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Mean-field theory of multilayer physisorption. II. Thermodynamic functions
for He and He adsorbed on graphite
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Isotherms, isosteric heat of adsorption, and excess specific heat due to excitation into
higher bound states of the surface potential are calculated in mean-field theory for He
and He adsorbed on graphite up to and beyond the monolayer coverage for fluid adsor-
bates.

I. INTRODUCTION

The thermodynamics of He and He adsorbed
on the basal plane of graphite has been studied ex-
tensively, ' in particular, after it was found that
grafoil provided a sample with (a) a large surface-
to-volume ratio and (b) exceptionally uniform basal
plane surfaces. Isotherms, entropies, specific heats,
and heats of adsorption have been measured,
among others, as functions of temperature, ambient

gas pressure, and coverage.
In the theoretical attempts to understand the

He-C system two main thrusts have developed.
Following earlier work by Steele, Jackson, " and
others, Cole and co-workers ' have looked in de-
tail at the interaction of a single He atom with the
basal plane of graphite constructing surface poten-
tials

V,(r)=g V(r r;)—
that result from the two-body interaction V(r —r;)
of a He atom at position r and a C atom at posi-
tion r; in the solid. It turns out that apart from
small band-structure effects V, (r ) is essentially
dependent on the distance z of the He atom above
the surface plane, i.e., V, (r) = V, (z). The latter
develops five bound states for the He-C system
and three for the He-C system into which He
atoms can get trapped to form the adsorbate. Be-
cause the lowest two bound states are separated by
energies (e& —eo)/ks ——66 K for He-C and 72 K
for He-C, and because the spread of the ground-

0
state wave function is of the order of only 1 A, one

argues that for T & 10 K one can safely reduce the
problem to a two-dimensional one by ignoring (a)
excitations into higher bound states and (b) the
motion of adsorbed He atoms perpendicular to the
surface. For systems at low coverage (less than
half a monolayer) Schick and co-workers' have
developed a two-dimensional virial expansion from
which spreading pressures, specific heats, etc., can
be calculated that are in fair agreement with exper-
iment at low temperatures, T & 5 K. There are,
however, features of the He-C system that cannot
be understood in two-dimensional theories.
Foremost is the whole range of adsorption and
desorption kinetics for which the dynamic coupling
of the adsorbate to the solid and the gas phase
must be included. It also turns out that the two-
dimensional theories are not capable of reproduc-
ing experimental isotherms. In addition, an
Eucken-type specific-heat anomaly in He-C for
coverages 6 between 0.35 and 0.61 measured so far
for 6 K & T & 12 K due to excitation of He atoms
into the first excited state of V, (z) cannot be ex-
plained satisfactorily.

Therefore, we have recently developed a mean-
field theory of physisorption at finite coverages.
Although our main interest is in developing a ki-
netic theory of adsorption and desorption we
present in this paper a calculation of isotherms, ex-
cess specific heats due to excitations perpendicular
to the surface, and heats of adsorption.

Starting from a quantum mechanical many-body
Hamiltonian a variational calculation leads, for fer-
mionic gas particles, to the spin-averaged,
temperature-dependent Brueckner-Hartree-Fock
equations (details can be found in Ref. 8)
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r3, r4)[(2s+1)g, (r3)g,. (r4) —g,. (r3)g,. (r4)]=0,

where E,. and P, are the single-particle energies
and wave functions, respectively, s is the spin, and

E is Brueckner's K matrix. The thermal occupa-
tion functions are given by

n-;=[expP(E, —p)+1]

where p is the chemical potential per particle and
P= 1 lk&T. Because we assume that the gas phase
is very large (infinite), it controls p in equilibrium.
Thus if, away from the surface, the gas can be
described satisfactorily by the ideal gas law then

h I'
@=kgT ln

(27rm) (k T)

where L is the surface area, q =(q„,q~) is a two-
dimensional wave vector, r =(p,z), and i

=(q„,q~,i) with i enumerating the bound states
and the continuum. Inserting (5) into (2) and in-

tegrating out the lateral degrees of freedom one ob-
tains a set of one-dimensional integro-differential
equations for P;(z, q) which is still too formidable
to allow us a numerical solution. Two avenues for
further approximations are open: We can integrate
out the perpendicular degrees of freedom and ig-
nore all states except those with i =0. We then
have an essentially two-dimensional mean-field
theory that allows us to calculate self-consistently
the energy dispersion

=ks T ln(A, ,hP /ks T), (4)
E-, =e;(q)+ Aq

2@i

where I' is the pressure in the gas phase and k,~ is
the thermal wavelength. Virial corrections can be
included in (4) if necessary.

To decouple the mean-field self-consistency in
(2) from the Brueckner self-consistency in calculat-
ed E, one invokes a local density approximation.
Also one observes that as long as the adsorbate
remains fluid, one can assume that

P-, (r)=L '@;(z,q)e'q ~,

for i =0, assuming that all gas particles in the ad-
sorbate are in that state. This seems a very
promising alternative to the two-dimensional virial
theory and we will briefly return to it below. Fol-
lowing Ref. 8 we develop a different line of ap-
proximations that essentially replaces the nonlocal
E matrix by a local effective density-dependent
softcore two-body interaction between He atoms
within the adsorbate. This results for a highly
mobile adsorbate for which V, (r )

—= V, (z) in our
mean-field equations

d
2 + V, (z) —e;(q) 4;(z, q)

2tpl dz

+g z
dq' exp P ej(q')+ p +1

Aq'
(2~) 2m

X f «'@J(z',p') f dp Vrr(z —z', p)[(2s+1)4;(z,q)4 (z', q')+e ' q q '~4, (z', q)@J(z,q')]=0,
(7)

where the upper (lower) sign must be used if the gas particles obey Bose-Einstein (Fermi-Dirac) statistics.
Indeed, to a good approximation the factor

exp[ —i ( q' —q ).p]
in the exchange term can be replaced by one for a highly mobile adsorbate so that

d + Vg(z) e; 4;(z)—

+conj

f dz'V(z —z')4J'(z')[(2s+1)4;(z)C&J(z')+4;(z')@J(z)]=0,
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2 2 2~g I2 A'q
nj

—— gn-j=(2n. ) og qdq exp P e~+ —p +1 .

q

=+(2n) 'mk&TogR In(1+e ' "
)

and

V(z) = os I1p V,rr(z, p ), (10)

where os is the range of the two-body interaction V,ff(r).
Starting from a bare Lennard-Jones interaction

Vz(r) =4~g[(~g/r)" '(og/ —r)']
between isolated He atoms we have shown in Ref. 8 that (10) can be adequately parametrized by

V(z)=2~egz' [z' +Aos exp[ —(z/zl) ]] '[ —,(og/z)' —(cd/z) ], (12)

where a is of order 10 to 15, zl/os -0.8, and A is
a density-dependent parameter that can be calculat-
ed for fermionic gas particles from Brueckner
theory. Note that V(0) =4~as/5A is finite. A
similar effective two-body interaction has been
used in a mean-field theory of He by Bernardes
and Primakoff and is discussed by Brueckner and
Frohberg. '

In Ref. 8 we have solved (8) numerically for a
number of model systems to study the dependence
of the single-particle energies e;, the wave func-
tions 4;, the coverage, and the adlayer positions on
the potential parameters in V, (z) and V(z) and on
the particle statistics. We will now use the self-
consistent solutions of (8) to calculate the iso-
therms, excess specific heats, and heats of adsorp-
tion for He and He adsorbing on graphite, re-
turning only briefly to (7) and (2) to look for
correction terms.

II. ISOTHERMS

A. He on graphite

We begin with the isotherms for He adsorbed
on graphite. The relevant experiments on grafoil
have been reported by Elgin and Goodstein. For
a mean-field calculation we must specify the bare
surface potential V, seen by a single He atom in
front of a bare graphite surface. Although it is
known by now that there is a small lateral varia-
tion in V, along the graphite surface leading to
band-structure effects, we begin with the simpler

laterally averaged zeta potential [for which the
underlying He-C interaction is of the Lennard-
Jones type (11) with parameters e, and o;]

V, (z)=2me, o,c,a, 'd,

X [ , (~, /d, )'g(—Io,z/d, ) g(4,z/d, )]—,

where

g(n, x)= Q (j+x)
j=o

(14)

is a Riemann zeta function. d, is the distance be-
tween crystal planes and n, =c,/a, is the average
lateral density of the basal plane whose two-di-
mensional unit cell of area a, contains c, atoms.
For He-C these parameters are e, /ks =16.23 K,
o;=2.74 A, d, =3.37 A, c, =2, and a, =5.24 A.
This potential reproduces the experimentally deter-
mined single-particle energies fairly well.

The parameters eg and O.
g in the effective two-

body interaction V(z) in (12) are known from the
underlying Lennard-Jones interaction between two
isolated He atoms to be es/ks ——10.22 K and

og ——2.556 A. The parameters A, zl, and a deter-
mining the soft-core repulsion are less certain. We
have shown in Ref. 8 how they can be determined
for a system of interacting fermions by Brueck-
ner-type calculation. For two He atoms interac-
ting in a He fluid of liquid density we found
that zI -0.8o.g, a = 15, and A =1.7 which gives
V(0) = —1.5 V (z =z;„),i.e., a repulsion at z =0
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that is as high as the attraction is deep at z =z;„.
We also saw that V(z =0) varies roughly linearly
with density up to liquid density. In solving (8),
self-consistently, we therefore fix A at each cover-

age such that V(0)= —0.2V (z =z;„)at 8=0 ris-

ing linearly to V(0) =—1.2V (z =z;„)for 8) 1.
As argued in Ref. 8 a similar effective interaction
can be assumed in a mean-field theory of interact-
ing He atoms.

In the upper panel of Fig. 1 we plot the single-

particle energies e; =e;(T) for adsorbed He atoms
as calculated from the Hartree-Fock equations (8).
As the adsorbate builds up at fixed P by lowering
T, the single-particle energies move up to avoid
crossing the chemical potential p and thus to keep
the single-particle occupation functions (9) for
Bose-Einstein statistics finite. The center panel of
Fig. 1 gives the adsorption isobar 8=8(T) where
the coverage 8 is calculated from the occupation
functions n; in (9) by

n.
I

n -, (max)

'Ii q=(2ir) 'g[n;(max)] '
qdq exp P e;+ —p —1

0 2m
L

(15)

—50-

e; (K)
—100-

—150-
1.0

fp

where n;(max) is the maximum occupation in the
ith layer. The lower panel in Fig. 1 gives the mean
position of a He atom trapped into the ith bound
state

z; =I 4; (z)z dz .

A good overall picture is given by the effective
coverage-dependent surface potential, as introduced
and discussed extensively in Ref. 8,

V, (z,8)=V,(z)+V r(z, 8), (16)

where V, (z) is the bare surface potential seen by a
single He atom and V r(z, 8) is the mean-field
potential generated by all other He atoms already
adsorbed. A perspective view of V, (z,8) over the
(z,8) plane is given in Fig. 2.

In Fig. 3 we present the isotherms 8 vs
(T logioP) as calculated in our mean-field theory
for the above potential parameters. The experi-
mental curves are taken from the work of Elgin
and Goodstein. Starting at high temperatures we
find remarkable agreement of the T = 12 K and
T =15 K isotherms. %e want to stress that with
the above identification (12) of the effective in-
teraction between He atoms, our mean-field theory
is parameter free. We should, therefore, examine

0.8-

0.6-

OA-

0.2-

Z; (A) 4

2-

0 I I I I I

0 2 4 6 8 10 12 14 16 18

T (K)

FIG. 1. Lowest three single-particle energies e; from
(8), coverage 8 from (15), and mean positions z; for
4He-C at P =1.33 Pa. Chemical potential p from (4).

FIG. 2. The average coverage-dependent surface po-
tential (16) for 4He-C.
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FIG. 3. Isotherms for He-C. Dotted line: experimental data by Elgin and Goodstein (Ref. 7). Dashed line: virial
theory from (17) and (18). Solid line: mean-field theory (15). Hatched areas indicate regions where He exists in a
solid phase or a registered lattice gas on graphite.

critically how great a success this agreement really
1s.

Langmuir and BET-type isotherms appropriate
in gas-solid systems with localized adsorption are,
of course, inadequate for the He-graphite system in
which adsorbed He atoms are highly mobile.
However, the two-dimensional virial theories allow
.the calculation of an isotherm for low coverage.
One inverts the virial expansion for the chemical
potential p2, the subscript "2" indicating the two-
dimensionality of the theory,

pi ln(A, ,g en,„—)—

2mmk~ T p(, „)ln(1 —e 0 ").
nmax

(19)

Recall that the chemical potential, given in (4), is
controlled by the gas phase. The input into (19)
from our mean-field theory is thus the binding en-

The agreement between the mean-field theory
and experiments becomes increasingly poorer as we

go to lower T. To understand this trend we have
examined the T =4.5 K isotherm carefully. At
such low T only the i =0 term (ground state) con-
tributes in (15) which thus reads

+ g I '(I +1)Bi+,(P)(en,„),
I=1

(17)

0
where n,„=0.115 A is the monolayer density
for the He-C system, A,,h is the thermal wave-

length in (4), and Bi+i are virial coefficients. To
introduce the pressure of the ambient gas above the
graphite surface one identifies

p2=p —E'p
~

where p is given by (4) and eo/ks ———140 K is the
(experimentally determined) energy of the lowest
bound state in the surface potential V, (z). The re-
sulting isotherms are indicated in Fig. 3. They are
obviously too steep demonstrating the importance
of the substantial rise in the bound-state energies e;
as the coverage builds up. Indeed the virial correc-
tion is negligible for all examples shown.

eo eo(T,P) . —— (20)

To find out how accurately eo must be known to
reproduce the T =4.5 K isotherm with an expres-
sion (19) we have used the latter to extract eo (expt)
from the experimental data. As we see from Table
I E'0 (expt) is within 2% of p for coverages 6)0.1.
This is also the case for the eigenvalues eo (theory)
as calculated by mean-field theory. However, eo
(theory) and Ep (expt) differ by about 1%. This
difference of course is magnified significantly in

(Eo p) leading—to the discrepancies in the iso-
therms. To remove it the theory should be able to
determine ep to better than 1%, as a direct calcula-
tion of (Eo—p) seems not possible. Note from
Table I that at higher temperatures (eo—p) is
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TABLE I. Data on two isotherms for He-C. Experimental data by Elgin and Goodstein
(Ref. 7) are analyzed with (19).

T
(K)

P
(Pa)

T log ~OP

(Torr)

4.5 0.133X 10 —54
0.133X10-' -49.5
0.133X 10-' -45
0.266 X 10 —43.66
0.133X 10 —40.5
0.399X 10 —38.36
0.133X10 ' —36
0.133X 10 —31.51

e,„„,
0.3X10-'

0.12
0.42
0.53
0.599
0.67
0.69
0.74

etheor

0.24X 10
0.23X10-'

0.15
0.21
0.35
0.433
0.51
0.65

p /kg
(K)

—164.08
—153.718
—143.35
—140.234
—132.99
—128.04
—122.62
—112.26

—150.76
—146.65
—140.797
—138.23
—131.26
—126.59
—121.189
—111.01

—139.86
—139.63
—137.19
—135.35
—129.8
—125.49
—120.54
—110.74

eo/kg (K)
Expt. Theor.

12 0.366
0.998
2.66

11
26.6
80
133
266
399
1330

—30.738
—25.508
—20.396
—12.995
—8.391
—2.65

0.0
3.614
5.728

12

0.14X 10
0.28 X 10
0.696X 10

0.15
0.33
0.48
0.55
0.6
0.64
0.737

0.55X10
0.15X 10-'
0.394X 10

0.143
0.26
0.43
0.51
0.6
0.66
0.806

—206.128
—194.085
—182.316
—165.274
—154.673
—141.45
—135.35
—127.03
—122.16
—107.708

—150.76
—147.03
—146.09
—137.94
—136.16

126.7
—121.93
—114.5
—110.22
—97.08

—139.82
—139.71
—139.42
—137.4
—133.61
—125.63
—121.14
—114.5
—110.42
—97.76

much larger so that the accuracy of about 1 —2 /o

with which mean-field theory seems to determine
the eigenvalues eo is sufficient to reproduce the ex-

perimental isotherms for 8 & 0.7. The bending
over of the isotherms at higher coverages in Fig. 3
is not followed too well by our theory though the
typical S shape is reproduced. But note that, e.g.,
for the T =9 K isotherm at T log, oP =0 to pull
the theoretical coverage 8=0.87 down to the ex-

perimental value 8=0.8 requires a raising of eo

(theory) by only 5%.
Using (19) to extract energy eigenvalues eo

=Eo(T,P) from the experimental isotherms leads in
the low-temperature —low-coverage regime to a
confirmation of the fact that a small fraction of
He gets adsorbed into well localized adsorption

sites at corners and steps in the grafoil surface.

Table I shows that, e.g., on the T =4.5 K isotherm
for 8 &0.1 eo drops down to about eolkq = —150
K, in good agreement with the binding energy of
localized states determined from data on the entro-

py, the specific heat, and the chemical potential.
Recall that the binding energy for mobile states as
determined by scattering from zero coverage sur-
faces is only eo/ks ———140 K.

The problem is left to correct the low tempera-
ture isotherms. Just adding the virial corrections is
not enough. %'e have indications that the answer
will come from the dispersion in e;(q) in (6) which
we neglect completely in (8). In a preliminary cal-
culation we have kept the term exp[ —i (q' —q) p]
in (7). Retaining at low temperature the terms
with i =j=0 only, we multiply (7) by C&o(z, q ) and

integrate over z to get

r

eo(q)=so+ q'dq' exp p eo(q')+ —p .+1
fi q'

2'

X f dzdz'Co(z q)4o(z q ) IpdpV«r(z —z', )p[(2 +&1)+jo(qp)jo(q p)], (21)

where jo(y) is a sPherical Bessel function.
Fitting a Gaussian to the density 4o(z, q), as cal-

culated from (8), one finds that the integrations
over z to z' do little more than replace

I

V ff(z —z',p) by V,rr(0,p). With this approxima-
tion we solved (21) self-consistently and found that
eo(q) drops by a few percent with increasing q.
The resulting coverage calculated from (15) turns
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out to be too large now for all temperatures. This
is not surprising because in going from (2) to (7)
(for fermionic gas particles) we have dropped
higher partial wave contributions in the K matrix
which are known" to be repulsive. Also, in addi-
tion to the explicit q dependence in the exchange
term in (21), there are similar factors present in the
direct term in (2). We hope to investigate a disper-
sion relation like (21) derived directly from (2) in
the near future.

As our theory is so far developed for highly
mobile adsorbates only, one expects some difficul-
ties close to the gas-solid and gas-(registered gas)
transitions. We are currently working to extend
our theory into these regions using the approach
outlined in the Appendix of Ref. 8. This also
seems to become important in view of the band-
structure effects found by Carlos and Cole. '

These authors calculated the single-particle density
of states for He and He adsorbed on graphite in
the zero coverage limit, i.e., neglecting the He-He
interaction completely. They found that the den-

I

q(C) 2 2

nj =2(2~) os qdq exp P e + —p,
J fi q

g p 2m

sity of states develops a gap of 11.1 K &E/kz
& 17.5 K for He-C and at 17.2 K &E/ks & 21.4
K for He-C. We have incorporated an ap-
proximate parametrization of their density of
states into our mean-field equations (8}. The low-

temperature isotherms are not effected at all; the
T =12 K and T =15 K isotherms are slightly de-

pressed. However, some cautionary comments are
called for at this stage, because the above band
structure is calculated at zero coverage. One
would expect considerable modification as the cov-

erage builds up which could be incorporated in a
mean-field approximation. Such a calculation has
not been done to date.

B. 'He on graphite

Before we discuss the isotherms for the He-C
system we point out that for Fermic-Dirac statis-
tics monolayer saturation can be easily incorporat-
ed into the occupation functions (9) by introducing
a momentum cutoff qj" such that

(c)

=(og/k, h) ln (1+e ' "
) '1+exp —P g. —p+ (22}

which would lead at zero temperature to a two-

dimensional number density qj' /2~ in the jth ad-

layer which should be equal to n,„=0.107 A
We have calculated the thermodynamic functions
of the He-C system from (8) without a cutoff and
with a cutoff in the occupation functions.

In Fig. 4 we give the single-particle energies e;,
the coverage 6, and the adlayer positions z; as a
function of T for a fixed pressure P. Contrary to
the He-C system the single-particle energies e; can
now cross the chemical potential p without intro-
ducing a singularity in n;. Without a momentum
cutoff the occupation of the lowest bound state ep
rises continuously and, indeed, above the experi-
mentally known saturation density n,„=0.107
A of the first monolayer. Introducing the
momentum cutoff via (22) avoids this situation
and, indeed, flattens e=e(T) for T & 7 K down to
T-3 K below which a second layer starts to fill
up. Although this is a nice qualitative feature it is
not too meaningful to He-C because the adsorbate
undergoes a gas-solid phase transition in this tem-
perature regime which cannot be handled by (8).

e; (K)

—50-

—100-

—150-
2.0

.8~ . ~ ~. . ..~. ..~ .
C ~ ~ ~ ~ ~

p

~ ~ ~
Gp

1.5-

8 10- ~ ~ ~ ~ ~

0.5-

0.0

6-
4-

—;(A)

~ ~ ~ ~
~ ~

~ ~ ~ ~ ~ ~ ~ ~

0 2 4 6 8 10 12 14 16 18

T (K)

FIG. 4. Lowest three single-particle energies e; from
(8), coverage 8 from (15), and mean positions z; for
He-C at P =1.33 Pa. Chemical potential p from (4).

Solid line: without a cutoff in n;. Dotted line: with a
cutoff in n; according to (22).
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In Fig. 5 we present some isotherms 6 vs
T log ioP, again calculated with and without a
momentum cutoff, to be interpreted as lower and

upper bounds. Also given are the isotherms as cal-
culated from the virial expansion' of the chemical
potentials (17) and (18) keeping eo/kz ———135 K
fixed. Unfortunately we have not found any mea-
sured isotherms for He-C in the literature with
which we could compare our theory.

III. SPECIFIC HEAT

A. He on graphite

2&1?lkg T

in(y + 1)
P(c,.—Jt4) 3'e

lny

/+1
(24)

(25)

To calculate the specific heat at constant area or
adsorbate density

d SP—
dP Nkg

we must fix the chemical potential p for N ad-

sorbed particles via

Within the mean-field theory the entropy of a
system of particles obeying Bose-Einstein statistics
is given by

S/kz ——g(l+n-, )l (nl+n-, ) —gn-, lnn-;
or

$2q 2

N=g exp P e; —p+
2@i

i, q

(26)

where the single-particle energies are

2

E, =e;(q)+
2m

(23)

In arriving at the one-dimensional Hartree-Pock
equations (8) we have neglected the q dependence

of e;(q) in order to perform an average over the
lateral degrees of freedom of the adsorbate parti-
cles along the surface. Within this approximation
we can evaluate (23) and get

The specific heat (25) as calculated from (24) and

(27) does not include the two-dimensional virial

corrections calculated by Schick and co-workers'

but accounts properly for the possible excitation of
gas particles into the higher bound states e; in the
effective, coverage-dependent surface potential (15),
i.e., for the perpendicular degree of freedom of the

adsorbate. The latter can, of course, not be includ-

ed in a two-dimensional theory. Elgin and Good-
stein have identified this contribution by subtract-

1.0
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T= 15K T= 12K

~ ~

4

0.4-

0.2-

0.0
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0.8-
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~ ~ I

T = 4.5K

0.4-
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-20

T Iog]p P (tol'l)

20 —40

T Iog1p P (torr)

I

20

FIG. 5. Isotherms for He-C. Dashed line: virial theory according to (17) and (18). Dotted line: mean-field theory

with cutoff. Solid line: mean-field theory without a cutoff.
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hC =C(expt) —C(2D) .

They have then argued that hC is mainly deter-
inined by the first excited state e~ so that, in the
classical limit, it is given by the Eucken formula

I 2
(ei —ep)/2k' T

hC=
c os h[(Ei —Ep)/2k' PJ

(29)

Trying to fit their experimental data for 0.35 & 8
&0.61 they are led to identify7

(Ei ep)/k—~ ——54 K for 0.35&8&0.61 .

ing from their measured specific heat the contribu-
tion, including quantum and virial corrections, cal-
culated for a two-dimensional gas restricted to the
ground-state eo only, i.e.,

0.5

0.3—

ac
Nke

0.2-

0.1-

0.0

I

10
I

12
I

14

(30)
Scattering experiments on zero coverage surfaces
have in the meantime measured '

(ei ep)/—kz ——66 K for 8=0. (31)

The explanation for this difference, as it arises
from our mean-field theory, is contained, e.g., in

Figs. 1 and 2 which say that as the coverage builds

up the lowest energy eigenvalue eo moves up to
avoid crossing the chemical potential p, decreasing
the difference (ei —ep). The experimentally deter-
inined excess specific heat due to the perpendicular
excitations of the adsorbate in the surface potential
with the curves as calculated from mean-field

theory is given in Fig. 6. However, we should
mention that (29) applied to the present system is
only correct to within 10 to 20%%uo because (a) quan-
tum correction for a two-level system reduces (29)
for T & 15 K by that amount, and (b) excitations
into the higher bound-state levels add about twice
that; see dashed curves in Fig. 6. Contrary to (29)
the excess specific heat as calculated from mean-

field theory is coverage dependent. Its values at
8=0.35 and 8=0.61 bracket the experimental
data perfectly for T & 7 K. The fact that hC &0
for T &7 K is attributed by Elgin and Goodstein
to inhomogeneities on the grafoil surfaces. A like-

ly explanation is also provided by Carlos and Cole
who have shown that the gap in the single-particle
density of states due to band-structure effects leads
to a depression in the specific heat at about half
the gap energy. Because their band-structure cal-
culations are done at zero coverage a qualitative
comparison with experimental data on C is not too
meaningful. Carlos and Cole calculated C at finite
coverage neglecting the He-He interaction com-
pletely. They find that for a given temperature

T & 20 K C decreases for larger 8, contrary to the
mean-field result contained in Fig. 6. It would be
very interesting to see whether a band-structure
calculation including the He-He interaction in
mean-field approximation would reduce this cover-

age dependence of C. Before such a calculation is
done a reexamination of experimental data without
reference to a coverage-independent model would
be very desirable.
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FIG. 7. Excess specific heat for He-C due to perpen-
dicular degrees of freedom. Solid line: mean-field
theory. Dashed line: Eucken formula (29) with e0 and

e& from mean-field theory without cutoff.

T (K)

FIG. 6. Excess specific heat for He-C due to perpen-
dicular degrees of freedom. Data points from Elgin and
Goodstein (Ref. 7). Solid line: mean-field theory.
Dashed line: Eucken formula (29) with eQ and e& from
mean-field theory.
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B. 'He on graphite

The He-C system should also show an excess
specific heat due to excitations into the higher
bound states of the surface potential. Our predic-
tions (without cutoff) are given in Fig. 7. Because
(ep e—t ) changes little as a function of coverage
B,CiNkz stays the same for 8 varying from 0.35
to 0.61, though the Eucken formula (29) (dashed
curves in Fig. 7) underestimates b CjNkz because
of contributions from excitations into higher bound
states. Overall the excess specific heat in the He-
C system is less at a given temperature than in the

He-C system because (ep —et) is larger in the
former.

IV. ISOSTERIC HEAT OF ADSORPTION

The isosteric heat of adsorption per particle is
defined as

, a(1~)
t)T e

With 8 given in (15) this can be written as

(32)

az-,. z as-,.
Q= gn-(1 n—) 2k~T E +T— . ' gn, (1 n, .)—1—.

'dT -. ' ' k T dP
(33)

Because the higher bound states i & 0 have negligible occupation for 8 & 1 and T & 20 K (33) can be approxi-
mated quite well by

T

5 BE'p

Q= ep+ 2 kgT+—T
P

L

1— P t)Ep

kit T dP

3
Qp +
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FIG. 8. Isosteric heat of adsorption Q (32) for He-C.
Dotted line: experimental data from Elgin and Good-
stein (Ref. 13). Dashed line: virial theory (35). Solid
line: mean-field theory.
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FIG. 9. Isosteric heat of adsorption Q (32) for He-C.

Dashed line: virial theory (35). Solid line: mean-field
theory without a cutoff. Dotted line: mean-field theory
with a cutoff.
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A. He on graphite

Data on the isosteric heat of adsorption for He
adsorbed on grafoil have been reported by Elgin
and Goodstein. ' They are plotted in Fig. 8 to-
gether with our mean-field results for T =5 and 12
K as calculated from (32). The rise in the experi-

mental data for small e has been attributed to lo-

calized adsorption sites at edges of grafoil platelets,
an effect that is not induced in our mean-field

theory .The plateau in Q for 0.2 &8 &0.6 is not
reproduced too well by our theory, indicating again
that the dispersion e;(q) in (6) should be included

at the next stage of the theory. This is also sug-

gested by a calculation of Q from the virial expan-

sion, i.e., from (17) and (18). One gets

I + 1 dB~+~
Qvirial 0+ 2 B g l

- max d(11'T)l=1 e

(35)

Q„;n,i rises as a function of e.

leads to the characteristic drop in Q around mono-

layer completion.

V. CONCLUDING REMARKS

Though mean-field theory as developed in Ref. 8
and used in this paper seems to be capable of
reproducing most of the qualitative and some of
the quantitative features of isotherms, heats of ad-

sorption, and excess specific heat, a great deal
remains to be done: (a) The reduction of (2) to (8)
should be avoided to be able to account properly
for the dispersion (6) which in turn should lead to
monolayer saturation. (b) Band-structure effects so
far calculated by Carlos and Cole at zero cover-
age, should be included self-consistently in the
mean-field approach. The energy gap in the
single-particle density of states shoud be partially
responsible for saturation. (c) Taking the lattice
periodicity of the basal plane of graphite into ac-
count, at least the transition to the registered gas
phase should come out of the mean-field theory.
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