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Based on existing periodic models for amorphous Si, a series of random-network models

with periodic boundaries have been constructed for amorphous SiOz and SiO„, with

x =1.5, 1.0, and 0.5. The network structures in which an 0 atom always bonds to two Si
atoms in a bridging position and a Si atom is tetrahedrally linked to four 0 atoms (for a-

Si0$ or both 0 and Si atoms (for Si0„),are computer relaxed using a Keating-type of elas-

tic potential. The resulting models have no internal voids or dangling bonds and have den-

sities similar to the experimental values. Results are presented for the total and partial ra-

dial distribution functions, as well as for bond-angle and bond-length distributions and

statistics of bonding patterns. For SiO„with x =1.0, models are constructed according to
both the random-bond concept and the random-mixture concept. Detailed examination of
these two types of models indicates the former should be slightly more favored although
the radial distribution functions of the two are quite similar. This conclusion is opposite to
that reached by Temkin. Utilization of these periodic models for the study of electronic
structures in a-Si02 and SiO„ is also discussed.

I. INTRODUCTION

The most fundamental information needed to
understand the various properties of materials is the
structural arrangement of the constituent atoms. In
crystalline solids, the position of each atom in the
unit cell can be accurately determined by x-ray dif-
fraction in conjunction with the knowledge of a fin-
ite number of space groups associated with the
long-range periodicity of the lattice. In a disordered
solid, there is no long-range order and the structure
is usually characterized by short-range order such
as nearest-neighbor (NN) coordination numbers,
average bond length, and bond angle of coordinated
atoms and ring structures. In general, there is no
unique set of atomic coordinates to describe the
structure of amorphous materials. The ground-
state configurations for a disordered material may
be highly degenerate and separated from one anoth-
er only by small energy barriers. We are actually
facing a statistical ensemble of equally acceptable
structural configurations. The experimentally mea-
sured radial distribution function (RDF) of amor-
phous materials can only provide partial informa-
tion regarding their structures. In this situation,
model construction based on various plausible
atomic arrangements and subsequent study of ma-
terial properties based on these models can provide
insight into the nature and properties of disordered

materials.
It has been generally accepted that for covalently

bonded disordered materials such as amorphous sil-
icon (a-Si) or amorphous silicon dioxide (a-SiOz),
the continuous random-network (CRN) model is the
simplest reasonably appropriate model to describe
their structures. ' Very recently, a different school
of thought based on topological argument has em-

erged and occasionally, a microcrystallite model
has also been advocated. Model construction for
a-Si02 based on the CRN theory began as early as
the mid-sixties. It was extended later to
tetrahedrally bonded amorphous semiconductors '

and to a lesser extent, chalcogenide materials.
Most of these models involve clusters of several
hundred atoms with free surfaces, although quasi-
periodic models (@PM) of modest sizes have also
been constructed for a-Si. ' It has been cus-
tomary to compare the RDF calculated from the
model structure with that measured experimentally
to assess the suitability of the model. In general,
agreement in the RDF is a necessary but not suffi-
cient condition for a good model; a more discrim-
inating test is to study the other physical observ-
ables based on the models constructed. In this
respect, the QPM is particularly valuable because it
represents a truly infinite array of network atoms
free of surface effects. Furthermore, properties of
each model such as density, ring structure, or
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bond-length distortion can be easily quantified and
correlated to the physical observables studied.
Theoretical methods developed for crystalline solids
can be readily borrowed and extended to study the
disordered systems represented by the QPM.

In a preliminary report, " we outlined the con-
struction of the QPM for a-Si02 and SiO„. In this

paper we present the new results obtained by the
construction and analysis of three inequivalent

QPM for a-SiOz and for each of the SiO„with
x =1.5, 1.0, and 0.5. The models for SiO„should
be of particular interest because they yield the mi-

croscopic information about the atomic scale struc-
tures and the stoichiometry of the Si-SiOz interfa-
cial regions. Currently, there are two competing
models for the structures of SiO„: (1) The micro-
scopic random-bond (RB) model' in which the
Si—Si and Si —0 bonds are statistically randomly
distributed throughout the SiO„structure, and (2)
the random-mixture (RM) model' in which the
tetrahedrally bonded units of a-Si and a-Si02 are
randomly dispersed and each has a domain size of a
few tetrahedral units. We have constructed QPM
of SiO„with x = 1.0 according to the above two as-

sumptions. Detailed analysis of the two types of
models and the subsequent calculation of electronic
structures based on these models' seems to favor
the RB description for SiO„. Accordingly, the
models for SiO„with x =0.5 and x =1.5 are con-

structed according to the RB concept.
In the next section we describe the process of

construction of these QPM and comment on some

subtleties in the technical details. In Sec. III the re-

sults of a-Si02 models are presented and compared
with the cluster models of Bell and Dean (BD).' In
Sec. IV A the results of SiO models based on both
RB and RM concepts are presented, compared, and
contrasted. The results of SiO„with x =0.5 and

1.5 are discussed in Sec. IVB. In the Sec. V we

summarize the results and present arguments in
favor of the RB model for SiO„. In the subsequent

papers, ' the detailed electronic structures for a-

Si02 and SiO„calculated using these models will be
presented.

II. METHOD OF MODEL CONSTRUCTION

In a CRN theory for a covalently bonded glassy
material, the atoms maintain short-range order as
required by the theory of chemical bonding. The
most difficult part in constructing a QPM is to
maintain the periodic boundary condition (PBC)
across the ce11 boundary without severely distorting

the directional bonding of the atoms involved. No
systematic method has yet been developed which
gives a unique prescription for constructing such
cells with an ensured minimum distortion from the
normal bonding structures. Three QPM for
tetrahedrally bonded a-Si are in existence, ' these are
either handbuilt or computer assisted and represent
the best models out of many trials. The first of
such models was built by Henderson and Herman
with 61 atoms in the unit cell. A second one with a
smaller overall distortion and 54 atoms in the unit
cell was constructed by Guttman. Still another
model with a somewhat larger distortion was con-
structed by a group at Yale University; it contained
62 atoms in the unit cell. We shall label these three
models as H61, G54, and Y62, respectively.

To construct QPM for a-Si02 following an ap-
proach similar to that used for a-Si would be even

more difficult and time consuming. It is expedient
to utilize the existing models for a-Si and to derive
a QPM for a-Si02 such that the difficulty of
matching the PBC can be circumvented. This can
be done by inserting 0 atoms between each pair of
Si atoms in the a-Si model and then rescaling the
atomic coordinates and the size of the cubic cell
such that the density of the a-SiO2 model corre-
sponds to 2.20 g/cm as measured experimentally.
Thus a starting configuration of a QPM of a-SiOi
is obtained with the network topology and ring
structures identical to those of the originating a-Si
model. When only a fraction of the available 0
sites is occupied, we have SiO„models. If the 0
sites in a SiO„model are randomly picked, we have
a RB model. If the choice of 0 sites are biased
such that Si—O bonds tend to be locally connected,
we have a RM model. These procedures are illus-
trated with two-dimensional sketches in Fig. 1.

Once the initial configuration for a QPM has
been determined, it is necessary to reduce the bond
distortion by relaxing the structure under some po-
tential function such that the elastic energy is mini-
mized. It has been argued' that a correct potential
function for such purpose should yield the structure
of quartz for Si02 after relaxation since this natur-
ally occurring phase represents one of the most
thermodynamically stable structures of Si02 and
hence possesses the lowest potential energy. How-
ever, our purpose is to obtain an acceptable finite
CRN structure for a-SiOq with the constraints of
PBC and with bond length and angle distortion
consistent with experimental information. Because
we are less concerned about the accuracy of such a
potential function or its derivation from first princi-
ples, a phenomenological approach is used. We use
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where ri; is the radius vector from atom l to its
(NN) atom i, P is the ideal O-Si-O, O-Si-Si, or Si-
Si-Si angle (109'27'), 0 is the average Si-0-Si angle
which is about 147', and d is the ideal Si—0 or
Si—Si bond length (1.69 or 2.35 A) as the case may
be. The first term in (2) and (3) is a sum over NN
while the second term is a sum over the NN pairs.
a is the bond-stretching constant and pi and p2 are
the bond-bending constants about the 0-Si-0 angle
and Si-0-Si angle, respectively. The ratio of pi/a
is set equal to 0.17 according to the analysis of
Galeener, ' and p2 is set to be pi/3. In the case of
SiO„models, no distinction is made between bond
bendings about O-Si-O, Si-Si-O, or Si-Si-Si angles.
In the computer-relaxation process, the force tensor
for each atom is calculated from the potential form
of Eqs. (1)—(3). Each atom is picked in a random
sequence and is moved to a position of zero force.
The iteration process stops when the computed de-

(c)

FIG. 1. Schematic illustrations of obtaining initial
configurations from the periodic model of a-Si: (a) a-
Si02, (b) RB model of SiO„, {c)RM model of Si0„.

viations of bond length and bond angles have stabi-
lized to one part in 10 and a final relaxed QPM
structure is obtained. The relaxation process is
found to converge rather rapidly since our initial
configuration already defines the topology of the
network and no bond pattern changes are intro-
duced in the relaxation process. Various test runs

TABLE I. Properties a-Si02 models.

Model

No. of atoms

Type
Density (g/cm )

R, „-(A)
hR /R
8 {0-Si-0)
58
P (Si-0-Sil
bP

G54

162
periodic

2.20
1.62
0.007

109.3'
4.8

147.2'

13.8

H61

183
periodic

2.20
1.62
0.010

.109.3'
6.8'

152.3'
14.2'

Y62

186
periodic

2.20
1.64
0.017

109.2'

8.2'

151.5'

13.1'

BD

614
cluster
-1.99

1.620
0.035

109.30'
6.2'

153.3'

9.6'

a-quartz

9
periodic

2.65
1.62
0.000

144.0'

Experiment

2.20
1.62

144'—152'

Peak positions
in RDF (in A)
P)
P2
P3
P4
I5

1.62
2.66
3 ~ 14
4.14
5.18

1.62
2.68
3.17
4.16
5.63

1.64
2.70
3.23
4.28
5.45

1.6
2.6
3.1

4.1

5.1

1.61
2.64
3.06
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FIG. 2. Distribution of Si —0 bond length, tetrahedral angle 8, and bridging angle P for @PM of a-SiO, : (a) G54, (b)

H61, (c) Y62.

indicate that the structure after relaxation is rather
insensitive to a reasonable range of choice of the ra-
tios of the parameters a/P& and P&/P2. Since
these models are derived from a-Si models
which contain no four-member rings, the present

QPM for a-SiOz also contain no four-member rings.
To test the effect of the presence of four-member

rings in the structures, several models with various
numbers of four-member rings are also constructed

by the removal of few Si atoms in the original a-Si
model before inserting 0 atoms and reassigning the
affected neighboring atoms. Such models are in

general found to have larger distortion after com-

puter relaxation.

III. a-Si02 MODELS

For a-Si02 models, three QPM were constructed
in the manner described in Sec. II, each originating
from H61, G54, and Y62 models for a-Si. We shall
again label these models as H61, G54, and Y62 for
the a-Si02, they contain, respectively, 61, 54, and 62
Si atoms and 122, 108, and 124 0 atoms. The

characteristics of these relaxed models are listed in
Table I along with the cluster model of BD, ' and
that of crystalline quartz. This includes density,
average bond length, and bond angle, their root-
mean-square (rms) deviations of these quantities,
and the peak positions in the RDF. To give a better
idea about the local short-range order of each
model, the distributions of Si —0 bonds, 0-Si-0
tetrahedral angles 8, and Si-0-Si bridging angles P
are plotted in Fig. 2. It is apparent that G54 has
the smallest overall distortion while Y62 has the
largest distortion. This is similar to the original
QPM of a-Si and indicates that the distortion in a
particular QPM is mainly determined by the topolo-

gy of the network with the constraint imposed by
the PBC. However, the QPM for a-SiOz have
much smaller distortion than the corresponding a-Si
models. For example, in the G54 model, the rela-

tive rms value of the NN bond length is 0.03 in a-Si
but only 0.007 in a-SiOq', the rms deviation of the
tetrahedral angle 0 is 11' in a-Si compared to 4.8' in
a-SiOz. This is attributed to the flexibility of the
Si-0-Si bridging angles in the a-SiOz network. In
comparing our QPM with the mechanically con-
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FIG. 5. Solid line, averaged x-ray RDF of the three
QPM. Dashed line, experimental RDF from Ref. l.
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FIG. 4. Partial pair distribution function for a-Si02.
Solid line, Si-Si pairs; dotted line, 0-Si pairs; dashed line
O-O pairs. (a) G54, (b) H61, (c) Y62.

2 4
(A)

FIG. 3. X-ray RDF computed from the QPM of
a-Si02. (a) G54, (b) H61, (c) Y62. For each pair counted,

Gaussian broadening of halfwidth of 0.1 A is applied.

This is true for all subsequent RDF and partial RDF cal-

culations.

structed model of BD which has a much lower den-

sity than the experimental value, we notice that BD
has a much larger bond-length distortion, a smaller
bridging angle distortion, and an intermediate dis-
tortion for the tetrahedral angles e. The average
bridging angles (() obtained from the three models

(147.2', 152.3', 151.5') are slightly smaller than the
BD model (153.3'). The most contrasting property
of BD model is that it contains 19% of four-
member rings. Our QPM, being derived from a-Si
models, contain no four-member rings. Other clus-
ter models of a-SiOq contain less than 1% of four-
member rings. BD had pointed out that the pres-
ence of four-membered rings is important to ac-

0

count for a shoulder in the RDF at 3.8 A. We have

analyzed our QPM with some four-member rings

by the method of removing some Si atoms in the a-
Si model and reassigning bonds before relaxing.
The RDF thus calculated did show a slight should-

er at 3.7 A, but it was not as prominent as in the
BD model. In view of the large density deficit of
the BD model and the fact that recent electron dif-
fraction data show less sign of the shoulder, ' and a
more careful analysis of the experiment RDF, '9 we

conclude that the presence of four-member rings in
a-Si02 is unquestionable, but probably less than a
few percent.

The RDF of a-SiOz had been measured by many
people" using x-ray, neutron, and electron dif-
fraction methods. In Fig. 3 we plot the x-ray RDF
calculated for the three QPM from 0—8 A. Atom-
ic scattering factors of 14.75 and 7.625 electrons are
used for Si and 0 atoms, respectively, as was done
in Ref. 1. Because of the quasiperiodicity of the
models, we are able to calculate the RDF up to any
range without additional correction for the surface
effect as would be needed in a finite-cluster model.
In order to have a better insight on the various
structures in the RDF, we resolve the pair distribu-
tions in the O-O, O-Si, and Si-Si components for
each of the three QPM. These are shown in Fig. 4.
By taking G54 as an example, the first three peaks
in the RDF at 1.62, 2.66, and 3.14 A are from Si-0„
O-O, and Si-Si pairs, respectively; beyond 4.0 A, all
pairs contribute to the structure with Si-0 and 0-0
pairs mainly responsible for peaks at 4.14 and 5.18
A, respectively. The other two models gave similar
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results with Y62 having peaks at higher positions.
In Fig. 5, we compare the average x-ray RDF of the
three QPM with the averaged experimental RDF.'
The agreement can be regarded as excellent. Not
only the positions of the major peaks are matched,
but also the smaller structures beyond 5.
Angstroms are quite well reproduced. The same

good agreement in RDF has also been obtained by
the BD model although the BD model has some
characteristics quite different from the QPM. This
indicates that the RDF is an averaged physical
quantity which may not serve as a test stringent
enough to distinguish the subtleties in the different
structural models.

IV. AMORPHOUS SiO„MODEL

The structure of SiO„ films and Si-SiOz inter-
faces has been receiving much attention in recent
years. ' ' Several possible structural models
have been suggested based on the analysis of the re-

sults obtained from various experimental investiga-
tions. ' ' ' It is possible that any one of them may
be valid under a particular preparation condition.
We are mainly concerned here with the atomic level

structure of powder-deposited SiO„ films and the
question of whether the same SiO„structure is ap-

propriate for the interface of Si and Si02. Auger
spectroscopy indicates that a layer of SiO„of
width about 25 —35 A exists at such an interface
with x varying from 0.0 to 2.0 in going from the Si
side to the Si02 side. The main controversy is at
what level Si and Si02 are mixed. The random-
mixture model' suggests the mixing of SiOz and Si
at the level of several tetrahedral units while the mi-

croscopic random-bond model' assumes a complete
mixing of Si —Si and Si—0 bonds with fourfold
tetrahedral bonding for Si atoms and a twofold
bridging bond for 0 atoms as the only constraint.
Temkin, ' based on the analysis of x-ray diffraction
data of Yasaitis and Kaplow (YK) concluded that
the RM model is the appropriate one. Nevertheless,
the most conclusive evidence can be obtained only
when we actually construct physical models accord-
ing to the above two competing concepts, analyze
the resulting model structures, and then compare
with diffraction data and all other available infor-
mation.

A. Sip„models, x =1

We constructed SiO models as described in Sec.
II for both RM and RB models. The size of the su-

TABLE II. Properties of Sip„, x =1 model.

RB (3 each) RM (3 each)

No. of Si atoms
No. of P atoms
Density (g/cm')
Ro-s (A)
LalR f P
R

Rsi —si (A
AR

for Si-Si
R

0 (X-Si-X,X=O or Si)
60
P (Si-0-Sil
bP
Cl
C2

C3
C4

Cg

P1 (A)
P, (A)
P, (A)
P4 (A)

54
54
2.15
1.67

0.045

2.45

0.052

108.6
13.3'

157.0
16.4
0.080
0.241
0.358
0.241
0.080
1.65
2.46
3.38

4.3 —4.75

54
54
2.15
1.64

0.027

2.52

0.089

108.7'
13.5'

152.2'

16.0'
0.191
0.290
0.169
0.031
0.321
1.63
2.52
3.43
4.76

percell with a =12.23 A is determined by the densi-

ty of SiO which was measured to be 2.15
g/cm . ' Three similar but inequivalent models
are constructed for each case by changing random-
initial configurations. Each Si atom in SiO„can
bond to n 0 atoms and (4 n—) Si atoms where
n =0,1,2,3,4. Following Temkin, we denote the
fraction of each of the five tetrahedral units to be
C; with i ranging from 1 to 5. These parameters C;
are of considerable importance since they determine
the manner in which the Si and 0 atoms are ad-
mixed. These and other properties for SiO„with
x =1 are listed in Table II for both RM and RB
models.

To compare the two types of the SiO„models, we
have plotted the distribution of Si-0 bond, Si —Si
bond, tetrahedral angle 0, and the Si-0-Si bridging
angle P in Fig. 6. In general, the distortions of an-
gles 0 and Si—0 bonds are about the same in these
two models. The RM model has a larger Si —Si
bond distortion as well as a larger spread of angle P
distribution. Furthermore, the mean Si—0 bond
distance is shorter in the RM model than in the RB
model. In Fig. 7 we plot the x-ray RDF for each
type of model together with the relevant x-ray dif-
fraction data for x =1.06. There appears to be no
drastic difference in the RDF for the two models.
The only difference seems to be that the RB model
has a slightly more prominent third peak at 3.38 A
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FlG. 6. Distribution of (a) Si —0 bond, (b) tetrahedral angle 8, (c) Si —Si bond, (d) bridging angle ((t for SiO„, x = 1

models. Upper panels, RB model; lower panels, RM model.

and broader fourth peak between 4.3 —4.8 A. The
fourth peak, which was quite prominent in the ex-
perimental data, was less evident in the RB model.
Furthermore, in the RB model the Si-Si peak at
2.46 A is stronger than the Si-0 peak at 1.65 A, as
was found experimentally, while in the RM model,
these two peaks (at 2.52 and 1.63 A) are about the
same height. Based on these facts, it appears that
the RB model should be slightly favored over the
RM model although the differences in the two RDF
are quite sma11. %e sha11 return to discuss this

(a)

ItJ

rII
II

\

point in the next section. In Fig. 8 we resolve the
RDF of both models into their partial components.
This reveals the fact that the second peak arises
from both Si-Si and O-O pairs. For structures
beyond the second peak, all pairs contribute and the
structure in the RDF cannot be analyzed in a sim-

c)
j (b)

p 1

l I
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I
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~~
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82 4 6
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FIG. 7. X-ray RDF calculated for SiO„, x =1: (a) RB
model, (b) RM model. Dashed line, experimental data of
Ref. 24.

I
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I ~

tI ~j ~J
'
~

0 82 4
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FIG. 8. Partial pair distribution functions for SiO„.
x=1, (a) RB model, (b) RM model. Notations are the
same as Fig. 4.
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TABLE III. Properties of SiO„models, x =0—2.0.

x

No. of Si atoms
No. of 0 atoms
Density (g/cm )

Ro „(A)
Ro—sl /Ro —sl

Rsi —si

~R si —si /R si —si

8 (tetrahedral)
58
$ (Si-0-Si)

Ci
C2

C3
C4

C5

x =2.0

54
108

2.20
1.62
0.007

109.3'
4.8'

147.2'

13.8'

0.0
0.0
0.0
0.0
1.0

x =1.5
54
87
2.15
1.65
0.025
2.42
0.034

109.1'

10.5'

154.3'

14.5
0.0
0.068
0.173
0.451
0.309

x =1.0
54
54
2.16
1.67
0.045
2.45
0.052

108.6'

13.3'

157.0'
16.4'
0.080
0.241
0.358
0.241
0.080

x =0.5

54
27
2.28
1.64
0.039
2.42
0.040

108.5'

13.3'

153.9'
16.9'
0.395
0.333
0.241
0.037
0.019

x=0
54
0
2.40

2.35
0.025

109.4'

13.0'

1.0
0.0
0.0
0.0
0.0

(b) (b) (b) (b)

(c) (c) (c) (c)

1.5 1.6 1.7 1.8 78 94' 110 126 $42
~ s i, &l . I. . . I. . t.

2.3 2.5 120' 136' 152' 168

FIG. 9. Bond-length and bond-angle distribution for RB model of SiO„: (a) x =1.5, (b) x =1.0, (c) x =0.5. Notations
are the same as Fig. 6.
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pie manner based only on a few standard bonding
configurations.

B. SiO„models, x =0.5 and 1.5

From models of SiO„with x =1.0, it was shown
that the RDF's for both the RB model and the RM
model are not significantly different, with the RDF
from the former in slightly closer agreement with
experimental data. Accordingly, we constructed
three inequivalent models each for x =0.5 and
x =1.5 based on the concept of the RB model. The
size of the quasiperiodic cells are chosen to be 11.24
and 12.95 A, respectively, so that the density of
SiO„ for x =0.5 and x =1.5 will be 2.28 and 2.15

g/cm . These are the interpolated values between
the densities of a-Si (2.33 g/cm ), SiO (2.16 g/cm ),
and a-Si02 (2.20 g/cm ). The parameters of these
models, together with that of x =1.0 and the 054
model of a-Si02 and a-Si, are listed in Table III for
comparison. It is to be noted that in general for
SiO„ the average Si—0 bond length is larger than
the ideal Si —0 bond length of 1.62 A as in a-SiOz,
while the Si —Si bond length is larger than the ideal
length of 2.35 A as in a-Si. This elongation of
bonds is largest in the case of x = 1. Thus the effect
of additional disorder introduced in SiO„ is to
elongate the normal Si—6 and Si—Si bond lengths.

The distributions of bond length and bond angles
for x =1.5, 1.0, and 0.5 models are shown in Fig. 9.
The scales in this figure are such that the area
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FIG. 11. Partial pair distribution functions for SiO„:
(a) x=1.5, (b) x=1.0, (c) x=0.5. Notations are the
same as Fig. 4.
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FIG. 10. X-ray RDF for SiO„: (a) x =2.0 (a-Si02),
(b) x = l.5, (c) x = 1.0, (d) x =0.5, (e) x =0 (a-Si).

under the curve represents the actual number of
bonds or angles in each type of the model. As x in-

crease from 0.5 to 1.5, the distortions of angles
remain relatively the same. In comparing these dis-
tributions with those of a 654 model of a-Si02 in
Fig. 2 and that of a-Si of Ref. 8, we realize that the
bond and angle distortions are much smaller in the
cases of a-Si02 and a-Si. Thus the chemical com-
position of a-SiO„where x is neither 0 nor 2, intro-
duces additional disorder which results in a larger
distortion of bond lengths and bond angles. This
effect is more evident on the low-x side than on the
high-x side.

In Fig. 10 we display the RDF for SiO„ for
x =2.0 to x =0. From these curves it is apparent
that the Si-0 peak diminishes and the Si-Si peak
grows and shifts from 2.67 to 2.32 A in going from
a-Si02 to a-Si. Structures below 4 A are present in
all curves as a result of the basic chemica1 bonding
of NN atoms and are similar for all the models.
Beyond the 4-A range, only a-Si02 and a-Si have
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well-defined peak structures. For x =1.5 and 1.0
the RDF is rather featureless beyond 4 A. In Fig.
11 the partial RDF for x =0.5, 1.0, and 1.5 are
displayed in order to better display the nature of
various structures in the RDF.

V. DISCUSSION

Although construction of structural models for
a-Si02 started more than 15 years ago, the present
results are the first time that finite models with
PBC have been constructed for a-Si02. The RDF
computed from these models agrees well with ex-
perimental x-ray diffraction data. With the QPM,
the density of the model can always be adjusted to
the correct measured value and the physical charac-
teristics of each model analyzed in detail. %ith
three inequivalent models with different degrees of
distortions, we shall be able to study other proper-
ties of a-Si02 based on these models and correlate
them with their different structural characteristics.
The periodicity of the model enables us to deal with
the complicated disordered system with theoretical
methods developed for crystalline solids. This line
of approach seems to be very fruitful in theoretical
studies of disordered systems and has already been
demonstrated to be quite successful in the case of
amorphous semiconductors' ' and glasses.

For SiO„models we start with x=1. Both the
RM models and RB models have been constructed
and their statistical bond pattern analyzed. The
RDF of these two types of model are shown to be
quite similar with RB in closer agreement with ex-
periment. Temkin" had concluded from the data
of YK (Ref. 25) that the RM model is the more ap-
propriate one for SiO. However, in looking deeper
into Temkin's theory, we observed several deficien-
cies:

(1) In the six types of NN and next-NN bond
patterns considered by Temkin, the 0-Si-0 and Si-
0-Si angles are assumed to have their ideal values
of 109.5' and 144', respectively, while in reality, a
distribution of angles such as those shown in Fig. 6
needs to be considered.

(2) The value of the parameter C; for i= 1 to 5
can be rather easily obtained for an RB model based
solely on statistical arguments, but it is far more
difficult to obtain C; for an RM model from purely
theoretical deduction. In RM models each Si-like
and Si02-like region is at most a few tetrahedral
units in extent. There is a substantial boundary re-
gion to be considered in determining the parameters
C;. In Fig. 12 we plot the C; values for x =0.5, 1.0,

and 1.5 for RB models, as well as for x =1.0 for
RM models. The values for C; obtained from the
present modest-size RB models are in good agree-
ment with the exact statistical prediction, " while
for the RM model with x=1.0, the C; values
(Ci ——0.191, C2 ——0.290, Cs =0.167, C4 ——0.031,
C5 ——0.321) are significantly different from

1those assumed by Temkin (C, =C5 ———,, Cz+C3
+C4 ———, ) in his analysis.

(3) Temkin's strongest argument against the ran-
dom model in favor of the mixture model came
from the calculated area of the third peak in the
RDF. However, by neglecting all bond patterns
beyond the second NN and the use of imprecise C;
values, the area for the third peak in RDF deter-
mined by the Temkin model is incorrect. The par-
tial RDF of Fig. 8 clearly indicates the substantial
contribution for higher-order bond patterns. The
approximate areas of the third peak in both models
are actually quite close as shown in Fig. 7. Recent
electron diffraction study of SiO„ films for x =1.06
by George and D'Antonio' (GD) indicated the po-
sition of the Si-Si peak and the 0-0 peak to be at

0

2.36 and 2.63 A, respectively. The corresponding
values from Fig. 8 are 2.44 and 2.63 A for the RB
model and 2.49 and 2.63 A for the RM model.
This gives more evidence that RB is in better agree-
ment with experiment than the RM. However, GD
used the same analysis as Temkin's to draw an op-
posite conclusion. Very recently, Engelke et aI.
performed a high-intensity x-ray diffraction mea-
surement. From an extensive analysis of the RDF
obtained, they found that the RB model will fit the
experimental data best, especially when some defect

1.0

0.8

Ci

0.6

0.4

0.2

2.O 1.O 0.5 O.O

FIG. 12. Probability of the ith tetrahedral configura-
tion, C;. Solid lines, exact theoretical result for RB
model. Open symbols values of C; obtained from the RB
QPM. Solid symbols, C, values from RM model with
x =1.
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centers simulated by 0—0 bonds are included.

Philipp reported' that in his optical experiments, a
continuous range of Si to 0 deposition ratio is pos-
sible for SiO„ films that exhibit a continuous range
of absorption coefficients. He suggested that this is
more consistent with the RB model line of thinking
than the RM model. Furthermore, the distribution
diagram in Fig. 6 indicates that in general, RM
models have larger bond-length and bond-angle dis-

tortions, and hence, possess greater strain energy in
the network than the RB models. No well-

characterized structural measurements for SiO„
with x close to 0.5 or 1.5 exist. Although GD re-

ported electron diffraction data for SiO„with
x =0.84 and 1.27 in addition to x =1.06, it is high-

ly desirable that similar structural determination be
done for x =0.5 and x=1.5 to check out the relia-

bility of the models constructed.
The models presented in this paper are construct-

ed on the notion of CRN, which is the lowest level

of description for the highly complicated structure
of glasses and precludes other recently suggested
but more sophisticated structural models involving
clusters, internal microvoids, reconstruction,
and particular forms of dislocations or defect
centers. The approach of systematic construction
and analysis of QPM can, however, be readily ex-

tended to make quantitative tests of those newly

suggested theories. This approach can also be em-

ployed for the study of more complicated systems
such as those involving alkali-metal ions in silicate
glasses. In conjunction with first-principles
quantum-mechanical calculations of electron states
on the suitably constructed QPM, a closer compar-
ison with other experimental measurements would
become possible and deeper insight about the nature
of disordered systems can be obtained. This will

serve as a much more stringent test for the model
structure than simply demanding a good agreement
on RDF which is only an averaged quantity.

As mentioned earlier, the most difficult part in
constructing QPM is to match the bonds at the su-
percell boundary and to my knowledge, no efficient
systematic scheme has been developed which can
produce the periodic model for covalently bonded
noncrystalline materials without consuming a
prohibitive amount of either human labor or com-
puter time. Should such a scheme be available,
theoretical study of many different disordered sys-
tems via the construction of a suitable QPM can be
much more fruitful. The situation may be more
promising in amorphous metals or metallic alloys.
Unlike covalently bonded oxide glasses or amor-
phous semiconductors which require a stringent lo-
cal directional bonding to match at the boundary,
the boundary for a metal or alloy depends only on
the NN species and the coordination number; this
makes the PBC condition easier to maintain. Also,
a simple pairwise interatomic potential, such as the
Lennard-Jones type will be applicable in the com-
puter relaxation process. Work on metallic glasses
using such an approach has already been started. '

Previously, the structure of metallic glasses has al-

ways been described by large finite-cluster
models. ' Systematic study of this important
class of materials as well as other covalently bonded
disordered systems using a QPM approach will be
an important task for future years.
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