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Transition between coherent and stochastic motion of light interstitials
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We consider first the application of a linear-coupling small-polaron theory to the motion

of light interstitials such as hydrogen isotopes and the positive muon in solids. We carry

out a microscopic quantum calculation of the density-density correlation function for a

diffusing particle that passes smoothly as a function of temperature between the low-

temperature limit of coherent bandlike motion and the high-temperature limit of stochastic

hopping. A numerical calculation of the mean time of stay of the particle on a given

interstitial site shows a maximum at the transition temperature T . For a Debye phonon

spectrum 0.3(T*/8(0.7 for reasonable estimates of the lattice distortion energy and

rigid-lattice bandwidth appropriate for positive muons. Higher-order phonon interactions

are then introduced and treated within the same formalism. They give rise to a kind of
"motional narrowing" of the coherent portion of the density-density correlation function,

that depresses T substantially. Numerical calculations of the mean time of stay for a

range of linear- and quadratic-phonon-coupling strengths indicate a substantial depression

of the transition temperature between "coherent" and stochastic diffusion, while the

transition to true bandlike motion occurs at a still lower temperature.

I. INTRODUCTION

The small polaron was originally introduced to
treat the motion of an excess electron or hole in a
(polar) deformable lattice. ' For the case of electron-
ic propagation in metals, the large Fermi velocity
and screening of the ion cores greatly reduce the
Coulomb coupling to the lattice, so that the effects
of phonons can be handled in the context of pertur-
bation theory about a basically bandlike motion.
However, for polar insulators the motion of carriers
is so strongly coupled to the ions that such a pertur-
bative treatment breaks down. This led to a theory
in which the bandlike behavior expected of a parti-
cle in a rigid lattice disappears entirely at high tem-
peratures. Instead, the particle motion becomes a
stochastic jumping, mediated by multiphonon emis-
sion and absorption processes. In essence the mean
free path of the particle becomes short compared to
a lattice constant, in which case the idea of propa-
gation in band states becomes meaningless.

In more recent years the original polaron theory,
with suitable modifications, has been applied to a
domain not originally envisaged —the diffusion of
light interstitial particles such as the isotopes of hy-
drogen and the positive muon. The basic obser-
vations motivating such a treatment are (l) the oc-
currence of relatively large lattice distortions

around these interstitials, (2) the relatively small
mass of these particles leading to an appreciable
ground-state tunneling between neighboring intersti-
tial sites, and (3) the still relatively narrow band-
widths 8'&&AcoD that make phonons a large per-
turbation of the rigid-lattice band structure. We
refer the reader to the recent review article by Kehr
for an overview of much of this work.

The basic outlines of the theory are fairly well

developed. At high temperatures the interstitial

motion is dominated by uncorrelated jumping be-

tween neighboring sites. A stochastic jump rate be-

tween these sites is calculated in the second order of
time-dependent perturbation theory applied to the
tunneling matrix element (but to infinite order in

particle-lattice coupling). The resulting diffusion
constant is then predicted to have an approximate
Arrhenius-law temperature dependence, but the ac-
tivation energy is associated not with classical
over-the-barrier hops but with the lattice relaxation
energy. The random walk of the particle is charac-
terized by multiphonon absorption and emission

processes, which become increasingly probable as
the temperature increases.

At low temperature the stochastic transport mode
disappears and is replaced by coherent tunneling.
In a pure crystal the particle then exists in Bloch
eigenstates labeled by a wave vector k in the first
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Brillouin zone. Since phonons of different wave

vectors are only rarely emitted or absorbed, external
momentum is only infrequently imparted to the
particle (scattering), and k remains a relatively good
quantum number. One difference between ordinary
band transport and this coherent polaron motion
derives from the fact that the polaron bandwidth is

temperature dependent. The particle must drag its
lattice deformation along as it moves. This results
in its "bare" rigid-lattice bandwidth being narrowed

by a Debye-Wailer factor that is a monotonically
decreasing function of increasing temperature.

While both the low- and high-temperature limits
of a polaronic model for light interstitial diffusion
are reasonably understood, a theory that iriterpo-
lates smoothly between these limits has not yet been
presented. It is the purpose of this work to provide
such a theory through a microscopic quantum cal-
culation of the density-density correlation function
for a diffusing particle. Our object is to calculate
this correlation function, and the mean time of stay
of a particle on an interstitial site derived from it, as
a function of polaronic parameters such as the
rigid-lattice bandwidth and the lattice relaxation en-

ergy. In the limit appropriate to light interstitial
motion where the mean time of stay is long com-
pared to a typical lattice-vibrational period and in a
defect-free crystal, we develop a theory that reduces
correctly to known results in both the low- and
high-temperature limits and that passes smoothly
from coherent propagation to stochastic jumping as
the temperature is raised. Thus for this particular
case a complete description of the band to stochas-
tic hopping transition is possible.

In Sec. II we introduce a linear-phonon-coupling
Hamiltonian and its displaced oscillator canonical
transformation. The density-density correlation
function and its relation to the mean time of stay
are defined. The method of its calculation is out-
lined here and in the Appendix. For the particular-
ly simple case of motion over a simple cubic lattice,
real-space site correlation functions are derived for
an arbitrary mixture of coherent and incoherent
transport. In Sec. III we present the results of a nu-
merical calculation of the mean time of stay assum-

ing a Debye phonon spectrum. The transition tem-
perature T* between coherent and stochastic
motion, manifested as a peak in the mean time of
stay, is found to satisfy 0.3 & T' j8 & 0.7 for reason-

able estimates of the lattice distortion energy and
rigid-lattice tunneling matrix element appropriate
for positive muons. In Sec. IV we generalize the
Hamiltonian to include higher-order phonon cou-
plings, and derive their effect upon the density-

density correlation function of the linear-coupling
model. A numerical calculation of the mean
residence time is carried out to illustrate the severe
depression of T* by quadratic phonon interactions.
Section V summarizes our conclusions and briefly
discusses other effects that further reduce T' in real
physical systems.

II. CALCULATION OF THE
DENSITY-DENSITY

CORRELATION FUNCTION

A. The Hamiltonian

We consider a single particle in a periodic lattice
that is coupled linearly to the lattice vibrations,

1 —iq ~ Rg g gqiuqie n (2.1)

Here the first term is the harmonic Hamiltonian of
the unperturbed lattice with co~i taken to be the fre-
quency of the vibrational mode of wave vector q
and polarization A, . The canonical momentum and
displacement operators are defined in second quant-
ization as

u =(a +a )/v 2,
p„=(a „—a,', )WZi'.

(2.2)

The parameter Jo in the second term is the rigid-
lattice tunneling matrix element between nearest-
neighbor sites separated by a distance 5. The
operator c; creates a particle in the Wannier orbital
centered around site i. We consider only crystals
having a symmetry such that the length of a closed
path connecting adjacent sites is an even multiple of
5. Because of the relatively large interstitial mass
and consequent limited range of the Wannier orbi-
tals, we take the rigid-lattice Hamiltonian to be of
the tight-binding form and restrict consideration to
jumps only between neighboring sites on a Bravais
lattice. The third term in (2.1) represents the linear
coupling of the interstitial to the lattice modes, with
a coupling energy gq~

——g*
q~ to the mode qA, . We

presume the lattice coupling to be strong so that
this term cannot simply be treated in perturbation
theory.

In adopting this Hamiltonian we are making a
number of approximations that deserve further
comment.

(i) An adiabatic approximation for electron
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1 e iq ~ R;
p;= ~ ggqxpqxe

qA, (2.3)

screening of the interstitial derives from the small-
ness of the electron mass to the interstitial mass
m «ml. We assume that screening takes place
essentially instantaneously on the time scale of the
interstitial motion so that we can define the poten-
tial energy for a screened particle in the lattice.

(ii) A second adiabatic approximation results
from the smallness of the interstitial mass to that of
the lattice ions II «M. Thus we can define a po-
tential energy for the interstitial as a function of in-

stantaneous ion positions. This is analogous to the
usual Born-Oppenheimer approximation used to
decouple electronic and ionic degrees of freedom.

(iii) The linear particle-lattice interaction is an
approximation that is potentially more serious. It
clearly represents only the leading term in an expan-
sion of the potential energy V(IRiv I ) about equili-
brium. As pointed by Kagan and Klinger, the
higher-order terms may have important effects on
the low-temperature motion of a particle in narrow

energy bands. The effect of these terms is concep-
tually easier to uriderstand with the context of the
solution to the linear-coupling model, so we defer
their treatment to Sec. IV.

(iv) We have restricted consideration to motion
over a Bravais lattice (single-band model). If more
than a single interstitial site per unit cell exists,
there can in principle be important effects on the
temperature dependence of the stochastic jurnp
rate. ' We comment upon this consideration later.

(v) We have adopted the Condon approximation,
i.e., the bare tunneling matrix element Jo is taken to
be independent of lattice configuration. Teichler
has discussed the inclusion of effects beyond the
Condon approximation, but their consideration here
would take us beyond our immediate concerns.
Thus we take the Hamiltonian to have the restricted
property of dynamical but site-diagonal disorder re-
sulting from the phonon coupling.

Following standard treatments' '" we perform a
canonical displaced oscillator transformtion on H.
Defining

Here we have reexpressed the phonon Hamiltonian
in more standard form and defined the polaron
binding energy,

2N & coq~
(2.5)

The energy of the interstitial is lowered by E, as a
result of distorting the lattice from equilibrium in
its immediate vicinity. Note that the effect of this
transformation is to transfer the site-diagonal disor-
der in 8 into off-diagonal disorder in 8 while leav-

ing the phonon frequencies unchanged. In contrast,
if a quadratic term in the particle-lattice interaction
were important, the site-diagonal disorder could not
be eliminated by transformation.

It is convenient to separate the terms in H' re-
sponsible for coherent and incoherent motion. We
set

with

8'=Ho+8) (2.6)

«i+5 4 —S
/ h=eP

gqz ~

I3cpqx . & q 5
coth sin

(2.8)

1
~=kT

Since S is independent of i and 5, Ho may then be
exactly diagonalized in terms of band eigenstates la-
beled by a wave vector k in the first Brillouin zone:

Hp=X~q~(nq~+ , )+X-(e ' "
)p~c c+s

I '~«i —«~+a )

qA, i,5

(2.7)

—J g(e i i+6 (
~ 0[ 0i+$~)

)Ph CI Ci+
i, 5

The expectation value ( )~h above is taken with
respect to the phonon portion of Hp. A straightfor-
ward calculation yields the usual temperature-
dependent band-narrowing factor

i'= ziti;n;,

we have

8'=e'«He

=+pi x(n q+ —, )
qA,

—Egn+Jpge ' '+ cc+, . (2.4)

1

Hp = y coque(nqx+ p )+yeknk,
qA, k

where

nk ckck

ik-R;
ck —— c;ev'X

—sg 'k s

5

(2.9)

(2.10)
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The coherent Bloch motion governed by Hp is
clearly accompanied by a conservation of the pho-
non occupation numbers n&~ in each phonon mode.

The remaining term H
&

is normally treated in the
second order of time-dependent perturbation
theory, ' and leads then to a stochastic or in-

coherent motion of the particle accompanied by the
emission and absorption of phonons with the selec-
tion rule nq~ —+n&~+1. Such processes transfer a net
momentum to the particle and hence destroy the
significance of k as a good quantum number. At
low temperatures we may view these processes as

giving rise to intraband scattering, while at high
temperature they are so frequent that the coherent
motion is suppressed entirely and a stochastic hop-

ping sets in.

B. The density-density correlation function

Our object is to develop a theory that passes
smoothly between the low-temperature band limit
and the high-temperature stochastic limit. To that
end we introduce the density-density correlation
function,

as

r, =f dtG;;(t)= f dt Q—Gq(t)
q

= lim —QGq(co) .
1

pX
(2.15)

—I'k —~'k
e (2.16)

We introduce the interaction representation to write

r, is a simple measure of the rate of movement of
the interstitial through the lattice. In the limit of
pure stochastic motion it is inversely proportional
to the jump rate, while for coherent motion it is in-

versely proportional to the bandwidth. We also
note that in the interpretation of muon spin rotation
(@SR) experiments involving motional narrowing of
the spin depolarization rate of positive muons, it is

~, that basically determines the amount of narrow-
ing in both the coherent and stochastic limits.

In calculating Gq(co) we restrict the trace in Eq.
(2.12) to the zero-order Hamiltonian, i.e., PH, «1,
and assume further that the polaron bandwidth

W~&kT so that

Gq(t) = (p, (t)p, (0) )6(t),
where

(2.11)
—PHO

G, (t)= e ' U(t, O)p, U(0, t)e 'p, ,
ZQ

(2.17)

pq(t) =e gckck+qe
iH't 4 —iH't

k

( ) =Tre-t'"' n're-t'"'.
(2.12)

Gz(t) = (n;(t)nj(0))6(t)

iq (R;—R )=—ge ' ' Gq(t) .
1V

(2.13)

For calculational purposes it is more convenient to
introduce the Fourier transform

Gq(co)= f dte Gq(t) (2.14)

where co =co+i@ to guarantee convergence at t~ oo.
Of particular interest to us will be the mean time

of stay of the particle on a given site. This is de-

fined in terms of the autocorrelation function G;;(t)

6(t) is the unit step function, and the trace is to be

taken over single-particle states. Gq(t) has a well-

defined meaning in the coherent limit of propaga-
tion and also in the stochastic limit where the band

states lose their significance. For example, from it
we can calculate the real-space correlation functions

G;J(t) encountered in the rate equation approach to
the stochastic hopping regime:

where U(t, O) is the time-evolution operator
t

U(t, O) =T exp i f dt'H
~
(t')

U(O, t)=U (t,0) .
(2.18)

Here T is the usual time-ordering operator, and

(2.19)

The diagrammatic perturbation theory associated
with Hi has been discussed by Lang and Firsov'
and Kudinov and Firsov" in connection with the
polaron mobility derived from a current-current
correlation function. We have found it most con-
venient to simply expand the time-ordered exponen-
tials above order by order in perturbation theory.
This has been done through fourth order and for
selected terms in sixth order. From these the dom-
inant terms in nth order may readily be inferred as
the form of the perturbation series becomes clear,
subject to certain limits that emerge naturally as the
calculation progresses. For ease of presentation we
will consider here only terms up to second order.
Selected fourth-order terms are derived in the Ap-
pendix.
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In zeroth order we have U(t, O) = 1 and

Gq(co) =—g1 1

N k
i—(~+ek e—k+q)

(2.20)

which corresponds to pure bandlike propagation.

The first-order term is identically zero since

(H~)„h ——0. In the second order there are three
possible terms of the form 2:0, 1:1,and 0:2, where
m:m' denotes the number of H& factors coming
from U(t, O) and Ut(t, O), respectively. We consider
the 1:1 term,

t
1:1= g f dte' + " "'+ 'f dt) f dtgg(k'~ (H)(t))ckck~qH~(t2))ph

~
k'+q), (2.21)

where the bracket ( )„h represents a trace over the phonon Hamiltonian. The matrix element in the integrand
factors as

2&k'1&H1(tl)ckck+ Hl(t2) &ph I
k'+q &

=Jogg gkj s (k'
~
c; (t))ct+s(t~)ckck+qcj(t2)cj+s (t2)

~

k'+q)(e "+ ' e JJ+ e—)ph,
k i5 js'

(2.22)

where we have defined

&, +s—=0 —0+s. (2.23)

Expanding the Wannier operators in terms of their band counterparts and calculating the particle matrix ele-
ments above we find

g&k I
c (ti )c;+s(t i )ckck+qcj (t2)cj+s'(t2)

I
k +q &

k

i ( k —k ') ~ ( R —R ) ~ g. 5 ( g ~+~). g t —i(6/i —6g)t~ i(+It GIt;i )t2
e ' ' e' e' ~ '

e e +' +'
k

(2.24)

(2.25)

We find the result

The phonon expectation value is easily calculated by expressing the trace as a product of traces over each nor-
mal mode qk and using the harmonic time dependencies

Hot t IHot f i~ gt iHot —iH()t —q
e ' a &e

' =a &e
' , e a &e =aqze

q j)I,

(e "+' ' e "+' ' ) h
——e exp ——g(1+nqk)fqk(t& t2)+nqgqk(tt ——tz)iX. - (t ) iX .(t2) —2S

qA,

where we have defined

nqk =(e q 1), —fqk(t) =yqk(Rt —Rj, 5, 5 ')e

(2.26)

(2.27)

2COqg

At this point we adopt an approximation consistent with the existence of the small polaron. We take the nar-
rowed bandwidth to be much smaller than an average phonon frequency appearing in the correlation function
(2.26). Thus

(( N~, kT. (2.28)

This condition is equivalent to the physical situation in which the particle is unable to tunnel away from a site
before the polaronic state with its accompanying lattice deformation forms, and allows us to approximate the
time-dependent exponentials in Eq. (2.24) by unity. The summation over k may then be performed and Eq.
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(2.21) becomes with R; —RJ ———5,
—S 2

11= Jpe e' ' e'q' dt e +''k'(5+5') ~ 5' ' I+ k' k'

N k

t t 1
)& I dt/ J dt2exp — g(1+nq/, )fq/„(t& t2—)

qA,

+nq/, fq/„(t, —tq) —1 . (2.29)

Finally, we note that by far the largest term con-
tributing to the 5' summation above is 5'= —5.
In the limit 6'k E'k+q~0 this is a rigorous identi-

ty, and further this is the only term for which the
band narrowing is canceled at short times. All oth-
er terms are smaller by a factor O(e ). Retaining
just this term and integrating by parts, we recover

these is found in the Appendix, so we merely sum-
marize our results here. Under the condition of
narrow coherent bandwidth specified in Eq. (2.28),
the neglect of small terms which do not cancel the
band narrowing at short times, and for values of
co &(coD, we find that in 2nth order

„1 1

i(co—+ek ek+q)—

where we define

p(to) =(Joe )

dte' ' exp 2S t

+exp[2S'(t) ]—2I,

(2.30)

(2.31)

g(1 —e ' " )p(co )

5
X —l(co +ek —k+q)

(2.33)

Thus the entire perturbation series may be summed
to yield

1
Gq(co )= y —l (co + E'k —e/, +q )

k

+p(t0)g(1 —e ' " '
)

5

X[(1+nq/)e "+nq/„e
' "].

In keeping with our earlier approximations we have
k' k'+set e +' =1 in the final Fourier transform.

A similar analysis applied to the two other second-
order terms yields

T2 =—2:0+0:2+1:1

1 (1—e ' q '
)p(co )

N ks [—/(~+ek —ek+q)]

(2.32)

Under the same approximation used to derive Eq.
(2.32), the odd-order terms in the perturbation series
may be shown to be small. In fourth order there are
five different terms of the form 4:0, 3:1, 2:2, 1:3,
and 0:4. An illustrative calculation of the first of

Gq(~ )~ COD7 ))1
ico+pg(1 ——e 'q s)

5
(2.35)

where p is the usual temperature-dependent stochas-
tic jump rate calculated in the second order of
time-dependent perturbation theory. Then Gq(co) is

(2.34)

This equation is the fundamental result of our cal-
culation.

Let us consider the limits of this in various re-
gimes of temperature. In the high-temperature lim-
it the band energies ek —+0 exponentially with tem-
perature. Then so long as the jump rate between
sites remains small on the scale of coD, we may set
p(co ) =p(0) =p for frequencies of interest in the dif-
fusion process. Then
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just what would be derived from a straightforward
application of rate equations for the site-probability
density. The pole on the imaginary axis in the co

plane indicates the purely stochastic nature of the
propagation in this limit. The diffusion constant is

D=zp5 /6, (2.36)

where z is the coordination number of the lattice.
In the opposite limit of low temperatures we are

also justified in setting p(co)~p(0) so long as the
polaron bandwidth is narrow compared to charac-
teristic lattice energies. Since the stochastic jump
rate vanishes as T as T~O, we recover the result
for purely coherent motion,

Ge(co)~ —g1 1

—t(C0+Ek —ek+') (2.37)

as also found by Holstein. ' Equivalently, we note
that Gq(t) can be written as the product of a
coherent and a stochastic factor,

G (t)=—g
k

Xexp ptg(1 —e' ' —)
S

(2.39)

Thus the decay will be governed by the factor with
the most rapid time dependence.

To illustrate the manner in which the transition
occurs it is instructive to derive the form of the
real-space site correlation functions for the particu-
larly simple case of motion over a simple cubic lat-
tice. With

ek =2J,tt(cosk„5+ cosk~5+ cosk, 5 ),

J,g=Jpe
—S

(2.40)

the sum over k may be converted to a product of
three equivalent integrals, yielding

Here the poles lie on the real axis, characteristic of
coherent propagation. At intermediate tempera-
tures the pole positions will be complex, corre-
sponding to a mixture of coherent and stochastic
processes.

The transition between coherent and stochastic
motion occurs at a temperature T* where the real
and imaginary parts of the pole positions in Ge(co )

become roughly equivalent, i.e.,

(2.38)

q;5
Ge(t) =g Jo 4J,ttt sin

i=1

Xexp[ 2pt—(1—cosq;5)], (2.41)

where Jo is the zero-order Bessel function. We also
write

exp(2pt cosq;5) = g I„(2pt)cos(nq;5),
n= —oo

(2.42)

(2.44)

gn; Zj Jn yn (2J&tt.t )I„(2pt )e
n= —oo

In particular, the autocorrelation function is
'3

G;; (t) = g J„(2Jfft)I„(2pt)e

(2.45)

Both limits J,ff~0 or p —+0 are contained in the pa-
per of Kudinov and Firsov, "while the general case
involving both stochastic and coherent motion is
new. In the mixed regime where p &J,ff, the decay
of the autocorrelation function is predominantly
diffusive in that the arguments of the modified
Bessel functions change more rapidly with time and
G;;(t) is dominated by a diffusive t ~ tail. In the
opposite limit Jdf &p the argument of the ordinary
Bessel functions changes more rapidly and the auto-
correlation exhibits a more rapid t decay. Thus
condition (2.38) effectively sets the boundary be-
tween the two types of transport.

III. NUMERICAL CALCULATION
OF THE MEAN TIME OF STAY

We have defined the mean time of stay in Eq.
(2.15). A numerical calculation of r, has been made
in two steps. We have first calculated r, (p,J,tt) as a
function of the variables p and J,ff on a suitably

where I„ is a modified Bessel function of imaginary
argument, and we define the vector distance be-
tween sites i and j as

Rt RJ =5 ( 1l i t + tt 2J +tt 3 k ) . (2.43)

Then using Eq. (2.13) the integrals over q; are
evaluated, yielding the final result

3

G; (t) = ffg„ (t),



26 TRANSITION BETWEEN COHERENT AND STOCHASTIC MOTION. . . 6537

chosen mesh. Second, we have calculated the
parameters J,ff(T) and p(T) as a function of tem-
perature for a given set of model parameters J0 and
E„and then interpolated to find ~, . For ease of
numerical approximation all work was performed
assuming a simple cubic lattice. However, when ex-
pressed in terms of slightly renormalized parame-
ters, e.g., bandwidth, the results should also be ap-
propriate for other Bravais lattices.

In the first step r, was calculated by integrating
Eq. (2.41) over q; and t using the Simpson rule. A
numerical approximation for the zero-order Bessel
function' was employed, and the time integration
was extended to a sufficiently large value of t=T
such that the integral between T and ao was negligi-
ble. For p &J,ff the reduced time variable 4pt was
chosen and 4pr, was calculated as a function of
Jeff /p & 1. For J,rf )p the reduced time variable
was 4Jcfft and 4J,ffr, was calculated for a ratio
p/J, ff & 1. In the first case 4pr, decreased smooth-
ly from approximately unity at J,ff=0 to about
0.65 for J,rr=p, while in the latter case 4J,fry, de-
creased smoothly from about 1.4 at p =0 to 0.65 for
p Jeff

To calculate J ff(Tc) and p(T) we have adopted a
Debye approximation for the phonon spectrum.
The band-narrowing factor was approximated as

8/T
S(T)=6(E,/8)( T/0) f dz z coth(z/2)

0

= 1.5(E, /8)+12(E, /8)(T/8)
8/TfX dz e' —1

where for all longitudinal modes we have set

(3.1)

a=
2qz

2
. 2 q'5 qA,

sin —
22 coD

(3.2)

The first term in Eq. (3.1) is due to the zero-point
motion. The second temperature-dependent term
was evaluated analytically by extending the upper
limit to Do and then subtracting a correction by ex-
panding (e'—1) ' in a power series of up to 15
terms in e

In the calculation of p (T), the reduced time vari-

able x=coDt was used, together with a reduced

jump rate p/coD and reduced tunneling matrix ele-

ment Jo/8. The q integration in Eq. (2.31) for
S(t) was performed analytically using similar tech-
niques to those employed in the evaluation of the
band-narrowing factor. The calculation of the

remaining time integral was done using 10000-
point Simpson-rule quadrature out to X,„=100.
Care was exercised to minimize the error due to the
cutoff by first analytically calculating the one-
phonon term (equal to 0) and the two-phonon term
(which varies as T at low temperature) without the
truncation. The truncation was then applied only to
the multiphonon (three or more) contributions to
p(T). Such a treatment is necessary because of the
extremely slow [(sinx)/x] falloff of S(t) at large
times. With this subtraction, the integrand falls as
[(sinx )/x] for large times so that the truncation er-
ror is negligible.

In the case of p (T) we found the jump rate to be
dominated by two-phonon processes for T/0 (0.1

with multiphonon events contributing typically less
than 10%%uo of the total. As expected for smaller
values of E, /8 the range of temperature dominated
by two-phonon processes was considerably larger.
These results seem to be slightly at variance with an
earlier calculation of Stoneham. ' In the high-
temperature limit T/8) 0.5, p (T) exhibited the ex-
pected activated behavior with an activation energy
close to the predicted value E, /2, but with a sub-
stantially temperature-independent prefactor. This
activated form obtains only for sufficiently large
values of E, .

Calculations for the reduced mean time of stay
coDr, were performed for parameters ranging
over 0& T/8 & 1.5, 10 &Jo/8& 1, and
0.5&E,/8&10. We show only typical results in

Figs. 1 and 2. As mentioned earlier the peak in the
residence time is indicative of the transition between
stochastic and coherent behavior. This occurs typi-
cally for 0.3 & T /8&0. 7 for reasonable values of
phonon coupling and bandwidth. For a Debye tem-
perature 8-300 K our choices of J0 correspond to
J0-0.1 and 1 meV, thought to be roughly charac-
teristic of positive muons in metals.

Our value of T* is in line with the original esti-
mate of Holstein, ' and is undoubtedly a feature of
the polaronic model we have treated. There are,
however, several other effects neglected in this
model that act to depress T*. One of these is dis-
cussed in the following section.

IV. EFFECT OF QUADRATIC
PHONON COUPLING

Comparing Figs. 1 and 2 one immediately notices
a result that follows quite generally from a linear
coupling model —a smaller value of J0 leads to a
higher transition temperature T*. Thus one is led
to the seemingly parodoxial conclusion that in a
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FIG. 1. Mean residence time as a function of tempera-
ture. The curves correspond to various values of the po-
laron binding energy for a fixed rigid-lattice tunneling
matrix element Jp/8=0. 04.
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FIG. 2. Mean residence time as a function of tempera-
ture for Jp/8=0. 004.

defect-free material coherent motion is more favor-
able in extremely narrow bandwidth situations.
This follows directly from Eq. (2.38) since for
fixed-lattice relaxation energy, the left-hand side de-

creases linearly with Jo while p(T) decreases pro-
portional to Jp. Thus T* must increase to maintain
the equality. Stated another way, we note that the
stochastic jump rate is essentially the decay rate of
a coherent state. ' Thus this decay rate decreases
faster with decreasing Jo than the corresponding
linear decrease in single-particle bandwidth.

This fact led Kagan and Klinger to investigate
other mechanisms that can limit coherent propaga-
tion, but that are independent of the small parame-
ter Jp. They introduced the idea of the "dynamical
destruction of the band" through phonon interac-
tions that are ignored in the usual linear-coupling
model. As one example of such interactions, con-
sider the full Taylor-series expansion for the poten-
tial energy of the interstitial as a function of the

pionic positions RN ——RN+ uN. Thus,

V(IRN I)= Vo+guz VNVo
N

1 + +

+ ~ g U~'V~V~ Vo'U~ + ' ' '

N, N'

(4.1)

The first term gives rise to the periodic potential
in the static lattice. The second is the linear phonon
interaction that we have previously treated. The
third and higher-order terms, while usually not con-
sidered important in other contexts, can be essential
for the mechanism of light interstitial transport
since they may lead to scattering rates for coherent
states that are large compared to typically narrow
bandwidths. The most important term at low tem-
peratures is the quadratic interaction that leads to a
two-phonon scattering process. Kagan and
Klinger also considered a further two-phonon in-
teraction that results from a virtual excitation of
the interstitial particle to a higher state. In either
case one finds the same temperature dependence for
the scattering rate, so we do not discuss this second
mechanism further.
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After reexpressing the interaction in terms of
canonical phonon-displacement operators and tak-
ing matrix elements with the interstitial wave func-
tion on a given site (Condon approximation), one
finds an interaction of the form

1 —i(q —'q ') R;U= —gg+CU (q, q')e 'u~~uq~n;,
q~qV

(42)

10 I l I
l

I
l

l
1

~

10-

where C~x (q, q ') is a coupling energy whose mag-
nitude depends upon microscopic details, but whose
wave-vector dependence for small wave vectors is
known. If we add such a term to the Hamiltonian
(2.1), we can perform a canonical transformation
similar to Eq. (2.3), but with g~x altered so that the
total linear phonon interaction vanishes in the
transformed Hamiltonian. The net result of the
transformation is then to generate an H' similar to
Eq. (2.4) but with an additional term (4.2), where
the u&~ refer now to the displaced oscillator coordi-
nates. The definition of E, and the P; are of course
altered, but the functional form of the latter (depen-
dence on p&~) is unchanged.

The physical effect of the new term is apparent
from Eq. (4.2). The phonon interactions lead to a
site-diagonal dynamical disorder of the interstitial
energies that cannot be eliminated by canonically
transforming, in contrast to the site-diagonal
linear-coupling term. This dynamical modulation,
if sufficiently strong in comparison to the band-
width, serves to destroy coherent tunneling process-
es. Because the time dependence U(t) induced by
Ho is rapid on the time scale of interstitial motion
we may to a good approximation calculate the life-
time of a coherent state from second-order time-
dependent perturbation theory. This calculation has
been done before ' for a Debye phonon spectrum so
that we merely summarize the result here. The
scattering rate is found to be

8
v(T) =constX f dco co csch (pea/2) (43)

0

This may be parametrized as

v(T) =vocopf(T!8), (4.4)

where vo is a dimensionless measure of the scatter-
ing rate at T =8 and f(T/8) is a universal func-
tion of temperature with f(1)=1. The numerically
calculated value of f(T/8) is shown in Fig. 3. In
the high-temperature limit we have f(T/8) ~ T,
while in the low-temperature limit f(T/8) ~ T .
This limiting behavior at low temperature is only
reached for temperatures T(0.18. We also re-

-210-

-310-

10-

10
0 0.2 0.4 0.6 0.8 l.O f.2 l.4 l.6

T/8

FIG. 3. Normalized two-phonon scattering rate

f ( T/8) as a function of temperature.

mark that v(T) can have a different temperature
dependence in crystals with several equivalent sites

per unit cell.
Let us now investigate the effects of v(T) on the

coherent portion of the density-density correlation
function. We consider this in a spirit similar to that
adopted in treatments of motional or exchange nar-

rowing in NMR theory. " This yields results essen-
tially equivalent to the earlier calculation of Kagan
and Klinger but is more transparent in the earlier
context of the linear-coupling model. We expand
the coherent portion of the correlation function out
to second order in time,

—ge +' =—g I+&(&k &k )&—'(&k-'k

xk k

«k —&k+s)' ~ +» ~ »

2

(4.5)

The term linear in t vanishes, while in the presence
of rapid scattering,

—,t ~ t —w &dan, (4.6)

where the correlation function g(r ) is the probabili-
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ty that the interstitial particle remains in its initial
state at time ~. Thus,

00f (t r—)P(r)drat f P(r)dr=t/v . (4.8)

(r)=e (4.7)

If the scattering rate v is large on the scale of the
bandwidth we have

The decay of the "coherent" correlation function
then proceeds stochastically through repetitive
scattering, its phase coherence essentially destroyed
after a single scattering event. Thus

0 t—ge ' '+' ~exp — g—(ek ek —) (t r)g—(r)dr
k k

exp ——g(ek —ek+&) t/v1 2

(4.9)

Finally the sum over k can be done using the defi-

nition of the single-particle energy-level equation

(2.10),

g(e„—e„+,)'—=2J,'„g(I e"')—.

p, =—2J,g/v . (4.11)

Then under conditions of rapid intraband scattering
vp&J, ff we find the total density-density correla-
tion function to be

(4.10)

We define a "coherent" jump rate between neigh-
boring sites,

v(T, )-J,tt . (4.14)

T, is thus a decreasing function of decreasing
rigid-lattice bandwidth.

To illustrate this behavior we have performed a
numerical calculation of the mean residence time ~,
appropriate again for a simple cubic lattice. In the
limit of diffusive motion we have from Sec. III,

I

Jo, T* is independent of the rigid-lattice bandwidth
and dependent only upon linear and quadratic
lattice-coupling energies. Thus the depression of
T* due to quadratic coupling is more severe for the
smaller bandwidths. The actual transition to a true
coherent bandlike behavior of the particle will of
course occur at a still lower temperature T, where

G~(t) =exp —(p, +p, )tg(l —e' q '
)

y
=4(p, +p, ) . (4.15)

(4.12)

p, (T*)=2J,tt/v(T*) . (4.13)

Since both sides of this equation are proportional to

where p, is the stochastic jump rate p calculated in
Sec. II. Thus the particle motion is purely diffusive
but with a jump rate that is the sum of those deriv-
ing from the "coherent" and stochastic portions of
the linear-coupling-model correlation function. In
the opposite limit v «J,~~, the coherent diffusion
returns smoothly to the true coherent bandlike form
evident on the left-hand side of Eq. (4.5).

The interesting behavior of Gq(t) derives from
the totally opposite temperature dependences of p,
and p, . In the high-temperature regime dominated
by p, the particle moves slower as the temperature
decreases, while in the lower-temperature regime
dominated by p, the particle moves faster as the
temperature decreases. The transition between these
two types of behavior is thus again marked by a
peak in the mean residence time ~, . This peak oc-
curs at a temperature T*, where

To treat properly the transition around the tempera-
ture T„we have used an interpolation formula
based upon previous results,

z, '=4p, +8J,ff/(v+2' 2J,ff) . (4.16)

In the limit v —+0 we recover essentially the mean
residence time calculated in Sec. III, while in the
limit of large v Eq. (4.15) results. We have used as
adjustable parameters Jo, E„and vo. In Figs. 4
and 5 we display illustrative results for a fixed value
of the lattice-relaxation energy E, /0=4 and two
values of the tunneling matrix element differing by
a factor of 50. The lattice relaxation energy and the
tunneling matrix element Jo ——8 X 10 8 corre-
spond roughly to a fit of high-temperature pSR
data in Cu.""

One sees immediately the features mentioned in
our previous discussion. The first effect of the
two-phonon scattering rate is to depress the tem-
perature T to a common temperature independent
of Jo, so long as the value of vo is large enough that
this temperature is lower than that derived from the
linear coupling alone. The residence time ~, for the
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bution can vary as T, and even single-phonon pro-
cesses may occur with a linear temperature depen-
dence. These results depend crucially upon the de-
tailed form of the phonon coupling. However, if
present, they clearly enhance the low-temperature
stochastic processes while leaving the coherent pro-
cesses relatively unaffected. This acts to lower T'.

With regard to the second effect, it is well known
that crystalline defects can produce relatively long-

range strain fields. In finite concentration the su-

perposition of defect strain fields acts to render
neighboring interstitial sites slightly inequivalent in

energy. Except in the immediate environment of a
defect, the effect on stochastic propagation is
minimal so long as the energy inequivalence 6, be-

tween neighboring sites is small on the scale of kT
and hcoD. However, the effect on coherent tunnel-

ing may be such as to almost completely destroy it.
For example, if two nominally equivalent sites with
tunneling matrix element J,~f acquire a strain split-
ting 6„ the effective transition rate for 4, »J,ff
becomes

tc -~erri~s2 (5.1)

This clearly has the effect of depressing the
coherent processes and hence reducing T*.

In this connection it is interesting to note that if
the decline in the spin depolarization rate measured
for positive muons in Cu (Ref. 18) at low tempera-
tures is indicative of coherent motion, the use of
Eqs. (5.1) and (4.15) to estimate r„ together with
the estimated value of disorder 6, -5 pV, leads to
rough agreement with the experimental depolariza-
tion rate below 1 K. Further evidence for the im-

portance of lattice disorder stems from the observa-
tion that a different, less pure Cu sample exhibited
a significantly higher depolarization rate at low
temperatures. ' However, in the purer sample the

temperature dependence of the depolarization rate
above 1 K is still not understood. This is perhaps
indicative of the fact that a satisfactory treatment
of diffusion processes in the presence of static lat-
tice disorder has not yet been developed.

In conclusion, under the stated limitations of the
theory, we have developed a comprehensive picture
of the transition between coherent and stochastic
behavior of a light interstitial particle based upon a
polaronic transport model including both linear and
quadratic phonon couplings. The theory agrees in
detail with previously known limits at both high
and low temperatures, and also passes smoothly be-
tween these extremes. We have focused attention
on the temperature dependence of the mean
residence time v, since this single parameter is
perhaps the best single indicator of interstitial
motion in both the coherent and stochastic limits.
For a Debye phonon spectrum the analytic theory
has been supplemented with numerical calculations
of ~, using a wide range of model parameters. For
positive muons the transition temperature between
coherent and stochastic processes is typically found
to be a significant fraction of the Debye tempera-
ture. However, this estimate is contingent upon the
neglect of the two effects discussed above, and will
probably be significantly lower in real physical sys-
tems.
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APPENDIX: CALCULATION OF FOURTH-ORDER PERTURBATION TERMS

To illustrate the manner in which perturbation series (2.33) is constructed and the conditions under which it
is valid, we calculate below the 4:0 term. We adopt from the outset the approximation in which the slow-time
dependence of the internal particle operators is ignored in comparison to the fast-time dependence of the pho-
non operators. For bandwidths that are small compared to kT we have

4 &
" i(~+&a —&a+q~'4:0=J0— dt e

dr, f dr2 dr3 dr~ g g (k'
i
c c;+scjcj+s ct cl+s" „c,+s'" g

0 0 0 0 .
I 5 5 5- 5l,J, , 7l
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The particle matrix elements above are trivially calculated as

&k'
I ct ' ' '

&k+q I
k'+q &

=—e' " '"
5k, k'5j, i+55j+O', 151+5",n

i k.(5+ 5 '+ 5 "+5 '")
(A2)

The sums over site indices n, I, and j in Eq. (Al) may then be performed. The remaining summation over i
yields a factor N since the phonon expectation value is independent of the site index i. After reversing the
signs of 5 and 5 ' we recover

4 ~ ~ ~("+'k —'k+ "40=J —g f dte
N k

t t3

X f '«, f '«2 f, '«3 f, «4 X
7 t

Q'5+5, 5,(tt) Si, t 5',0 2 —S)

iXp g (t3) Sgl Xg" $"+$"' 4 —Sh Xy(e ' —e )(e ' —e ) tpv

(A3)
The dominant term in the summations over nearest-neighbor distances corresponds to the condition
5+5'=5 "+5"' above. This choice is the only one that cancels the band-narrowing factor at short times
and is also a rigorous selection rule in the limit of small coherent bandwidth.

The phonon expectation value may be calculated by forming the trace as a product of traces over each mode
qA, , expanding exponentials for each mode out to 0(X ) and then reforming the final product into an ex-
ponential again. We calculate here just the product of the four time-dependent terms in Eq. (A3). The correc-
tion due to the remaining terms multiplied by powers of e may be derived by straightforward techniques,
and we shall indicate their effect at the conclusion. We find

i' gt gt(t& ) gXgt p(f2 ) l'Xp hatt(t3 ) ]Xgtt $tt+$tt (E4) g(e + e ' e ' e '
1&h

=e exp —g [(1+nqk) [fqk'(t &

—t2) —fqk'(t & t3 ) +fq~'—(t
&

t4)—1

qA,

+fql. '(t2 t3) fqk (t2 t4)+fq~ (t3 4) j+nq~[c'c' jl (A4)

where c.c. indicates the complex conjugate, and we define

fqz'(r ) =yqz(O, 5, —5 ')e ", fqz'(r ) =yqz(5+ 5 ', —5, 5 ")e

f,k (r) =y,k(o, 5"',5). ",f,'k'(r) =y„(O,5,5")e

flak'(r) =yqk( —5 "—5 '",5 ', —5 "')e'"'", fqk'(r) =yqk(0, —5 ",5 '")e "'".

We insert this result into Eq. (A3) and perform two integrations by parts on the t variable, finding

(A5)

i(N +6k —E'k+ )f
g—S4 ~ QQ e f

4 O=(Joe ) —g g 5s+s, s"+s- dt
2 d~2

0
d~3

N [ l (N+ keek~q)]

&&exP X[(1+nqk)lfqz (r2) fqk (t r3)+fqiL (t)+fqA(t r2 r3),
qA,

—flak'(t —&2)+fqk'«3))+nqk[c. c ]I

(A6)
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We now show that the middle four terms in the second set of square brackets above may be approximately
set to zero in calculating the remaining time integrals provided that

i
to+ok Fk+—q i

«co, where co is an aver-

age phonon frequency. To prove this we first integrate once more by parts on the t variable. There are two

types of terms that result —the first (I) from differentiating the upper limit of the r3 integral, and the second
correction term (II) from differentiating the exponential inside the integrand. Dropping the leading multipli-
cative factors in Eq. (A6) we get

i ( c'o +ek —ek + )t

I=f "dt
[ i(—co+ok —ek+q)]

X f dr2exp g[(1+nqt, )[fqx(r2) f z—(rz)+f t„(t)+f t„(0) f t„(t——r2)
qA

+f (t —'72)]+ n [c c ]]. . (A7)

and

i(co+ok —eI, + )t

II= f dt
[ i(~+—&k ek+ )—]'

X f dr2 f dr3exp —g I (1+nqx)[fqt„'(r2) fq~'(t —r—3)+fqt, '(t)
qi,

+fqA(t r& r3. ) flax'(t —r2)+fqx'«3)]+nqx[c. c ] I

X—g j (1+n„)iso„[—f,",'(t —r3 )+ft'x'(t)

+f,",'(t —r, —r, ) —f,",'(t —r, )]—n„i~„[c.c.]I . (AS)

We now perform another parts integration on the correction term II. There are again two terms~ne from
differentiating the r3 upper limit, and the second correction term from differentiating the exponential

i(co+ok —ok+ )t

II=f dt
[—t (+e'k Ek+q )]—

X f dr@exp —g[(1+n )[f'x'(q2) —f' (xr )2f+'g'(t)+f'f(0)

fqt. (t r2)+fq—t,'(t —r2—)]+nq~[c c.] I

X —g (1+n,t„)—+ ~k —~k+q+~pX

X [ f~t (r, )+f~t,'(t) +—f~~'(0) f~~'(t —rz)]+ nt &
— [c.c.] ++ ~k —~k+q —p~

(A9)

where the ellipsis stands for a second-order correction. Under conditions where
i
co+ek —ek+q i «~t t. above

we may set

QPpg =+1.
+~k ~k+q+pA,

(A10)
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Since the typical phonon frequencies above, when weighted by their occupation probabilities, are of order kT
or boa, this replacement is valid provided coD~, gal and kT~, y&1. Notice then, that, apart from the second-
order correction term, the sum over pA, in Eq. (A9) is nothing more than the negative of the four terms in

square brackets of the argument of the exponential.
The second correction term in Eq. (A9) may be similarly integrated by parts subject to condition (A10), and

this process may be continued up to infinite order in the parts integrations of successive correction terms. It is
then easily shown that the infinite number of terms resulting may be exactly summed to an exponential series
that completely cancels the four middle terms in the first set of square brackets in Eq. (A7). Thus

4:0=(Jpe )—g41
N

l (co+6k —6k+ )t
00 e

Xg g ~s+s', s"+s dt
k 5,5', 5",5"' ( —t ( +~k Ek+q —) 1

X d~2exp — 1+nq~ q~ ~2~+ q~' t —~2 +nq~ C. C.
0 Nq~

(A 1 1)

Finally we note that the dominant terms in the remaining sums over nearest-neighbor distances will be
those that cancel the band-narrowing factor at short times if the lattice coupling is sufficiently strong, i.e.,
S»1. This requires 5+5 =0. Keeping only this contribution and noting that the remaining double in-

tegral is in the form of a convolution, we find

i(co+ok —ek+ )t

4 0 (~ )
1 ~ ~ /'

d d
2($( 2)+$(t —2)],e —~ ~„ t 72eN k s,s- l —t(tp+~k —kk+q)]

(M +Ek Ek +s )

k s,s" [ t (tp+~k &k+q)]
(A12)

where we define

~(rp ) (I e $)2 dt eight(e2$(tj 1 )
0

(A13)

It is easily verified, and we state without proof,
that the effect of a similar mathematical treatment
of the terms involving only 2 or 3 internal times in
Eq. (A3) simply leads to the replacement
e "~e "—1 as we have indicated in Eq. (A13).
As such Eq. (A12) clearly represents a portion of
the n =2 term in Eq. (2.33). The calculation of the
other terms in fourth order is slightly more compli-
cated due to the different ranges of time integra-
tions when two time-ordered products are expand-

ed, e.g., for the 3:1 or 2:2 terms. However, an ex-
actly analogous treatment of these shows the final
result to be that given by Eq. (2.33).

Calculation of higher-order terms is considerably
more complicated and time consuming, since there
are N(N —1)/2 distinct internal time differences
contained in the Nth-order phonon correlation func-
tion. Nevertheless, the general term of Eq. (2.33)
has been verified out to sixth order so that there is
little doubt that Eq. (2.34) is a correct summation of
the dominant terms in the entire perturbation series
at frequencies and coherent bandwidths subject to
the restrictions of Eq. (A10).
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