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Coupled integral equations for the electrodynamic response of a bounded electron gas
are written down within a unified hydrodynamical model. The nonretarded limit of the

formalism is considered in detail and the induced density fluctuation is expressed in terms

of the external potential. Within this formalism a simple proof is produced of the known

theorem that the long-wavelength surface-plasmon frequency of such a system is indepen-

dent of either the surface-electron density profile or the hydrodynamic dispersion effect.
The theory is applied to the problem of interaction of a moving external point charge
with a jellium metal surface. The surface-electron density profile is treated in one- and

two-step models. Hydrodynamic dispersion effects as well as the effects of the surface

diffuseness and of the finite electron velocity of the external charge on the dynamical

image-charge interaction are discussed. The relevance of some of these theoretical results

to certain experimental situations involving the interaction of a metal surface with elec-

trodynamic probes is pointed out.

I. INTRODUCTION

Recently there has been a revival of interest in
the hydrodynamic approach' to the problem of
linear response in a bounded electron gas, in partic-
ular for jelliurn surfaces. This is partly because of
the inherent mathematical and conceptual simplici-
ty of the hydrodynamic model itself, but mostly
due to the great difficulty associated with the ap-
plication of conventional many-body theory " to
finite systems. After the development of density-
functional techniques' '

by Hohenberg, Kohn,
and Sham (HKS), the static response of metallic
surfaces has been fairly successfully treated by the
HKS theory. But there has been no corresponding
success in the problem of dynamic response of
metal surfaces.

Most of the dynamic calculations can be divided
into two categories —model calculations in which
the surface-electron density contour or equivalently
the surface potential is assumed to be of known,
simple analytic form, ' and formal calculations'
of rather formidable mathematical complexity. In
this work, we shall write surface response equa-
tions of rather general nature and then discuss
their applications to some simple model systems.

Electrodynamic response of a bounded electron
gas has important implications for the interaction

of a simple metal surface with electromagnetic
probes. Examples of experimental situations where
electrodynamic response of metal surface plays a
significant role are very many: Low-energy-
electron diffraction (LEED), fast-electron energy-
loss spectroscopy, photoelectron spectroscopy, posi-
tron scattering, photon-assisted tunneling, desorp-
tion, reflection-electron-energy-loss (REEL) spec-
troscopy, optical reflectivity, and ion scattering
spectroscopy are some of these techniques. For
many of these experimental situations, effect of re-
tardation (keeping the velocity of light finite) is not
important (optical reflection and transmission ex-
periments being the glaring exceptions). In this pa-
per we concentrate on the nonretarded limit of the
electrodynamic response, leaving inclusion of retar-
dation effects in specific experimental situations
for future publications. In particular, we apply the
general formalism for a specific calculation of
dynamical image interaction energy near a metal
surface. This problem is of particular relevance to
experimental techniques such as core-level spectros-
copy, ' low-energy electron diffraction, ' positron
scattering' (and possible formation of positron
bound state) and electron-energy-loss spectros-
copy. The static screening of a point charge em-

bedded near a metal surface can be successfully
treated '

by the density-functional theory as pro-
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pounded in the HKS formalism. Hydrodynamic
theory is basically a quasistatic generalization of
the simplest density-functional formalism for the
static response of an inhomogeneous electron gas.
As such, it is expected that the hydrodynamic
model will give a reasonable qualitative description
of the dynamic interaction between a moving point
charge and a bounded electron gas. In fact, indica-
tions of the usefulness of the hydrodynamic model
in describing the dynamical response of a metal
surface already exist in the form of the ability of
this model in producing qualitatively correct dis-
persion relations for the surface plasmons' in
simple metal surfaces and for the interface plas-
mons in simple bimetallic interfaces.

One important feature of the hydrodynamic
model makes it particularly attractive for the kind
of qualitative description of the dynamical surface
response we are seeking in this paper. This is its
relative simplicity. It provides an insight into the

physical behavior of the system that is sometimes

absent in a more microscopic approach [such as
detailed random-phase-approximation (RPA) calcu-
lations' ], which must involve heavy numerical

computations from the beginning. This relative

simplicity and the physical approach of the hydro-

dynamic model also make it possible for one to ap-

ply the technique to metal surfaces described by
electron density profiles, which are more realistic
than the simple step-density approximation used

extensively in the literature. In this paper we con-

sider a surface-electron density profile (the so-

called "two-step" model ' ), which is more realistic

than the step-density approximation adopted in

many papers ' on surface dynamic response.
The general plan of the paper is the following:

In Sec. II, we use a hydrodynamic model to derive

the general equations governing the electromagnet-
ic response of metal surfaces under the jellium
background approximation. In Sec. III we take the
nonretarded limit of the response equation and ob-

tain the longitudinal response equations in its most

general form. We give a simple analytic proof of
the general theorem that in the long-wave-

length limit the regular surface plasma frequency
is co&/W2, independent of the surface-electron den-

sity profile, where co& is the bulk-plasma frequency.
That the long-wavelength surface plasma frequency
is independent of the surface-electron density pro-
file was first shown by Feibelman within a RPA
model. Eguiluz, Ying, and Quinn proved this
theorem within a hydrodynamic model, employing
a technique that is very different from what has
been employed in this work. In Sec. IV we discuss

a simple application of the formalism developed in
Secs. II and III by calculating the dynamical in-
teraction of a moving point charge with a metal
surface. The surface-electron density profile is
treated within two models: a sharp one-step model
and a diffuse two-step model. We conclude in Sec.
V by providing a summary and critique of our re-
sults.

II. ELECTROMAGNETIC RESPONSE
OF METAL SURFACES

The constitutive relation connecting the induced
particle current J in the system and the total local
self-consistent electric field E can be written as

d k'
J(k,co)= J o(k, —k';co)E(k', co), (l)

(2n. )

where o. is the conductivity tensor. For mathemat-
ical convenience, we shall be working in the (k, co)

space. Note that in writing Eq. (l) translational
symmetry has not been assumed in any direction.
The expression for o. in the simplest hydrodynamic
model has been derived before ' —the i-j compo-
nent of o. is given by

o',)(k, —k';co) = ——no(k —k')5,

(2)

We take A'=m =e =1 throughout this paper. In
Eq. (2), no(k —k') is the Fourier transform of the
static equilibrium electron-density profile no(r) of
the system, P is the coefficient of the hydro-
dynamic pressure term in the Euler equation, and
5;J is the Kronecker 5 function. We assume no(r)
to be arbitrary except that it depends only on the z
coordinate which is taken to be normal to the sur-
face plane. Thus, translational invariance is bro-
ken only in one direction. This makes

no(k —k') =(2n. )'no(k, —k,
'

)5(q~~ —q~~),

where q~~, q~~ are two-dimensional wave vectors
parallel to the plane of the interface. The 5 func-
tion in q ~~

assures that it is a conserved quantity,
and Eq. (2) can be rewritten as
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(3)

We shall from now on suppress the explicit (q~~, co) dependence in various functions for the sake of brevity.
Electromagnetic response equations are obtained by combining the constitutive relation [Eq. ( 1)] with the

full set of Maxwell's equations. Eliminating the magnetic field from Maxwell's equations, one obtains

E;(k,co)=
z z z

(co 5;i ck;—kj)Ji(k, co) .
co(co —c k )

(4)

We are using the convention that a sum is implied over repeated indices. Combining Eqs. (4) and (l) with

Eq. (3), we get a set of one-dimensional integral equations describing the electromagnetic response in the sys-
tem. We consider p polarization E:—(E„,O, E, ) to be specific, and also choose our axes such that q

~~

—= (q, O),

without any loss of generality. It is then straightforward to write down the general integral equations satis-
fied by the total local self-consistent field E(k):

+~ dk,
' +~ dk,

'

E„(k,)=alii(k, ) J np(k, —k,')E„(k,')+Aiz(k, ) I np(k, —k,')E, (k,'), (5)

+~ dk,
' + oo dk

E,(k, )=222(k, ) I np(k, —k,')E,(k,')+uzi(k, ) I np(k, —k,')E„(k,'), (6)

where

4~(co —c q —P k, )

Z Zz 2Z
(co —c q —c k, )(co —P q —P k, )

4~(co ck, 13—q )—
Azz(k, ) =

(
2 2 2 2k2)( 2 Pz 2 Pzk2)

4n(P c)q. k, —
Zz ZZ 2 ZZ ZZ

(co —c q —c k, )(co —P q —P k, )

Once a choice for np(z) [which determines
n p(k, —k,

'
)] is made, the pair of coupled singular

integral equations (5) and (6) must be solved to ob-
tain the self-consistent electric fields. One can
decouple Eqs. (5) and (6) to obtain two singular in-

tegral equations for the individual electric field
components.

The pair of equations (5) and (6) represent the
most general form of electromagnetic response in
translationally noninvariant systems that include
the nonlocal effects associated with the hydro-
dynamic dispersion. Harris and Griffin first
wrote a pair of equations that are equivalent to (5)
and (6) in the context of a high-frequency limit of
the RPA. Since all nonlocal effects are lost in the
high-frequency RPA expansion, our response equa-
tions are more general and reduce to the equation
of Harris and Griffin if we set P=O in Eqs. (5)
and (6). These equations are generalizations of
those written down in Ref. 4 in the context of sur-

face collective oscillations.
To express Eqs. (5) and (6) as more standard

response equations connecting induced current with

the external field, we make the self-consistent field

approximation

E(k, ) =E,„(k,}+E;„(k,), (lO)

where E,„(k,) is the external perturbing field and

E;„(k,) is the screening field induced in the bound-
ed electron gas.

The induced field E;„(k,) is now expressed in
terms of induced scalar P;„(k,) and vector A~„(k, )

potentials. The scalar and vector potentials, on the
other hand, can be written in terms of the induced
density fluctuation n (k, ) and the induced current
density J(k, ). Doing this we get the following
equations for the components of the self-consistent
field:



6562 S. DAS SARMA 26

E(k, }=E,„(k,)+. . . J(k, )
CO —C k

4 ' 2

2 qn(kg),
CO —C k

and

f dk,
'
[K2„(k„kg )J„(kz )

+E„(k„k,' )J,(k,' )]=F,'"(k, ) .
where k =k, +q . The electron density and
current fluctuations are related by the equation of
continuity, which reads q J =con in the (k, co)

space. Using Eqs. (10) and (11) in the response
equations (5) and (6) and doing some rearrange-
ment of terms, we get

f dk,' [E)„(k„k,' )J„(kg )

+IC),(k„k,' }J,(k,' )]=F„'"(k,} (12)

(13)

In obtaining Eqs. (9) and (10) we have used the
equation of continuity to eliminate the induced
density fluctuation n (k, ). The kernels E&„,K2„,
E~„and E2, depend on the functions A ]~, 322, and
A ~2 [defined in Eqs. (7)—(9)] and on np(k& —k' ).
These kernels are shown in the Appendix. The
source terms F„'",(k, ) depend on the external elec-
tric field and are given by

F„'"(k,) = E„'"(k,)+—A»(k, ) f dk,'np(k, k,
' )—E„'"(k,' )+A,2(k, ) f dk,

'
np(k, —k,

' )E,'"(k,' ) (14)

and

F,'"(k, )= —E,'"(k, )+A22(k, ) f dk,'np(k, —k,')E,'"(k,')+A)2(k, ) f dk,'np(k —k )E (k ) . (15)

Note that Eqs. (12) and (13) are a pair of cou-
pled integral equations that describe the true sys-
tem response to the external field. A general solu-
tion to Eqs. (12) and (13) will give the induced
current J =(J„,O,J, ) in terms of the external field
E,„—:(E„'",O,E,'"). The general method to solve this
kind of singular, integral equation is quite com-
plex. 2 We will just state here that a formal solu-
tion to the coupled integral equations (12) and (13)
can be obtained by applying the hydrodynamic
boundary condition that the current J(k, ) is ana-
lytic in the upper half of the complex k, plane
[which follows from the condition that J(z)=0 for
z ~ 0 where z =0 is taken to be the surface plane].
Since the formal solution does not elucidate the
physics of the surface electrodynamic response and
is a purely mathematical result of limited physical
applicability, we do not pursue this solution in any
detail here. We are content with the statement
that within the hydrodynamic model, an exact, for-
mal solution of the problem of surface electromag-
netic response indeed exists provided the hydro-
dynamic boundary condition [i.e., J(z)=0 for
z & 0] can be assumed.

In the next section we consider the nonretarded
(c~ co ) limit of Eqs. (12) and (13) in detail and
work out specific applications for model systems.

III. NONRETARDED (c~ 00 ) LIMIT
OF HYDRODYNAMIC RESPONSE

In this section we take the nonretarded limit of
the formalism developed in Sec. II, thus restricting
ourselves to the longitudinal response only. One
can do this by taking the c~ 00 limit of the gen-
eral response equations (12) and (13) and using
equation of continuity. The longitudinal response
of the bounded electron gas is completely specified
in terms of a single equation connecting the in-
duced linear electron density fluctuation, n (k, ),
and the external potential, P„describing the exter-
nal longitudinal electric field E(k, ). Thus we in-
troduce the following relations and then take theci ao limit of Eqs. (12) and (13):

E„'"(k,) = iqP, (k, ),—

E,'"(k, ) = ik, P, (k, ), —

qJ„+k,J, =con (k, ) .

(16)

(17)

The last equation is just the equation of continuity
in the (k,co) space. After some straightforward
algebra both Eqs. (12) and (13) yield the same fol-
lowing relationship [in the (c~ oo ) limit] between
the induced density fluctuation and the external
potential:
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n(k, )— 4~ dk,
'

2 P2 2 P2k2

k, +q
4m

q +k,k,
'

np(k, —k,' )n (k,' )
kz +q

1 dk,
'

, , f (q'+k, k,')n, (k, —k,')((l, (k,') . (19)~2 132q
2 P2k 2

I

Equation (19) is the fundamental longitudinal
response equation of a metal surface within hydro-
dynamic approximation connecting the external
scalar potential P, with the induced electron densi-

ty fluctuation n To. solve the response equation

[Eq. (19)] we need boundary conditions which are
provided by choosing a model for the equilibrium
surface electron density profile such that np(z) =0
for z & 0. This ensures that the linear density fluc-
tuation n (z) also vanishes outside the metal surface
[i.e., n (z) =0 for z &0 in this model]. To discuss
solutions of Eq. (19) we make the following specif-
ic model for the equilibrium surface-electron densi-

ty profile;

np(1 —e") for z &0,
np(z) = .

0 forzy0. (20)

Thus the electron density is restored to the bulk
value deep inside the metal (z —+ —ap } in an ex-
ponential fashion. This is very similar to the self-
consistent surface-electron density profiles of met-
als obtained by Lang and Kohn. The Friedel os-
cillations are absent in this model. It is well
known that such oscillations do not arise within a
Thomas-Fermi model.

Taking the Fourier transform of Eq. (20) and
setting it for np(k, —k,') in Eq. (19), we get

n(k )+ z z z f,z, + n(k')=F(k ),
4mino dk,

'
q +k,k,

'
l 1

cp P(q—+k, ) 2~ q +k,' k,
' —k, i5 —k,

'
k, i—a— (21)

where

F(k, )= P(k, )+. . . , , f (q'+kk, ') 1

4m
' ' ~~—P~q~ P~k,~ 2m

'
k,

'
k, i5 —k,

' ——k, ia—P, (k,') .

Once an external potential p, (z) has been specified, F(k, ) is completely known.
The integral equation (21) for the induced electron-density fluctuation n (k, ) can be solved in a manner

analogous to that suggested in Sec. II using the analyticity of n (k, ) in the upper half of the complex k,
plane. Rather than pursuing the formal solution for n (k, ) within the hydrodynamic model, we demonstrate
one particular feature of the response equation (21). We show explicitly that Eq. (21} implies a self-
sustained oscillation (collective mode) for the system at a long-wavelength frequency of co~/~2 where
co& (4nnp)'——~ is .the bulk plasma frequency. This long-wavelength limit of surface plasma frequency is in-
dependent of the diffuseness of the surface and depends only on the uniform bulk electron density of the
system.

For collective modes P, and hence F(k, ) are identically zero. Using that and doing an integration in the
upper half of the complex k,

'
plane [remembering n (k,' ) is analytic in upper half of k,

'
plane] we get from

Eq. (21)

(k )
~p n (lq)

co —P (q~+k, )

k, iq —
q +k, (k, +ia)+1 +n(k, )~ n(k, +ia)

k, iq+ia — '
q +(k, +ia)

(23)

where co& ——4m.no has been used. Setting k, =iq in
Eq. (23) we get after some rearrangement of terms,

I

Taking q~0 limit of Eq. (31) we get

2

n (iq) = — + n (iq +ia) . (24)
~p n (iq) q

2 6+2q

2 l 2
CO =&CO~. (25)

Thus we have demonstrated that this formalism
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indeed leads to the correct result that the
long-wavelength surface plasmon frequency is
co~/i/2, independent of the electron density profile
of the surface involved. We have also shown that
this general result does not depend on the explicit
application of hydrodynamic boundary conditions.
This theorem follows only from charge conserva-
tion. In addition to this general result, Eqs.
(23) and (24) also imply that the dispersion correc-
tions to the long-wavelength surface plasmon fre-
quency at finite wave vector would depend on the
electron-density profile of the surface. Thus in an
inhomogeneous Fermi system, the nonlocal effects
due to spatial dispersion and inhomogeneity are
coupled and they usually arise in the same or-

ef 4, 23,28

Two other features of Eqs. (22) —(24) deserve
comments. In general, Eq. (23) may have more
than one solution implying there could be more
than one localized collective mode in the sys-
tem. ' ' However for a '=0, i.e., for a sharp
step-density surface profile, Eq. (23) can have just
one solution at co=co&/V 2 in the q~0 limit.
Thus a sharp surface has only one collective mode
associated with it. ' ' The other point is that
Eqs. (23) and (24) by themselves are incapable of
yielding information about the surface-plasmon
dispersion relation. To obtain that, one must use
the hydrodynamic boundary condition
Jg(z =0—) =0.

IV. DYNAMICAL IMAGE CHARGE
INTERACTION NEAR A METAL SURFACE

p,„(r,t) =Q5(x)5(y)6(z —zo+vt) . (26)

The point charge is thus of strength Qe. It is as-
sumed to be moving along the z axis with uniform
velocity v, with zo giving its position at t =0. The
metal is assumed to occupy the half space z &0.
Since the charge is taken to be external to the met-

al, it is in the z &0 half space. One can of course
consider the external charge crossing the metal sur-

As an application of the formalism developed in

the last section, we consider the problem of image
interaction between a point charge and a metal sur-

face. We assume the point charge to be moving
with uniform velocity in a direction normal to the
surface and neglect any recoil effects for simplici-

ty. We also assume the point charge to be external
to the metal for the sake of simplicity. However,
the full dynamical effects of the interaction will be
preserved in the calculation. The external charge
density can be written as

P, (k, )=—
lCOZp/04~iTje

v(k, +q )(k, +co/v i5—) s 0+

(27}

neglecting any retardation effect. The density fluc-
tuation n (k, ) induced by this external potential
can be calculated using the method developed in
Sec. III. It is found to be

n(k, )=
A Cgp

2p'(k,'+y')

iQe '(co' Pq'—Pk,—')
v p (kg +y )(k, +a iS)—

l CZD
iQco,'e

2v p'(k,'+y')(a+iq)
(28)

where a =co/v. In Eq. (28), co& 4irno ——is the bulk
plasma frequency of the metal arid y is given by

p2y2 ~2 co2 +p2q 2 (29)

The unknown constant A in Eq. (28) is to be ob-
tained by the application of hydrodynamic boun-

dary condition that the normal component of
current density must vanish at the metal surface.
It is straightforward but tedious to apply this
boundary condition. The result of the calculation
gives the following for the induced density fluctua-
tion:

Q co& (y+ q)e
n(z}=

v(q+ia)(2y p +2yqp co&)—
for z &0 (30)

=0 for z&0. (31)

One can now obtain the dynamical-image in-

teraction energy by calculating the induced poten-
tial P; due to n (z) at the instantaneous position

(r~~ =0, z =zo —vt) of the external charge. The
dynamical image interaction energy is given by

V; = —,QP;(r~~ =0, z =zv vt, t) . —

The potential P; in real space is given by

(32)

face within the same formalism. For v & 0, Eq.
(26} signifies a point charge moving toward the
metal occupying the half space z &0 with the sur-

face at z =0. We first consider the case of a sharp
metal surface with a single-step electron-density
profile no(z) =noe( —z). The corresponding poten-
tial in (k, co) space P, (k, ) of Sec. III is easily ob-
tained and found to be
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0,6

N
OJ

0.3

v/P =1.0(I);2.0(II);5.0(III) where A, =P/roz is the screening length and
b =v/co& is the natural length associated with the
velocity of the external charge.

(iii) For P=O and z =0 we get

V;=— (39)

0,0 I

1.0
Z/X

20

FIG. 1. Magnitude of dynamical image potential V;

as a function of distance z from a one-step surface for
three different values of the velocity of the external

point charge (with screening length A. kept constant).
Also shown (dashed curve) is the classical result

V;(z) = —Q2/4z for the sake of comparison.

where P;(z) is given by

P;(z) = — dz' e ~ i' *
i n (z') .2~

q
—oo

(33)

(34)

Using Eq. (30) in (34), one can get P;(z). Then
from Eqs. (32) and (33) we finally obtain the fol-
lowing result for the dynamical image interaction
energy:

2 2

V;= — I dq e 'F1(q) .

The function F(q) in Eq. (35) is given by

F(q)=[ —,coq+P q

+P (
2 +P2 2+P2 2)1/2+ P2v 2]—1

(36)

We summarize the salient features of V; as follows.
(i) For P=O and v =0, Eq. (35) gives the well-

known electrostatic result

Thus the finite velocity makes the image potential
nonsingular at the origin (z =0) even in the disper-
sionless limit (P=O).

Most of the above results for the image interac-
tion for a single-step surface are known in the
literature. ' We have obtained the results here
within a single, unified approach that treats both
dynamics (finite v) and electron dispersion (finite

P) on equal footing.
In Fig. 1 we show the magnitude of the image

potential for a one-step electron density profile as a
function of z/A, for three different values of the
velocity v of the external charge. V; has been plot-
ted in units of Q /2A, . For the sake of comparison
we have also shown the classical electrostatic result
—V; =Q2/4z, which is divergent at z =0. Both
hydrodynamic dispersion (by providing a length
scale A, =P/co&) and finite velocity v (by providing
a length scale b = v/a1~) suppress the divergence of
the classical result.

In a realistic system a third important length
scale is provided by the diffuseness of the surface-
electron density profile. In particular, the electron
density no(z) is expected to drop from its bulk
value no to a value of zero over a finite distance a
[see Eq. (20)]. This length a is typically of the or-
der of the other two important lengths, k and b, in
the problem. We expect the diffuseness to have in-
significant effect (and the single-step model to be
reasonably good) only when A, »a. In order to
study the quantitative effect of the surface diffuse-
ness on the image potential we have employed the
simplest model for the electron density profile that
incorporates diffuseness. This is the two-step elec-
tron density profile that has been used ' ' ' earlier
in the literature. In this model the density profile
for the bounded electron gas is taken to be

V-=—
4z

(37) no(z)=n18( —z —a)+n28( —z)6(z+a) .

(40)

(ii) For small P and v one has the following
asymptotic form for V;:

Q A, b A,V= — 1 ——+ 1— +
4z z g z

(38)

Thus the bulk electron density has the uniform
value n I whereas a small surface layer of thickness
a has a density of n2 ( (n, ). The size a of the
surface layer provides the diffuseness length scale
and the electron density, instead of dropping to
zero abruptly from the bulk value as in the single-
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FIG. 3. Magnitude of dynamical image potential V;

as a function of distance z from a two-step surface for
four different values of the velocity of the external
charge including that for the pure static {u =0) case
(curve I) . All the other parameters (a, ){,i, A, 2, and P)
have been kept constant.
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FIG. 4. Magnitude of dynamical image potential V;

as a function of distance z from a two-step surface for
two different values of the screening length A, 2 of the
surface layer. Other parameters (a, A, &, v, and P) have

been kept constant.

for three different values of A, i. We point out that
Fig. 5 has different length (measured in units of a)
and energy (measured in units of Q /2a) scales
compared with the other four figures.

These four figures (Figs. 2 —5) clearly illustrate
the functional dependence of V;(z) on the different
length scales (A, i, A,2, a, and b =u/co& ) of the two-
step model. As we would expect, V;(z) does not
depend too sensitively on A,2. However, its depen-
dence on the other three lengths (A, i, a, and b} is
quite strong and any one of these three lengths by
itself is sufficient to saturate V;(z =0) suppressing
the divergence of the classical-image potential. In
spite of its simplicity, one expects the qualitative

FIG. 5. Magnitude of dynamical image potential V;
as a function of distance z from a tue-step surface for
three different values of the screening length A, i of the
bulk system. Other parameters (a, A2, u, and P) have
been kept constant. The length and energy units for this
figure are different from the other four figures as
shown.

features of the two-step model (as illustrated in
Figs. 2 —5} to remain valid in more realistic diffuse
density profiles for metal surfaces. Thus we have
demonstrated through two examples how the for-
malism can be applied to study interaction of
external probes with metal surfaces.

V. CONCLUSION

In this paper we have developed a formal hydro-
dynamical approach to the problem of dynamical
response of bounded electron gas to external elec-
tromagnetic perturbation. The approach uses the
simple and physically appealing hydrodynarnical
model to include nonlocal effects of spatial disper-
sion, as opposed to more complicated microscopic,
many-body theories. It should be emphasized that
the nonlocal effects associated with hydrodynamic
dispersion are retained in the theory only by virtue
of the compressibility P of the electron gas being
finite. Nonlocal effects are eliminated on setting
p=0. This can be easily seen from the earlier sec-
tions of the paper by noting that the two-dimen-
sional wave number q always enters in the corn-
bination Pq, and thus setting P=O eliminates all

nonlocality. The reverse, however, is not true.
Thus one can consider the long-wavelength limit of
the theory by taking the limit q~0 and still
preserve effects of hydrodynamical dispersion
through the normal z direction. One effect of such
hydrodynamic dispersion is the recently dis-
cussed' ' ' higher multipole-collective modes as-
sociated with nonabrupt metal surfaces in which
the surface-electron density profile goes to zero
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smoothly over a distance, in contrast to the step-
density model employed in many approximations.
These modes have a well-defined long-wavelength
limit, but would disappear under the approxima-
tion P=O. These modes thus exist only by virtue
of hydrodynamic dispersion of a bounded electron
gas. It is only fair to point out that higher mul-

tipole plasmons have not yet been observed experi-
mentally. However, very recent calculations
predict the existence of coupled higher-
multipole —optical-phonon modes in degenerate,
polar semiconductor surfaces. These coupled
"multipolaritons" lie in the infrared and seem to be
more amenable to experimental observation.

Retention of nonlocality is reasonably easy
within the hydrodynamical model as has been
demonstrated explicitly in this paper. On the other
hand, microscopic theories like the RPA become
quite complicated and numerically very involved if
one tries to keep nonlocal effects in the final re-
sults. Doing high-frequency expansion in micro-
scopic theories and keeping only the leading order
term are relatively simple. This procedure, howev-
er, excludes nonlocal effects from the result. One
drawback of the hydrodynamic model is that the
compressibility P is not correctly known within the
formalism. We have kept it as a given constant in
this paper, without specifying its exact value. One
can specify ' P =

5 vF, where v~ is the Fermi velo-

city in the bulk by demanding that the bulk plas-
mon dispersion relation obtained within the hydro-
dynamical model be the same as that in RPA.
However, there is no guarantee that the RPA form
for plasmon dispersion is the exact form (as a
matter of fact, one expects corrections to the RPA
result due to local field effects), and therefore it
may be more meaningful to take P as a parameter
in the hydrodynamic model that should be adjusted
by comparing with experiment.

A specific application of the general theory
worked out in Sec. IV of this paper is the problem
of interaction of a fast moving point charge with a
simple metal surface. As we have emphasized in
the Introduction, this dynamical image interaction
energy is of relevance to a number of experimental
situations of interest in surface science. In particu-
lar, three mechanisms that suppress the unphysical
divergence at z =0 of the classical image energy,
V; = —Q /4z, are discussed in terms of the quanti-
tative results obtained for the one-step and the
two-step electron density models for the surface.
These mechanisms are the screening by the inho-
mogeneous electron gas, the diffuseness of the met-
al surface, and the finite velocity of the external

point charge. To our knowledge this is the first
calculation of the interaction between a point
external charge and a metal surface within the hy-
drodynamical model that includes effects of hydro-
dynamic dispersion (screening), surface diffuseness
and the finite velocity of the external charge. We
have demonstrated through Figs. 1 —5 that any
one of these three physical effects by itself is suffi-
cient to saturate the image potential at z =0. Each
process provides a characteristic length scale
described by A, , a, and b which are defined in Sec.
IV of the paper. Actually, for the two-step model
there are two screening lengths, A,

~
and A,2, corre-

sponding to the bulk and the surface-electron den-
sities, respectively. But the parameter A,

&
has much

more quantitative effect than A,2 for the ranges of
parameter values we have investigated.

It turns out (as can be seen from Figs. I —5) that
for large values of z, the image potential ap-
proaches the classical formula. However, depend-
ing on the actual magnitudes of the three-length
scales A, , a, and b, the regime of validity of the
classical image formula is shifted toward larger
and larger values of z. The relative magnitudes of
A, ( =P/co&), Ii ( = v/co&), and a (diffuseness length
of the surface profile) could be quite different de-
pending on the system and the experimental situa-
tion involved. For example, in simple Inetals
(without any adsorbate) k and a are expected to be
of the order of a few angstroms at most. The
parameter b, on the other hand, depends on the
velocity of the external charge and could vary
from the order of tens of A (or lower) in LEED
experiments to many times larger values in fast
electron-energy loss experiments. In the latter situ-
ation this length scale clearly describes the dom-
inant effect in the physics of image interaction.
On the other hand, in a purely static situation
(chemisorption, for example), b is zero and in-
clusion of A, and a in the analysis is essential. Our
results from Sec. IV show that for comparable
magnitudes of the length scales A,, a, and b, they
are equally important in controlling the magnitude
of the image-interaction energy. However, a for-
mula of the Gomer-Swanson type where we write

V;(z)= —Q /4(z+k+b+a/2)= —Q /4zeff

works only when zd~ is very large.
A direct comparison between the theoretical re-

sults of this paper and experiments is not possible
for a variety of reasons. For one thing very few
experiments provide a direct measure of the
image-interaction energy. Recent LEED measure-
ments' report observation of the saturation of the
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image potential at Cu(001) surface. However, jelli-
um is expected to be a rather poor approximation
for copper. This inhibits a direct comparison be-
tween our calculations and these experimental mea-
surements. The basic experimental finding that for
decreasing distance between the probe electrons
and the metal surface, the image potential is pro-
gressively weaker than the classical value is totally
consistent with our theoretical results. Also the
importance of dynamics (finite external electron
velocity) in such image-potential saturation is
clearly illustrated by this experiment. ' Inclusion
of dynamics in the image-potential interaction is
one of the important ingredients of this paper.

Two other types of experiments are important in

providing information about the dynamical image-
charge interaction near a metal surface. These are
core-level spectroscopy' ' and positron scatter-
ing' from metal surfaces. The screening energy or
the "extra-atomic relaxation energy" in the core-
level spectroscopy is nothing but the image interac-
tion energy calculated in the last section. In the
positron-scattering experiment the important ques-
tion of whether an image-potential —induced
surface-bound state exists for positrons near a par-
ticular metal surface or not depends in a rather

delicate manner on the actual shape of the image
potential. Such questions have so far been dealt'9

within models that neglect the dispersion of the
metallic electrons and the finite velocity of the pos-
itrons. Our work in this paper indicates that there
could be corrections to the positron binding energy
arising from these effects. However, we do not at-
tempt any detailed comparison between the simple
theory developed in this paper and actual experi-
mental results. The theory and the numerical re-

sults obtained in Sec. IV should be taken as estab-
lishing important qualitative trends in the elec-
tromagnetic response of metal surfaces and in

pointing out the relative quantitative significance
of different physical effects. The actual results
themselves should not be taken too seriously in
view of the large number of rather simplifying ap-
proximations involved in the calculation.
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APPENDIX

We write down the kernels K|„,K~„J 2„, and K2, of the integral equations (16}and (17) in this appendix:

2 2

co(co —c k, —c q ) co(co —c k,
' —c q )

4mic qk,
'

A )2(k, )np(k, —k,
'
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4m.ic qk, 4~ic qk,
'
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