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A formula is derived in a general framework for various optical-transition cross sections
involving an impurity bound state (acceptor or donor) and a continuum state belonging to a
band (valence or conduction) in semiconductors. A quantum-defect wave function with the
correct normalization has been used for the bound state. The results are used to obtain ex-
plicitly several improved formulas of interest in the literature. A method is presented and
also applied to the case of GaAs to compute the overlap integrals of the cell periodic func-
tions which are needed in our derived formula. Approximate analytical expressions which
should be valid with good accuracy for transitions near the band extrema have also been
obtained. It has been shown that the formula for photoionization cross section reduces ex-
actly to that for the well-known Lucovsky’s 8-function model in the appropriate limit.
Other limiting cases have been discussed and compared with previous results. Comparison
with experiment has been made for the photoionization of manganese impurities in gallium
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arsenide.

I. INTRODUCTION

Considerable effort has been given in recent years
to the studies of various quantities of interest relat-
ed to optical transitions involving impurity atoms
in semiconductors, and, consequently, there exist
many calculations with varying degrees of
compromise between simplicity and accuracy.! Cal-
culations of the transition cross section require the
knowledge of impurity wave functions, the lack of
which is one of the major sources of difficulty.
There are many impurities which may be described
by hydrogenic effective-mass theory (HEMT) in
which the impurity potential is approximated to be
Coulombic and the effect of the medium is taken
into account through the effective masses and the
dielectric constant. HEMT provides a simpler ap-
proach to the impurity problem and hence to the
optical-transition problems. Irrespective of whether
it is shallow or deep, a single-band approximation is
valid for a so-called isocoric impurity. As the core
of an impurity deviates from that of the host, a
many-band expansion of the impurity wave func-
tion becomes necessary. A detailed discussion on
the validity of the HEMT may be found in a review
article by Pantelides.”> The binding energies for all
impurities describable by the HEMT would be
same, whereas the experimental values vary from
impurity to impurity and are generally higher than
that given by the HEMT. This extra binding arises
from the impurity core where the potential is not
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Coulombic, as well as from the so-called umklapp
contribution, intervalley interaction, etc.>® All of
these are short-ranged effects in real space. Bebb
and Chapman* borrowed the well-known
phenomenological quantum-defect method (QDM)
from atomic physics and applied it to the case of
such impurities with Coulomb potential plus a
short-ranged potential.

Bebb® has utilized the QD wave functions to cal-
culate the optical-transition cross sections involving
an impurity. This is one of the simple approaches,
but his calculations include some crucial approxi-
mations, which are as follows. (1) The transition
matrix element between a band state and the impur-
ity state has been written as the product of the
momentum matrix element p,( K) between the band
states (1,2 are the relevant band indices) and the
Fourier transform of the envelope part of the im-
purity wave function. This approximation has been
used for the band-impurity transitions which involve
both the conduction and the valence bands. (2) In
the photoionization calculations (involving a single
band) the Bloch functions are taken out of the in-
tegral which is equivalent to neglecting the um-
klapp terms. (3) plz(E) has been replaced by its
value at the band extremum, which is a standard
approximation for small K. (4) The normalization
used in his QD wave function is simply that of the
hydrogenic wave function, i.e., the QD wave func-
tion is not normalized to unity. By approximately
calculating the umklapp contribution we see that it
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is small and (2) is a valid approximation as is ex-
pected, but we do not find any justification for the
first approximation. Therefore we have eliminated
this and obtained an analytical expression valid for
small energies along with more accurate numerical
results valid for all energies. The third approxima-
tion is valid for small k values only. Since the pho-
toionization cross-section measurements are not, in
general, restricted to energies near the band ex-
tremum, we feel that it is desirable to do the calcu-
lation without the second approximation. We have
found considerable differences for large K values.
We have presented a method to compute the over-
lap integral of the cell periodic functions in which
one of them is at a general K value. The overlap in-
tegral is needed in our formula for the cross sec-
tions. We have applied’ this method to the case of
GaAs and shown that the cross sections deviate
considerably from the corresponding results with
the third approximation. Amato and Ridley® have
argued that the incorrect normalization of the QD
wave function is the major flaw in the QD model.
In our calculation we have used the QD wave func-
tion with the correct normalization obtained by
Chaudhuri, Coon, and Derkits.” This normaliza-
tion introduces an extra factor which varies from 1
to 2 for the hydrogenic model (i.e., the quantum de-
fect being zero) to the other extreme limiting case,
the §-function model. Owing to this normalization
factor our result for the photoionization cross sec-
tion reduces exactly to that of the Lucovsky’s 8-
function model® in the appropriate limit. We have
pointed out some errors that have occurred in the
photoionization cross-section formula obtained with
QD wave functions.” We also point out that unlike
the previous QD calculations, we are able to treat
both types of transitions (i.e., the band-impurity
transition and photoionization) in the same general
framework.

The continuum states should, in principle, be
products of Whittaker functions and Bloch func-
tions.> Here we approximate them to be pure Bloch
waves. This is a standard approximation. Bebb has
found that this is a much better approximation in
semiconductors than the approximations with the
plane waves in the free-atom case.” In the pure hy-
drogenic system the peak of the photoionization
cross section appears at #iw =¢€;, where €; is the im-
purity binding energy. The experimental studies
show that the position of the peak ranges from less
than 1.43 to ~2¢;. This result is in agreement with
the QD calculation with the continuum states taken
as Bloch waves.

Here we will not consider the temperature depen-
dence of the cross sections which may be easily ob-
tained by utilizing the formula given by Ridley’ in
terms of the zero-temperature cross section which,
in turn, may be obtained from the present calcula-
tion.

II. GENERAL FORMULA FOR
OPTICAL-TRANSITION CROSS SECTIONS

A. Cross-section formula

In semiconductors the optical transitions involv-
ing an impurity may be divided into two types ac-
cording to the charge state of the impurity when it
absorbs a photon or emits a photon. If a neutral
impurity atom becomes ionized when a photon is
absorbed in the process or if an ionized impurity be-
comes neutral when a photon is emitted, the pro-
cesses may be called, in general, photoionization or
photodeionization, respectively. On the other hand,
the process in which an ionized impurity becomes
neutral with the absorption of a photon or its re-
verse process may be called band-impurity absorp-
tion or recombination, respectively.'® These two
types of transitions are shown in Fig. 1. Since
within EMT a donor state is associated with the
conduction band, we note that in the first type only
one band (conduction or valence) is involved in a
single process, and in the second type both of the
valence and the conduction bands are involved in a
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FIG. 1. Diagrams for transitions involving a single
band (photoionization) and for transitions involving both
of the bands (band-impurity transition) are shown in (a)
and (b), respectively. In (a) solid arrows represent pho-
toionization and the dashed arrows represent photodeion-
ization. In (b) solid arrows are for band-impurity absorp-
tions and dashed ones are for band-impurity recombina-
tions. D and A denote donors and acceptors, respectively.
Also shown is the wave vector K involved in the transi-
tions (see text).



single process.

We are interested in obtaining the transition cross
section o(#iw) for either type of process described
above. If o is known, other quantities of interest,
e.g., spontaneous-emission rate, absorption coeffi-
cient, etc., may be easily obtained in terms of o.°
The transition cross section, in the well-known di-
pole approximation, is

47 2(1 Oﬁw E eff
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where a, (=e?/#c) is the fine-structure constant,
#iw is the energy of the photon, » is the frequency-
dependent refractive index of the semiconductor,
and p(E;) is the density of the continuum states at
the band energy E;, at which the transition takes
place. The subscript of the matrix element indi-
cates average over all degenerate states including all
photon directions. Here the direction of the z axis
is chosen along the photon polarization direction.
The factor E5/E, is the so-called effective-field
ratio, which takes into account the fact that the
electric field E.g, which is effective in inducing a
transition, is different from the average field E, in
the medium.!! The momentum matrix element be-
tween the initial and the final states ({i|p,|f))
can be written in terms of the position matrix ele-
ment ({i |z | f)) by the relation

[€i|p, | £)|2=mY0? | (ilz|f)]?. )

Ridley’ has correctly pointed out that the mass in
Eq. (2) should be the effective mass. There are
many calculations where this point has been
neglected. Kohn has discussed this point in his re-
view article.'?

Thus we obtain

2
4ra5tio [Euq |* | mt
olhio)=——— [== [——‘] KUENAIF
Eo m
Xp(E;), j=if . 3)
Our task is then to calculate |{i|z]|f) |2, for
the  general case.  Since | {(i|z|f)|?

=|(f|z]i)|% we can use the initial and final
states interchangeably and we arbitrarily consider
the impurity state to be the initial state (denoted by
1) and the continuum state to be the final state
(denoted by 2).

B. Bound-state wave function

For simplicity we will assume that the bands are
nondegenerate at their extrema, unless otherwise
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stated. In the effective-mass approximation the
impurity-atom wave function i may be written as
an envelope function F modulated by the Bloch

wave u(Eo,f’)e'ko'r, where u(fc}{r’) is the cell
periodic function and Ko is the wave vector at the
relevant band extremum.!? The envelope wave
function satisfies the hydrogenlike effective-mass
equation'?
# o e 0
o ~Xr e |F=0, (4)

where m7 is the effective mass corresponding to the
appropriate band, K is the dielectric constant of the
crystal, and € is the energy eigenvalue. Since we
are interested in the ground-state wave function, we
restrict ourselves to the case of S-like states. Then
we write the envelope wave function'’

F — 2 e—-r/na’f
" Vg (nat )

X Fi(1—n;2;2r /na}) , (5)

where F; is a confluent hypergeometric function,
n (=1,2,...) is the principal quantum number, and
a} =K#*/m’e®. The energy eigenvalues are given
by

mie* 1

K 2n*

The true ground-state binding energy €; is gen-
erally larger than |€9|. In the QD method, to ob-
tan an empirical wave function which would yield
the observed binding energy €; (measured from the
associated band extremum), the eigenvalue —€%is
replaced by €; in Eq. (4). Hence the integral quan-
tum number » has to be replaced, in general, by the
nonintegral defect quantum number v, such that
4

€ |

(6)

miet 1 |€f|

K*# 2wv? v?
Replacing 7 in Eq. (5) by v would yield an unnor-
malizable wave function which is irregular at infini-
ty. But writing F; in terms of the ,F, hyper-
geometric functions, we obtain a wave function
which is irregular at the origin, but normalizable.'*
With the exact normalization the QD function F,
may be written as'’

2v 1
C VAg (val ) t12 Tv+1)

(7)

€r

v—1, —r/va¥

F, |[D(v)|r

(8a)
and
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¢V=Fvu1(f€0’?)eik0'r s (8b)
, where
|ID(v)| =—"—
| sinvr |
—1,2

1 & 1
X |72

e (v—m —1)Xv—m)?

9)

The formal hypergeometric series for ,F, provides
an asymptotic series for 2 >>va and since the im-
portant region contributing to the transition matrix
element is the large-r region, we have retained in
Eq. (8) the leading term of ,F,, which is unity. We
also note that ,F is exactly unity when v—0 or 1.
In the limit of v approaching an integer the factor
| D(v)| approaches unity. Another interesting lim-
it is that in which the binding energy remains fixed
while v—0.1> In this limit the charge e and hence
Coulombic part of the potential vanishes with the
binding energy maintained at a given fixed value by
the short-ranged potential. This is the case of the
so-called 8-function potential and the wave function
given by Eq. (8) reduces to that for the 8-function
potential with the correct normalization. We will
utilize this wave function in calculating the transi-
tion matrix element.

C. Continuum states

The band energy 62(1—{) at which the transition
occurs is related to the photon energy #w, by

€,(K)=%iw —¢; (10a)
for photoionization and
 eK)=tw—ete (10b)
for band -impurity transitions,

where ¢, is the band gap. Note that for the valence
band as well as for the conduction band, this energy
is positive as k increases, in this convention.

Neglecting the effects of the impurity potential
on the continuum states, the final states are simply
the Bloch states,

(r|fy=e'¥ Tuy(k,T). (11)

Since the functions u are cell periodic, they can be
expanded as
i

w(K, ") = a;(K+Kpe' “1' 7, (12)

where the Ki ’s are the reciprocal-lattice vectors and

j is the band index. We will need this expansion

later.
In our calculations we assume a parabolic band
structure;
o #k?
€ z(k)z ¥
2m2

(13)

D. Calculation of the matrix element
and the general formula

With the initial and final wave functions given by
Eqgs. (8b) and (11), the matrix element can be writ-
ten explicitly as

(ilz|fy=[ % Tu3(K,Pu,(0,7)
xzF,(T)d’r . (14)

We have taken the extremum position of the band 1
to be at Eoi—o, without any loss of generality. For
the case of k=40, the calculation is similar. Using
the expansions of u, given by Eq. (12), we obtain

(i1z|f)=[ e T2F, (Dpn(K)

+2’B;jei-ﬁf"?d3r , (15)
ij
where
K;=K;-K;, (16a)
pan(K)= a3 (K+K)ay(K,) , (16b)
i
Bij=a;(E+I_{i)al(Kj) ) (16¢)

and the prime on the summation of the second term
indicates that i5~j. The second term is the so-called
umklapp contribution. It can be easily shown that
p2i(k) is the overlap integral of the cell periodic
function at k of the band 2, and the cell periodic

function at k =0 of the band 1,1ie.,

3
‘2;;’ [, w3 Ko 0pd,  an
where  is the volume of a unit cell of the crystal.
To reduce Eq. (15) to a one-dimensional integration
we separate the angle-dependent part in exp(iK - T)
by using its well-known expansion in terms of the
spherical Bessel functions j;(kr),'

#21(E)=

-

e ik T4y

I

1
3 (—i)ji(kr)
=1

m=—

xXY'(0,6) YK, (18)



where k is the unit vector along k and 6,4 are the
polar angles of T. Since z =(47/3)"/%rY%(8,9), if
we perform the angular integration in Eq. (15), only
the / =0,m =0 term survives because of the ortho-
gonality relations of the spherical harmonics Y/"’s.
Averaging _ over all  directions of k
li.e., (47)7! f dQ 1], and also over the spin degen-
eracies assuming that no spin flip occurs in the pro-
cess,” and performing the r integration, we finally
obtain

27-,- 2%(va})’ | D(v)?| flyy)
y1(1+y )v+1

X[ pa(K) |2+ By(K)],  (19)

itz | f) o=

where
2
f(y,)=cos?@ sin(v +1)0 —(v+1)cos(v+2)0 | ,
sinf
(20a)

in which

6 =arctan (1/y;) (20b)
and

y1=(kva})?. (20c)

B, is a quantity much smaller than |u,, |2 B, is
explicitly written down in the Appendix. In averag-
ing over the directions of k we have assumed that
,u21(k) is isotropic. Neglecting the umklapp contri-
bution, we write our general formula for the transi-
tion cross section, with the use of Eq. (3),
2

eff ? mi
‘Eo

81T aoﬁw
3n

o

m

2%(va})® | D(v) | 2f (p1) | pa(K) | 2
X 1
yi(14p )

Xp(E;), j=12. 1)

E. Calculation of |py(K)|?

The quantities p;( K) may be computed by utiliz-
ing the pseudopotential form factors given by
Cohen and Bergstresser,'® and more recently by
Chelikowsky and Cohen.!” The Schrodinger equa-
tion with the pseudopotential for a perfect crystal
may be written as the matrix eigenvalue equation

S 4a(k+K;)=ea(kK+K;) , (22a)
J
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with the known matrix 4;; given by

-

2, . N
Aii=‘2%(k+K:)28.~,-+V(K,~—K,-). (22b)

The Bloch functions have been expanded according
to Eq. (12). The quantities V(K,~) can be broken
into a symmetric and an antisymmetric part, and
each part is a product of a pseudopotentlal form
factor and a structure factor.! Diagonalizing this
matrix we obtain the eigenvectors a,,(k+K ) and
the corresponding eigenvalues €,(k k) for a glven k.
With the appropriate eigenvectors chosen, it is then
straightforward to compute various |u,(k)|? us-
ing Eq. (16b). The dimensions of the matrices are
restricted in our numerical calculation such that
Iﬁi—ﬁjl <V11(27 /a). The contributions from
higher reciprocal-lattice vectors are small and can
be added, as was done in Ref. 16. By neglecting
this small contribution we obtain fairly good agree-
ment with previous results,'® and so we believe that
our computed values of |uy |2 are not affected
much by the truncation of the matrix. We have
plotted |, |* and |u, |2 as functions of the band
energy €.(k) (Fig. 2). For i=j, |u| differs from
unity in the second-order perturbation term which
is ~O(k %), Since this contribution is negative,'®
|pii |2<1. Our computed values of |p|? agree
with the analytical result for small K. An analyti-
cal form for {;; obtained by the k- P perturbation
method is'®

[Jv,'j(E)—_—S,-j + —ﬁ_{ K

f)),'j/[fi(O)—‘
m

X(1=8) (23)
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FIG. 2. Squares of the overlap integrals |u, |2 and
| ey | 2 for GaAs, appearing as a factor in the photoioni-
zation cross section (see text) versus the conduction-band
energy €. in eV. Solid line represents calculation using
pseudopotential form factors described in Sec. II E of the
text and the dashed line is from the k - P perturbation.
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where P;; is the usual momentum matrix element
between the two Bloch states of bands i and j at ko.
This is, of course, valid only for small k.

III. SPECIAL CASES
A. Photoionization

As we have described earlier, in the case of pho-
toionization only one band is involved. So we re-
place both of the indices 1 and 2 by b which denotes
the relevant band. The density of states, including
the spin degeneracy, is
3/2

2my PV 172
| €5(k) | . (24)

ﬁZ

_2
(2)?

P(Eb):

On substitution of this expression for p, and after
some manipulation, we obtain the photoionization
cross section

2

2 *
my

E

E,

477'(10

olfiw)= n

m

2%(vay )| D(v) | *f (py)
v +yp)¥

X | poop(K) |2 . (25)

The quantity y, is related to the binding energy ¢;
by the relation

#iw —€7

b= (26)

€1
Before comparing our formula with the correspond-
ing formula [Eq. (57)] of Ref. 5, we note that some
errors have occurred in the latter. First of all, there
is an extra factor of v. This can be easily seen to be
incorrect. If the limit is taken as v—0 with the
binding energy held fixed (or equivalently
vay =const) we find that 0—0 instead of reducing
to Lucovsky’s formula. Of course, this is correct
for v=1. Second, the expression for f(y) is in-
correct. The correct form is given in Eq. (20a) of
this paper. Third, we have already mentioned about
the factor (mj/m)?, which is missing. Here we
would like to point out that for acceptor photoioni-
zation, the calculation becomes somewhat more in-
volved because of the valence-band degeneracy.
But, writing the acceptor wave function as a sum of
effective-mass-like wave functions for each band,
the calculation proceeds in a straightforward way.
Figure 3 compares the photoionization cross section

2

Ho /€
] 2 3 4 5 6
T T T T T T

B — -~ EXPERIMENT 1
<~ — QD MODEL
N \ —-— 8-FUNCTION MODEL
Y .

N

PHOTOIONIZATION
CROSS SECTION (16'€¢nt)

of 02 03 04 05 06
PHOTON ENERGY taw (eV)

FIG. 3. Photoionization cross section o versus the
photon energy for the manganese impurity in gallium ar-
senide. The values of the effective-field ratio obtained by
fitting the maximum values of o are 2.7 and 4.9 for the
QD model and the 8-function model, respectively.

given by Eq. (25) with the experimental data for the
acceptor Mn in GaAs.!” We have avoided the com-
plexity of calculation arising from the valence-band
degeneracy by considering the average effective
mass to be 0.33, corresponding to the acceptor bind-
ing energy ~29 meV obtained from the HEMT for
degenerate bands. The quantity |us, |2 has been
set equal to one. The quantum defect (correspond-
ing to the binding energy 0.11 eV) is 0.52. Even
without introducing the complexity of the degen-
erate valence bands, but simply incorporating their
effects through a single average effective mass, we
find that the theory is in excellent agreement with
the experiment in predicting the peak position, in
contrast to either the hydrogenic or the 8-function
model. It is possible that away from the band ex-
tremum, the heavy hole valence band is the dom-
inant one, and, accordingly, the cross section is
higher than that calculated with the average effec-
tive mass. This may, at least partially, account for
the underestimation at higher energies. The
theoretical curve has been adjusted such that the
maximum value of the cross section is the same as
that of the experiment. From this fit we have ob-
tained the effective-field ratio (E;/E,) to be 2.7.
In the same figure we have also shown the curve for
the 8-function model. For the §-function model,
the value of the effective-field ratio is 4.9.

Let us now examine the following two limiting
cases.

(i) First, we consider the limit v—0 while keep-
ing the binding energy fixed at a given value (i.e.,
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vay is also fixed). Noting that

4 2

fim f (p,) = ——0— (27a)

v—0 (1+yb)
and

lim |D(v)|?=2, (27b)

v—0
we obtain

12
m
o5 (Fier ) = 16me*# eff my
3nmjc | Eo m

172
61/ (ﬁa) — €7 )3/2

7o)} | op (Fieo —€p) | 2

(28)
This is exactly the formula obtained by Lucovsky
for the 8-function model except for the factor of
(mg /m)* and |y |2=1.
(ii) In the hydrogenic limit, i.e., v—1,

lim f(yb)=ﬂé7 (29a)
vl (1+ys)

and
lim |D(v)|*=1. (29b)

We obtain the photoionization cross section,

2 * )2

mp

m

28724

3nmgc

eff

O'H(ﬁa))'—_ E
0

(#iw — )32}

(Fiw> )° |.“bb(ﬁ60—61)|2

(30)

In the limit of v—1, oy has its maximum at
#iw=10¢; /7 and for #w >>€;, oy falls off as
(#w)~7/2, in contrast to the maximum at #iw =2¢;
and falloff at large #w as (#iw)~>/? in the 8-function
model. For the free hydrogen atom, on the other
hand, the maximum occurs at #iw =¢€; and falloff
for large #iw is as (#iw ) ~>.

B. Band-impurity transition

In this case both the conduction and the valence
bands are involved. Let us specifically consider
transitions between an acceptor state and a
conduction-band state. For transitions between a
donor and the valence-band state, cross sections can
be obtained similarly. We replace the index 1 by v
for the valence band and 2 by ¢ for the conduction
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band. Because of the degeneracy of the valence
band at k,, we have to keep in mind that the quan-
tity | (i|z|f)|? has to be averaged over the de-
generate bands. Even in the effective-mass approxi-
mation, calculation of the acceptor impurity wave
function is a very complex problem due to the de-
generacy of the valence band. For some realistic
calculations of acceptor states see, for example, Ref.
20. We avoid such complexity by assuming that the
ground-state wave function is obtained by summing
over the products of Bloch functions at E(,:O and
the envelope function for each degenerate band at
ko,

3> (0, T)FL(T), (31)

where d is the number of degenerate bands at the
band extremum and the F.(T) are the ground-state
envelope functions. We also make the assumption
that the different effective masses for the different
degenerate valence bands can be approximated to a
single average mass, which one can take to be that
obtained from the effective-mass binding energy.
One can, of course, do without these approxima-
tions following a similar procedure, but with more
complexity. We have

2

d —
> walk) (32)
=1

— 2__]_
| Heo(K) | =

This quantity for GaAs has been calculated in Sec.
IIE.

Writing the density of states p(e,) as
3/2

2
el le ', (33)

_2
(2m)?

ple.)=

we obtain the band-impurity transition cross section

from Eq. (21),
2
m? m? 172
m my

|2f(yu) _ﬁa)_
14y, )" +! €r

2
47Ta0

3n

E
E,

olfiw)=

2™(vay )* | D(v
1/2(

X | pep(K) |2 (34)

The quantity w, appearing in the photoionization
cross section [Eq. (25)] is approximately equal
to unity for small K, since the first-order perturba-
tion term is zero. Hence, at least for small k we
obtain an analytic formula for the photoionization
cross section with |y, | 2~1. It is also desirable to
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obtain such an analytic form valid at low energies
for the band-impurity transition.

From Eq. (23) and again with the assumption
that_p’c,, is isotropic, we obtain a relation between
/J‘cv(k) andpcv:

#k?

Y [Pe | % (35)
g

|':u'cu( k) | =
The momentum matrix element p.,, may be written

in terms of the band gap and effective masses by us-
ing the formula for effective mass,'®

m 2 d |Pcl | 2
—14=3 —L
T 20—

(36)

Neglecting the spin-orbit splitting and using the re-
lation |p,; | *= | p.; | * obtained by Kane,*' we have
2 .
€,m
2 Cg
~ , (37
|Pev | "7 i

where 771, is given by

s (38)
mC mC
Equation (37) was derived by Bebb.® Using Egs.
(35) and (37), we finally obtain
*
1 me

— m
K)|2=——
,.u'cv( )l 2d mc Eg

€
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L m e

_— . 39
2d im, egy" (39)

The quantity |p.,(K)|? is equal to zero at K =0,
since €, =0. This can also be shown to be an exact
result from the orthogonality of the u’s.

A dashed line in Fig. 2 represents the plot of Eq.
(39) for GaAs. From this figure we can see that
|ty | * obtained from Eq. (39) agrees well with that
obtained by the numerical method for small values
of €. Thus we write the cross-section formula
which should be valid for small energies,

(fiw )= 2mag [Egr || md mEmy '
g " 3dn E, m mc2
2%(vay )2 | D(v) | 2 (p,) 172 i (40)
(14p,)*+! P e

To our knowledge, experimental data for band-
impurity transitions with which direct comparison is
possible are not available. We have plotted o for
GaAs versus the normalized band energy x =¢,/€;
for v=1.0,0.9, 0.6 (Fig. 4). In the inset of this fig-
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NORMALIZED ENERGY €./€]

FIG. 4. Normalized band-impurity transition cross
section for GaAs [0/(4maay’/3)F] vs the normalized
band energy (€./€;). Dashed lines are from the analyti-
cal result [Eq. (43)] and the solid lines are from the more
accurate results [Eq. (37)] for different values of v (i.e.,
different values of impurity binding energies €;). All
curves are terminated at a value of e,=1eV.
F=(E4/Eo)*/n. o for v=0.6, 0.3, and 0.0 has been
multiplied by 2.

ure is shown o versus x for v=0.3 and for v—0.
For v—0, the binding energy is fixed at a value
given by v=0.3. To fit in the same scale we have
multiplied o for v=0.6, 0.3, and v—0 by a factor
of 2. The solid lines are obtained from Eq. (40) and
the dashed lines are from Eq. (34).

In the hydrogenic and the 8-function limits, Eq.
(40) reduces to the following forms.

(i) In the 8-function limit, i.e., v—0, while keep-
ing the binding energy ¢; fixed, we obtain [with the
use of Eq. (30a)]

172
4met |Eer || m mgm,
Os (#iw )= - 2
3dnm, | Ey m m
%7t

(41)

(1+y,)* €16~

(ii) In the hydrogenic limit, i.e., v—1, we have

2 2 172
oo (Fitr ) = Bt |Eer || me | | mimy
" 3dnmyc | Eo m m?
%" o
TR . (42)
(14y,)° €16
Note that y, can be written in terms of #iw as
m} #o+€ —€
Pp=———LE 43)
m, €r
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Comparison with the corresponding formulas given
in Ref. 5 shows that the dependence of o on #w is
quite different. In the hydrogenic limit our result is
also different from another corresponding calcula-
tion by Eagles,”> whereas agreement has been
achieved between Refs. 5 and 21. The origin of this
difference is the assumption in both Refs. 5 and 22
that the momentum matrix element between the
bound state and a Bloch function can be written as
the products of two integrals, one being the momen-
tum matrix element between the cell periodic func-
tions at the band edges and the other being the
Fourier integral of the impurity envelope function.
In the present calculation we have eliminated this
assumption. Note that in the photoionization
cross-section calculation the energy dependences are
not different from the corrected results of Bebb.’
This is due to the fact that, in this case, his:assump-
tion is not the same as in the band-impurity transi-
tion case, but is equivalent to simply neglecting the
umklapp contribution.

IV. CONCLUSION

In summary, we have calculated cross sections
for both photoionization and band-impurity transi-
tion in the QD model. We have presented a method
to compute the overlap integrals which may also be
of use for other purposes. We have also obtained
analytical results in which some crucial approxima-
tions of previous calculations have been eliminated.
This led to a quite different energy dependence of
the cross-section formula for the band-impurity
transitions, but similar energy dependence in the
photoionization. The origin of the different
behavior in the two cases is discussed in the previ-
ous section. Our formula for the photoionization
cross section has been shown to reduce exactly to
that of Lucovsky in the appropriate limit. Thus we
believe that our formula for the photoionization

6601

cross section has been somewhat improved from
previous calculations although not drastically dif-
ferent, whereas the band-impurity transition cross
section has been improved drastically. In our calcu-
lations we have assumed isotropic bands. For non-
isotropic bands, use of a single effective mass aver-
aged in a specific way may yield reasonable results.
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APPENDIX

The contribution B, arising from the umklapp
terms to the transition cross section [Eq. (20)] is
given by

R . gijdi;f_'_] 172
By(k)=2Re |u3(kK)S B;; | —LL —
2 21 Igj ij C,j+(1+CU)
v+1
gydi ™! 1+3¢;
+ 3 By P, (A1)
gj Tl g

in which
yi=(kva?})?,
yij=Kypval)l, yi=(|k+K;|va})?,
Cy=yi/yi s o =yi /y1,
1+ fi)
= Toy T

and B;; has been defined in the text. A rough es-
timation shows that B,; <0.05.
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