiconductor is described by its
dielectric function and a screened pseudopotential.
The actual lattice structure is taken into account
and thus the impurity level will depend on the site
of the impurity.

As an application of the new model we have cal-

culated the electronic state of normal muonium in

diamond, Si, and Ge. The spin density at the muon

was found to depend strongly on the muonium site.
Thus the zero-point motion of the muon has a large

effect on the experimentally observed precession
frequencies.

II. THEORY

Our starting point is the density-functional for-

malism with the local spin-density approximation
for the exchange and correlation energy. This
method has proven to be successful in describing

many of the electronic properties of impurities in

metals. " The key idea of the density-functional

theory is to write the ground-state density in terms
of single-particle wave functions

n(r)=y
~
y;(r)

~

'

which obey the Schrodinger equation

[ 2V +Vff(r)](t;(r)=e;p;(r)

The effective potential V,ff( r }is given by

V.«(r)= ——++V„(r—R.}
z

+fdr ' + V„,(n(r)), (3)

where the first two terms are the external potential
provided by the impurity nucleus and the host lat-
tice pseudopotential and V„, is the local exchange-
correlation potential. Assuming that there is a well
localized impurity state the electron density can be
split up as follows:

n(r)=nz(r)+nz (r)+nz (r), (4)

where nz(r ) is the electron density of the impurity
state, nz ( r ) is the density of the unperturbed lattice,
and nz (r } is the charge density caused by the polar-
ization of the lattice due to the impurity. With the
help of Eq. (4) V,ff can be written as

V,«(r) = VcL«(r)+ V,«(r),
where

nz (r ')
V,ff( r ) =g V~, ( r —R ) + 1 d r '

m
/

r —r'/

+ V„,(r)

is the effective potential of the unperturbed lattice
and

V ff(r)= ——+ Jdr ' +b, V„,(r)
Z nz(r ')

~/

+ fdr' (7)
)r —r'/

V,f~ can be approximated by a sum over screened

pseudopotentials as follows:

Vcff( r ) =g V~, ( r —R ) (&)

Since the impurity level nz(r) already provides a
complete screening of the impurity potential -Z/r,
the polarization charge np(r) is a response to the
weak (screened) potential given by the first three
terms of Eq. (7). Therefore we approximate it
within the linear-response theory and neglect the ef-

fect of the change in the exchange-correlation po-
tential EV„,(r } on nz (r). With help of the dielec-
tric function e(q) the Fourier transform of nz(r } is
then given by

np(q} =—l [—Z+nz(q)l1

e(q)
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In studying a hydrogen impurity, nr(r) is caused

by one wave function gr. In that case the electro-
static self-energy, the second term in Eq. (7), ap-
proximately cancels the change in the exchange-
correlation potential b, V„,( r ). This cancellation
roughly corresponds to the so-called self-interaction
correction in the density-functional formalism. '

The impurity bound state is now determined by the
Schrodinger equation

, V Qr—(r)+Wg(r)gr(r)=ergr(r),

where the effective potential W~ is given by

(10)

d q 4m.
&& q ~ r

re(r) (2ir ) q e (q)

the effective potential 8'r can be written in the fol-
lowing form:

(12)

Z
Wi(r) =-

a(r)r

nr(r ')

e(r —r ')

The impurity level el and the corresponding wave
function 1(r can be determined by a self-consistent
solution of Eqs. (9)—(11) once the screened pseudo-
potential and the dielectric function of the host are
known.

With the standard definition of the r-dependent

dielectric function

includes the effect of the actual lattice potential

[last term of Eq. (13)]. Note that in our formula-

tion one always uses the bare mass of the electron;
the effects of an effective mass are implicitly in-

cluded due to the use of the lattice pseudopotential.

III. APPLICATION TO MUONIUM IN
GERMANIUM, SILICON, AND DIAMOND

The theory developed in Sec. II is applied to cal-
culate the wave function of an electron bound to a
positive muon in semiconductors. Experimentally,
the hyperfine frequency has been extracted from the
observed transition frequencies in the low-field Zee-

man region' or, more recently, ' was directly ob-

served in zero external field. The hyperfine fre-

quency is proportional to the spin density at the
muon site. In our theoretical model the spin density
is solely determined by the singly occupied impurity
state 1(tr and the wave-function amplitude at the

muon,
~
gr(R&) ~, depends on the muon site in the

lattice, R&, which is unknown. It should be noted
that the muon spin-rotation (@SR) data obtained so
far strongly indicate that normal muonium is

diffusing very rapidly. This implies that the prob-
able interstitial sites are not limited by symmetry
considerations. For a static muonium at a site of
low lattice symmetry, on the other hand, the crystal
field could give rise to a nonspherically symmetric

spin density. '

The solution of the self-consistent equations

(9)—(11) for several muon sites R& was further sim-

plified by replacing the sum over lattice pseudopo-
tentials by a spherical average around the muon

site,

+QVp, (r —R~) . (13)

In earlier investigations ' ' of the hydrogen im-
purity in semiconductors only the first term of Eq.
(13) was included. In that case the total screening
charge would be

r

—R +R„4~

nr(r ')

[r—r'/

(15)

lim nr(q)—
q~0

)Z,

(14)
where eo ——e(q =0) is the macroscopic dielectric
constant. Thus the impurity would be overscreened.
In our formulation the polarization charge is in-
duced by a neutral impurity and no overscreening
occurs. In addition to this correction [which leads
to the second term in Eq. (13)], ou'r calculation also

This so-called spherical solid model proposed by
Almbladh and von Barth' has shown to be success-
ful' in explaining the energetics and muon

Knight-shift systematics in simple metals. Further,
we neglect any lattice relaxation around the muon,
which allows the summation over the lattice pseu-

dopotentials in the reciprocal lattice. The pseudo-
potential parameters used for the three different lat-
tices are given in Table I. For the dielectric func-
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TABLE I. Parameter values used in the calculations. Pseudopotential form factors V (in

Ry) for diamond are from Ref. 22; those for silicon and germanium are from Ref. 23. Q is the
inverse screening length for the dielectric function, eo the static dielectric constant, and aL, the
lattice constant.

C
Si
Ge

aL (A)

3.56
5.43
5.65

V(~3)
—0.514
—0.211
—0.232

V(V g)

—0.022
+0.0403
+0.0108

V(V 11)

+0.186
+0.0805
+0.0604

5.7
11.9
16.0

g (a.u. )

1.15
0.92
0.82

tion e(q) we use the analytical formula of Herman-
son, ' which leads to a very convenient r-dependent
function

The parameter Q is fitted' to give e(q) in good
agreement with the first-principles dielectric func-
tion. The values for ep and Q are also given in

Table I.
The self-consistent equations were solved by

starting with an initial potential 8'I ' obtained by
setting nI ——0. From the calculated impurity wave-

function amplitude a new potential Wz" was gen-
erated and the expression 0.75$'I"+0.258'I ' was
used as a new input potential. This procedure was
then iterated and good convergence in both ni and

Wq was achieved within typically 10 to 12 itera-
tions.

In Fig. 1 the calculated normalized spin densities
are given for R& varying along the body-diagonal of
the cubic lattice. The A values in all three host lat-
tices are lowest (between 0.05 and 0.10) at the hex-
agonal interstitial site (H). They are slightly higher
at the tetrahedral site (T) and strongly increase as

R& is moved towards the host-atom position (A).
If the lattice potential is neglected, the self-

consistent solution gives the following values:

Ac ——0.67, As; ——0.73, and AG, ——0.77. This shows
that the lattice potential which includes the effects
of the effective mass of the electron strongly influ-
ences the spin densities.

IV. INFLUENCES OF ZERO-POINT MOTION

Owing to the very light mass the muoniurn is ex-
pected to have a large zero-point vibration. The
measured precession frequency is then an average

1.5 1.0

1.0 0.8—

0.5
0.6—

0.4—

0.0
1 2

A

4
T

5
H 0.2—

FIG. 1. Normalized spin densities at a muon in dia-

mond, Si, and Ge vs the muon site R varying along the

body diagonal of the cubic unit cell. Site A with coordi-
nates (2,2,2)a/8 corresponds to an atom. T denotes the
tetrahedral, H the hexagonal interstitial site, respective-

ly.

0.0 I

2
o- (a.u.)

FIG. 2. Averaged normalized spin densities for
muonium at the tetrahedral interstitial site vs the Gauss-
ian width o determining the zero-point vibration.
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over the muonium zero-point motion. Assuming
that the electron follows the muon adiabatically, the
average spin density at the muon is given by

( ~yI(0) [')= fd~pP(~p) ~ql(rp) ~', (17)

where P(r„) is the probability that the muonium is
at the point r& and

~
Pl(r&)

~

is the square of the
wave function calculated for a fixed muon at the
site r„.

To calculate the averaged spin densities the self-

consistent calculations using Eqs. (10), (15), and (16)
were repeated for several muon sites in the lattice
(about 1600 altogether). The effect of the zero-

point motion was estimated by assuming the muon

distribution in Eq. (17) to be a Gaussian,

—(R —r )'/20'
P(R„rp) —

2 3/2(2~~ )

1.0

0.8—

0.6

0.4

0.2

0.0 2
o- (a.u.)

FIG. 3. Averaged normalized spin densities for

muonium at the hexagonal interstitial site vs the Gauss-
ian width 0. determining the zero-point vibration.

centered at the interstitial site R&. The results for
the tetrahedral and hexagonal interstitial sites are

shown in Figs. 2 and 3 as a function of the Gauss-

ian width 0..
The values at the center of both of these sites are

much smaller than the experimental results. Simi-

lar small A values were also found in earlier calcula-

tions using an r-dependent dielectric function if the

r-dependent effective mass was used. In our calcu-

lation this effective electron mass is accounted for

by the use of the lattice pseudopotential.
As is evident from Figs. 2 and 3 the measured

hyperfine frequencies may be drastically influenced

by the zero-point motion. With a zero-point ampli-

tude of 1.0 to 1.5 a.u. , which is a reasonable guess

for light impurity, ' ' the theoretical values of 3
are enhanced and close to the experiments. In par-

ticular, the value for diamond stays well above

those for Si and Ge.
The site of muonium is so far not known. There

is some theoreticalio, 2s and experimental indica-

tion that the hydrogen site in these lattices is off
center from the tetrahedral site towards the nearest

atom (at about x =3.5 in Fig. 1). We have repeated

the calculations for a muon centered at this site and

the results are qualitatively very similar to those at
the hexagonal and tetrahedral sites (Figs. 2 and 3)

showing the dominant role of zero-point motion.

semiconductors. It is based on the density-

functional formalism and describes the host lattice

by the dielectric function and a pseudopotential
which accounts for the effective mass. With the use

of various approximations, the wave function of the
impurity level has been calculated from a set of
self-consistent equations. The self-consistency of
the theory guarantees the correct screening charge.
The earlier simple models are found to be special
limiting cases.

The calculated spin density at the muon in Ge,
Si, and diamond indicate the importance of the
muon zero-point motion. The hyperfine frequency
at the center of the hexagonal and tetrahedral inter-

stitial sites is much smaller than the experimental
value, but a zero-point amplitude of about 1 to 1.5
a.u. gives average values in reasonable agreement
with experiments. An improvement of the model

requires the neglect of the spherical approximation,
calculation of the muon energy profiles in the lat-

tice, and the actual three-dimensional muon distri-
bution including the effects of the lattice relaxation
around the muon.
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