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We present a treatment of crystals containing point defects in which deviations from ran-

dom defect distributions are taken into account. Known averaging procedures which

presuppose randomness of atomic disorder are generalized in order to deal with defect site

correlations. The quasicrystalline-approximation-type theory obtained if the pure host

crystal is taken as the reference system (which is applicable only to the case of low defect

concentrations) is generalized by taking a {random) defect crystal as reference system. This

allows a treatment of site-correlation effects also in materials with high defect concentra-

tions. The method is applicable to solid solutions with an arbitrary number of components.

For crystals with correlated defect sites, average Green's functions {no atom type specified

at any lattice site), and conditionally averaged Green's functions (atom of a specific type—
host or defect—at a certain site) are calculated. These two types of Green's functions are

then used to determine scattering functions, dispersion curves, and fluctuations at host and

defect sites. As a direct application to experiment the method is used to calculate explicitly

the change of the polarization of a displacive ferroelectric due to defect site correlations.

Realistic correlations are shown to lead to considerable T, shifts.

I. INTRODUCTION

At present there is a growing interest in systems
with atomic disorder, e.g., in crystals whose transla-
tional symmetry is disturbed. Important examples
of such systems are solids containing point defects.
The primary effect of such defects is a change of
the normal modes and the eigenvalues of the lattice.
While a single defect produces only a localized per-
turbation of the states (cf., e.g., Refs. 1 and 2) corre-

sponding, e.g., to localized vibrations, a finite con-
centration influences the global properties of the

crystal. ' '
The eigenstates of a crystal with many point de-

fects depend on the arrangement of defect positions.
Since the latter are not knownsinc, e, furthermore,
the equations of motion for a special defect arrange-

ment can, in general, not be solved, and since, final-

ly, measurements yield in good approximations
quantities averaged over an infinite crystal, one ap-

plies averaging procedures like the virtual-crystal-

approximation (VCA), the average —T-matrix ap-
proximation (ATA), the coherent-potential approxi-
mation (CPA), and the quasicrystalline approxima-
tion (@CA) (for a review cf. Ref. 9). The basis of
these different procedures is the realization that the
observed intensive properties of the crystal represent

averages, the extensive ones sums over an ensemble

of many subscystals into which the original crystal

may be divided (the subcrystals being large enough

to contain many defects). To calculate these sums

and averages the distribution of the defect configu-

rations has to be given. While usually equal proba-
bilities were assumed for all configurations, we

shall, in the present paper, consider the influence of
deviations from such randomness, i.e., of defect site
correlations. We shall assume that the defect distri-

bution is not in thermal equilibrium (i.e., not an-

nealed) with respect to the Hamiltonian employed

to describe the lattice dynamics. Rather it is deter-

mined "from the outside" by specifying defect site
correlations which correspond to additional defect
interactions different from those allowed for in the
Hamiltonian (quenched nonrandom distribution). '

To include these defect site correlations, the es-

tablished averaging procedures (VCA, ATA, CPA)
have to be generalized in such a way as to permit
the calculation of the average Green's function for
crystals with site-correlated defects. If one starts
from the perfect host crystal this procedure leads to
a QCA type of equation which is valid only in the
limit of small defect concentrations. In the present
treatment this restriction is dropped by using a sys-

tem with a random defect distribution as reference

crystal. This leads to a more complicated method
for determining the respective Green's functions.
From these, quantities like the frequency spectrum

may be determined. In addition, conditionally aver-
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aged Green's functions are of interest from which,
e.g. , fluctuations at defect or host positions may be
calculated. These are obtained by averaging over
those configurations only, in which a certain posi-
tion is occupied by an atom of a given type. The
utilization of these Green's functions is discussed.

In Sec. II the model is presented and the standard
averaging methods are discussed. A generalization
of the QCA in such a way that the virtual crystal
(VC) is used as reference crystal is developed in Sec.
III, and conditionally averaged Green's functions
are determined in Sec. IV. In Sec. V the general
scheme is applied to an anharmonic (ferroelectric)
solid solution. The results are discussed in Sec. VI.

unit cell, the displacement vector

it~ =(it~ i, . . .,Q~ d )

of the unit cell n is thus a vector in a (d Xs)-
dimensional vector space Xz. All displacements to-
gether form a vector of a vector space X~ 8Xz, the
dimension of X~ being given by the number N of
unit cells.

The influence of defects is described by an addi-
tional potential" V--n. In compact notation the
equation of motion for the Green's function of the
defect crystal is, then,

g (P- -„—co m5- -„—V- -„)G-„-=5-- .

II. VCA, ATA, CPA, AND QCA

The Green's function P--„,"(co ) of an ideal,

harmonic lattice is defined by

(P - . .—co m 5 5")P ~
——5 -5k,2

m n, ij m n &J np,jk In p
n,J

6 and P are connected by the Dyson equation

G =P+PVG . (2.2)

For a fixed V, i.e., for a definite arrangement of de-
fects, G could in principle be calculated from Eq.
(2.2). For diagonal disorder V simplifies to

(2.1) V -=V-5 =Vs 5-mn m mn m mn (2 3)

with force constants P - -„," and atomic masses m;.
From now on, scalar lower indices like i which
enumerate atomic coordinates within the cells are
omitted. The cells are specified by subscripts like
m. For a d-dimensional lattice with s atoms per

The defect configuration is specified by the occupa-
tion numbers r- which are 1 if there is a defect at
m and 0 otherwise. (G) is obtained from a series
expansion of Eq. (2.2) by averaging over all configu-
rations as follows:

&G--„&=P--„+gP- -„(V, )P-„-„+ g P- „(V-„P-,-„V-„)P-„„+
V) V), V2

(2.4)

For random distributions this is correct up to linear
terms in V. In higher-order terms there are devia-
tions: In the quadratic contributions, e.g., the
right-hand side of

( - -„)=c —(c —c)5- -„= 2 2

is replaced by c, the square of the concentration of
defects. Replacing P according to Eq. (2.1), making
use of the approximation (2.5), and summing the
series in Eq. (2.4) one obtains

(G)=[/ —(mco'+(V))I] ', (2.6)

with ( V-„)= ( V).
In ATM, certain partial sums of Eq. (2.4) are cal-

culated before carrying out the decoupling approxi-

In VCA one makes the replacement

«-„,V-„, . V-, )-«-„,&«-„,& «-, &.

(2.5)

&G) =P+P(t)P+P(tP't)P (2.7)

A decoupling procedure similar to Eq. (2.5) yields
an expression for (G) which is correct to second
order in t and at least to the same order in V. Intro-
ducing the average T matrix for the interior terms
according to

(t)+&t)P'(t)+ =(t&(I—P'&t))-'

=&T&, (2 g)

I

mations for the averages. Introducing the one-
particle T-matrix

t„=V (1 Po o V„)—
l

(by summing terms with equal subscripts v;) and a
new Green's function

P' =P -—P 5mn mn 00 mn

(to get rid of a restriction prohibiting successive
scattering at the same defect) Eq. (2.4) can be writ-
ten in powers of t as follows:
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one obtains (cf. e.g., Ref. 9)

(G) =[/ [—mrs +X(co)]Ij (2.9)

cinity of a given defect is thus no longer equal to
the average concentration. The deviation from the
random distribution is described by a correlation
function

(2.10)

From Eqs. (2.8) and (2.10) one has

X(co)= (t )(1+P- .(co }(t) ) (2.11)

With

(t) =cV(1—P-, -, V)-' (2.12)

and Eqs. (2.9) and (2.11), the average Green's func-
tion for the defect crystal may be calculated from
that of the perfect crystal and the defect potential
V. In this approximation the self-energy X is a
complex number which depends, via P, -, , on the
frequency. The scattering of phonons at defects is
thus taken into account. In contrast to VCA, ATA
therefore yields a defect band besides the phonon
dispersion of the ideal crystal (if the characteristics
of the defects lead to localized vibrations).

The type of ATA discussed above is not sym-
inetric with respect to host and defect atoms and
leads to unphysical results for large defect concen-
trations. This kind of symmetry and an improve-
ment of the approximation is obtained if the virtual
crystal is taken as the reference crystal. The origi-
nal perturbation potential V- is replaced by
V- —( V). Thus a host cell is now characterized

by a perturbation potential —( V) and a defect cell

by V—( V). In Eq. (2.11) one has to replace P by
the Green's function Pi of the virtual crystal and

Eq. (2.12) by

(t) = c(V—( V))[1—(P, )-, -, (V—(V))]-'

+(1—c)( —( V) )[1+(P )--(V)]
(2.13}

This type of ATA yields results which converge for
c~0 and for c—+1 against the exact values. The
results of ATA can be improved by replacing, in the
expression for the self-energy, the Green's function
of the VC self-consistently by the "exact" Green's
function (CPA).

So far the averages as denoted by angular brack-
ets were always calculated for a distribution with

equal probabilities for all configurations. Owing to
interactions the defect sites will generally be corre-
lated, however, and these correlations will be dif-
ferent even for crystals of the same composition if
their (growth) histories are different —the probabili-

ty to find a second defect at a specific site in the vi-

P'--„:=(1+k--„)P (2.16)

the ATA self-energy for correlated defect sites may
be written in a form analogous to Eq. (2.11) as fol-
lows:

X=(t)[I+(P—P )(t)]-'. (2.17)

The matrix inversion can be performed by means of
a Fourier transformation (since P and P' are invari-

ant with respect to translations in the vector space
Xz) and leads to a k-dependent self-energy as fol-
lows:

X(k)= (t ) I 1+[P(k)—P'(k)](t ) I
' . (2.18)

This way of allowing for defect site correlations-
the QCA (Refs. 12 and 13)—has the advantage of
relative simplicity. A severe disadvantage is, how-
ever, its asymmetry with respect to the two kinds of
atoms. As a consequence it can, similarly as the
normal ATA, be applied only in the case of small
defect concentrations.

III. GENERALIZATION OF QCA

To obtain a description valid for all concentra-
tions the ATA is carried through with the virtual

(2.14)

(r- r-„) is the probability to find one defect each

at m and n. These correlations have to be allowed
for when the averages in Eq. (2.7) are calculated.
The simple correlation which describes the fact that
one lattice site cannot be occupied by two defects
was included above (Eq. (2.7) by introducing the
Green's function P'

~ Correlations with a longer
range can be described by a generalization of P':
Consider one term in Eq. (2.7),

(t- P- -„t-„)= (t'r- P- -„r-„)
=t'(r- r-„)P--„
=(r)'(1+k--„)P--„, (2.15)

with (t) =ct

Generalizing the definition of P' [cf. the state-
ments above Eq. (2.7)] to
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crystal as host crystal. There are, then, two types of
"defects" (1 and 2) with perturbation potentials

v'=v —(v),
and (3.1)

v'=-(v),
two occupation numbers, r' and r-, and four
correlation functions,

k"-"-„= [(r~-r"-„)(I—S--„)—(r~ )(r"„)],
c&cV

(32)
with p, v=1,2 and

2

S(A):= g A'",
P, v=1

(t') 0
(t&'

p ( 2)

P „:=[P~"-„]=[P--„(k"-"-„+1)],

one obtains from Eq. (3.6),

(t- P „t „)=S((tJP(~) ),
and from Eq. (2.7),

(3.7)

vector space Xq. Characterizing matrices in X& by
a bar [e.g., (k"')=k] and defining

2 I
7 1 T 0m m

Assuming inversion symmetry, one has

k--=k-- .21 12
mn mn

(3.3) (G) =P+PS((t &+(t fP(t &+ )L (3 g)

The average T matrix for the whole crystal is thus

(T)=S (t) g (P(t))"
Owing to Eq. (3.3) the correlation functions k--„
are interdependent:

(c')2k'-'-„=(c ) k--„
and

=S((t)(I—P(t)) ') .

Since the elements of the 2 X2 matrix

c k--= —c k--.2 12 1 11
mn mn (3.4)

1—P"(t') —P"(t')
P2i, 1 I P22, 2

&

In Eq. (2.7) P is now the Green's function of the
virtual crystal. The equations t =tv for the
one-particle T matrices have to be replaced by

2.
'm = X t"r-

v=1
(3.5)

The two kinds of defects define a two-dimensional
I

with t"=V"(1 Po 0
V")—

A decoupling procedure analogous to Eq. (2.15)
leads to a generalized I"; From

2

(t-P--„t-„)= g t"ti'P--„(r"-r"-„),
P,v=1

one obtains, with (t') =t"c",
2

(t- P- -„t-„)= g (ti') (t")P- -„(k"-"-„+1).
p, v=1

(3.6)

are themselves matrices one has to retain the se-
quence of multiplications upon forming the inverse.
Confining ourselves from now on to cases where
commutivity is guaranteed' (e.g., Bravais lattices
with cubic perturbations, crystals with one coordi-
nate per unit cell) we obtain

(T)=D-'[ «'&I+ «'&I
—«') «')(P"+P"—Zp")], (3 lp)

with

D = (I—P"(t ') )(I—P22(t') )

p12( t1)p12( t2)

X can be calculated from Eqs. (2.10) and (3.10).
Since this involves the inversion of translation-

invariant matrices the explicit result is derived in k
representation:

with

X(k)=N '(k)[(t') (+t ) —(t')(t )[P"(k)+P (k) —2P' (k)]J,

) = I —p11(ti ) —p22(t2) + (t 1 ) (t2)(pi ip22 —p12p12)

+(«')+ (t') )P—(t') «')(P" —2P "+P")P .

(3.11)
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There are two special cases for which Eq. (3.11) is
reduced to previous results:

(1) The reference crystal is, as before, the pure
host crystal with the Green's function P. Then one
has (t )=0, (t')=(t), and P"=P'. The self-

energy expression (3.11) is then reduced to Eq.
(2.18).

(2) The correlations vanish for mQn. Then
Pl'"=P' for all p, v and one obtains from Eq. (3.11)
the expression of Eq. (2.11) with the one-particle T
matrix of Eq. (2.13):

Z(k) (t &+(t
1+((t')+ (t') )[P(k)—P'(k)]

The self-energy in Eq. (3.11) is symmetric in both
types of atoms and yields the former result for
small concentrations. Another advantage of the
method just described is that it can directly be ex-
tended to solid solutions with more than two com-
ponents.

Incidentally, quite a different possibility to allow
for defect site correlations is to start from the gen-
eralization of ihe CPA introduced in Refs. 15 and
16 to handle defect clusters, and then to establish
specific pair correlations by giving appropriate
weights to the different cluster configurations.

a given site i is occupied by an atom of type v.
For random distribution of defects, (r -''-"„)

can easily be determined from (G„) by intro-

ducing, at position i, a defect of strength
V= V"—X into a system described by (G- „).
This corresponds to a single defect in a translation-
ally invariant lattice. One obtains

« -"„&=(G:-„&+«:-,&

x
V"—X

1 —(V"—X)(G;; )

(4.1)

This is no longer true if the defect sites are correlat-
ed, since then the distribution in the vicinity of i is
altered.

A different way of calculating (r ' '-"„) is to ad-

mit explicitly only those configurations in the
averaging process in Eq. (2.7) in which position i is
occupied by a v-type atom. Such averages will be
indicated by superscripts v, i on the angular brack-
ets. To begin with, the principle of the subsequent
calculation will again be explained for that method
in which a crystal consisting of one type of atoms
only (e.g. , type 2) is taken as the reference crystal.
One has thus to determine

(r' ' )=(G)' '

=P+P(t)' 'P
IV. INCLUSION OF DEFECT SITE

CORRELATIONS: CONDITIONALLY AVERAGED
GREEN'S FUNCTIONS

+P(tP't)' 'P+
Defining a new T matrix,

(4.2)

The Green's functions obtained so far were calcu-
lated by averaging —with different weights —over
all cell configurations; no lattice site was dis-
tinguished from the others. However, for some
purposes (e.g., for the calculation of the fluctuation

at a defect site) conditionally averaged Green's
functions (r-'-"„) are needed which are formed by

averaging over those configurations only, in which

t:= t 8', with t „:=t—-5--„,
and

8-'-„=(t-, —(t))5- -,. 5--„

+(t)k-„-, (1—5-„-,. )5

(4.3)

i.e., ( t ) ' ' = ( t ), one obtains by introducing t from
Eq. (4.3) into Eq. (4.2)

(r' ' )=p+p(t) p+pe ' p+p(t) p'(t) p+pe' p'(t) p

(4.4)

where use has been made of Eqs. (2.15) and (2.16). Observing that the sum of all terms containing no factor8' is (G) and introducing

g ((t )P')':=R, and g (P'(t ) )'.=L,
1=0 l=o

one has
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(r' ' &=(6)+PRe'(I+P'e'+P'«&P 8'+P 8'P 8' )LP

= (6 ) +PR 8 '
( I+P'R 8 ' +P'R 8 ' P'R 8 ' + )LP .

Summing the different geometric series, one obtains

(I' ' ) = (6 ) +PR8 ' (1 P'R—8 '
) 'LP

with

R=(1—(t)P') ' L=(1—P'(t)) '.
The relevant part U of the inverse of the expression in parentheses in Eq. (4.6) is

0 0 0 0

(4.5)

(4.6)

(4.7)

U'= Ilx,
0 0

P'RB' f»

0

+ 0 ~ ~

0

I ~».-PRe' ~x, )

0

(4.8)

(4.10)

where M
~
x„means the reduction of matrix M to that subspace Xx of XR for which there are nonzero diago-

nal elements of 8 ' . Thus one finally has

(I'" ' ) =(G)+PRB ' U 'LP, (4.9)

with R, L, and U given by Eqs. (4.7) and (4.8). In the Appendix it is shown that for uncorrelated defects
Eq. (4.9) reduces, as it should, to Eq. (4.1) which was obtained above in a different way.

If the virtual crystal is taken as the reference crystal the conditionally averaged Green s functions are de-
rived in a similar way. In analogy to Eq. (4.3) we define10, 0000+8 (3 01
with

"8-"„'-' =[(t"5„„(t"&)&—-„-;+«"&k"-„"-;(1 5-„-;)j&-—„- .

The result corresponding to Eq. (4.9) is obtained by modifying the derivation of the latter correspondingly and
by replacing (t), R, L, P', and 8 ' by (t), R=(1—(t)P), L=(1 P(t)), P, an—d "8 ', respectively,

with

(I'" ' )=(G)+PS(R "8' "U' L)P

0

(4.11)

"U' =
0

(Ilx ax —PR "8' Ix ax )

0

S is defined below Eq. (3.6).
We shall now explicitly perform the matrix inversion, confining ourselves, however, to cases in which the

matrices (t ) and P commute in Xz. (The calculation can also be carried through if this is not the case, but it
is then rather long-winded. ) One obtains

1 —(t')P" (t')P'
—1R —DR ( t2) p12 1 (t 1 )p11 (4.12)

with

D„=(1—(t')P")(1—(t')P")—(t') (t')P'2P'

D~ can be diagonalized in k space since it is invariant with respect to lattice translations. The matrix ele-
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ments of R ~ are expressed as Fourier integrals over the Brillouin zone (BZ) of the lattice as follows:

with

R" — dk[l (t2)P& (k}]~~k'&~ —&~&//(k)
ill ll (2 yg nz

(4.13)

N(k) =[1—(t ')P"(k)][1—(t')P "(k)]—(r ') (r')P "(k)P"(k) .

Vz is the volume of the unit cell and a the lattice constant. The other R ]" are obtained in an analogous way.
One further has

L "&=R&".

The matrix product PR =2 occuring in Eq. (4.11) is derived similarly:

(4.14)

2m
' (4.15)

dk[(1 —(t')P")P"+(t')(P")']e'"'--"'yX(k) .m tl
(2 yj nz (4.16)

is obtained by interchanging 1 and 2.
Making use of Eq. (4.14) and of the definition

v . vei ] vUi
[ X~ SX~—

Eq. (4.11) may be written in the compact form

2

(I i,v) (G)+p g Rpp vgpz Rcrtcp

I

Green's functions determined in Sec. IV. The sys-
tem is described by the Hamiltonian

2

H =g, + 2
(A+bAr-'„)x'-„

2m (1+sr-'„)

+ , (8+~r-—„)x-„+—, g W-„-x-„x-,4

p,p, sc, o =1

(4.17) (5.1)

This is an expression for the conditionally averaged
Green's function which takes defect site correlations
into account and which can be used for concentra-
tions in the whole range from 0 to 1. For a given
situation the integrals (4.13), (4.15), and (4.16) and
the inverse of the matrix (1—A "e ' )

~ x @x have

to be determined (numerically, if necessary). The
dimension of the latter is h =2(Z+1) where Z is
the number of lattice sites connected by nonzero
correlations with the lattice site i. With the help
of Eqs. (3.11) and (4.17) the CPA crystal for ran-
domly distributed defects may be used, instead of
the virtual crystal, as reference crystal.

V. APPLICATION TO FERROELECTRIC
CRYSTALS WITH SITE-CORRELATED

DEFECTS

In this section the results of the previous sections
are used to calculate the influence of the defect site
statistics on the macroscopically measurable polari-
zation curve of displacive ferroelectrics and on
dispersion curves. The calculations wi11 be per-
formed by making use of the conditionally averaged

where x-„(p-„) is the local normal coordinate
(momentum) connected with the soft mode. The
harmonic interaction F„has long- and short-

range contributions.
By means of the self-consistent phonon approxi-

mation (SCPA) the problem is reduced to the solu-
tion of a system of equations for the average dis-
placements (x-„) and the harmonic fluctuations

(u-„) about them. The range of validity of SCPA
has been discussed by several authors' ': For a
system described by the Hamiltonian (5.1) the actu-
al phase transition is continuous. While for a
short-range interaction SCPA leads to a first-order
transition, it yields for systems containing also a
long-range interaction regions in the potential
parameter space with second-order transitions (II)
as well as regions with first-order transitions (I). A
numerical comparison, for a system without de-
fects, ' shows that in the region II there is a good
quantitative agreement between SCPA and molecu-
lar dynamics (MD) results. MD calculations'
demonstrate that even for values of the potential
parameters well within region I there are only small
deviations between MD and SCPA results (except,
of course, in direct vicinity of the transition). In
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(u „&=k&T ReG „„(co =0) . (5.2}

6-„ is the Green's function corresponding to an
effective harmonic Hamiltonian with the potential
constants

Fig. 1, for example, polarization curves obtained by
SCPA are compared with results of MD calcula-
tions. Similar results were obtained for systems
with pure short-range interaction. ' In Ref. 19 the
temperature range is determined for which SCPA
yields reliable results.

The autocorrelation function is connected with
the Green's function by

1.0-

lgv 0.5-

0 0.5 10 T

FIG. 1. Polarization of a one-dimensional crystal
without defects vs temperature. The curve represents the
SCPA result, the dots were calculated with MD. The
SCPA curve varies discontinuously near T,. The param-
eters are defined in Fig. 2 and have the values 3=2.14,
A=8.

=5 [A+Mr'„+3(B+bB~'-„)((x-„&'+(u'-„&)]+~-„- .

The system of equations is completed by the relations

[A +Mr-'„+3(B+Mr-'„)(u-„&](x-„&+(B+ABr-'„)(x-„&+ g W-„- (x- & =0,

(5.3)

(5.4)

connecting the average displacements with the fluctuations.
These equations, which describe the ferroelectric crystal for a fixed configuration of defect positions, are

averaged in a way similar to that introduced in Ref. 6 over all such configurations. Now, however, defect site
correlations are taken into account. The averaged fluctuations at defect and host positions are obtained from
the conditionally averaged Green s function given in Eq. (4.17):

(((u ) » =k T Re( I -"
& for v = 1,2, (5.5)

where the double angular brackets imply an averaging, over all defect configurations, of thermal averages.
The mean fluctuations (((u") » at host and defect positions are connected with the mean displacements
((x"» at host and defect positions by the averaged form of Eq. (5.4):

~- « '»+ ~-
&& '&&)+[A+~(i .+3(B+~B~.)&&( '}'&&](& "&&

+(B+bB5~„)((x"&& =0, for v= 1 and 2 . (5.6)

Here wP =ci'(k~g +1) is the conditional probability to find a p-type atom at position m if a v-type atom

is at n.
In the calculation of (I 0 ~~& it is assumed that also the indirect change of the potential by the defects via

the fluctuations and mean displacements is local:

@-„-=ti-„-(A+~ -'„+3(B+~B -'„)t[(( '&&'+((( ')'&&] -'„+[&& '&&'+((( ')'&&] '-„])+~-„- .

(5.7)

With the help of Eq. (5.5)—(5.7) we are in a posi-
tion to calculate the polarization of a ferroelectric
solid solution with site correlation. For explicit cal-
culations the interaction 8"-„- is split into a
nearest-neighbor (NN) part J with cubic symmetry
and a long-range part Af (n —m). The latter is ex-

panded in a Fourier series and only the k =0 term
-+ —+

A=Af (k=0) is considered. The system of equa-

I

tions (5.5} and (5.6), with the potential (5.7), is

solved numerically (by Newton iteration) for several

temperatures.
In Fig. 2 the polarization of a three-dimensional

crystal containing 10% defects is shown for dif-
ferent NN correlations %=3(c~ } k~0-„(with cubic

symmetry). We obtain a marked increase of the po-
larization and of the critical temperature with in-
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0.2-

with the retarded Green's function,

Im6 "(k, co ) = lim Im G( kr,o —t'e ),
a~0+

by

(S(k, ro ) ) ——Im ( G ( k, co ) ) (5.10)

0.1-
From Eqs (2.9) and (3.11) one obtains the scattering
function (S(k,co) ) for defect crystals with correlat-
ed defect sites. For a one-dimensional crystal, for
example, with NN interaction the potential [Eq.
(5.7)j has the form

0.06 0.08 0.10 0.12 7.

FIG. 2. Polarization curves of a defect crystal with

different defect site correlations. Dimensionless quanti-
ties A = —A /J, A = —A /J, T= Tk&B/J, and
x=V 8/Jx a—re introduced. Values of parameters are
3=2.75, M = —1, A=0.75, LU7=e=0, c'=0. 1. The
correlation E is 0, 0.04, and —0.01 for curves a, b, and c,
respectively. (For comparison curve d shows the polari-
zation following from a simple VC-type calculation. )

The dispersion of the perfect crystal is

co (k) =@+2J cosk, k E [—m, m j .

From Eq. (3.1}one has

V'= —b4+c'b4, and V =c'b4 .

(5.11)

(5 9)

creasing correlations. For equal defect concentra-
tion, the polarization and T, increase when going
from repulsive over random to attractive defect dis-
tributions. In the case considered, the variation of
T, due to a change of the defect site correlations
amounts to as much as about 5%. An investigation
of different concentrations and different magni-
tudes of the defect potentials showed that the effect
is larger for a crystal with a low concentration of
strong defects than for a high concentration of
weak defects. The ferroelectric properties are also
effected by a variation of the symmetries of the in-

teraction and of the correlation from cubic to
tetragonal.

In addition to these static quantities we deter-
mined the change of the dispersion curves with de-
fect site correlations. The Fourier transform of the
displacement-displacement correlation function,

S(k ) g I ate —i(k ~ m ut)—
m

X (tt, (0)Q- (t)), (5.8)

can be calculated —making use of SCPA to obtain
an effective harmonic Hamiltonian —from the
respective Green's function 6 by means of the
fluctuation-dissipation theorem (cf., for example,
Ref. 3). For a crystal with defects one has to re-

place the classical statistical mechanics expression
for a perfect crystal,

S(k,co)-—ImG"(k, ro ),

(t') and (t ) may be calculated by means of Eq.
(3.5} from the virtual-crystal Green's function,

2 —1/2
4+c 'h4 —ro

2JPOD(to )=

VI. SUMMARY AND DISCUSSION
OF RESULTS

In the present paper methods were developed for
a treatment of crystals with site-correlated defects
in such a way that the virtual crystal or the CPA

with ~=1,—i, —1 for 4+v'A4 —co &2J, g2J,
and & —2J, & —2J, respectively. The self-energy
X(k) is then obtained from Eq. (3.11) by introduc-

ing the Fourier transforms of P"'„and P„. In the
present example we consider only nearest-neighbor
correlations which are given by the constant [cf. Eq.
(3.4)j

Ik:=(c') koi .

By means of the so-determined scattering function
(S(k,co)) one may calculate dispersion curves for
defect crystals and investigate the influence of the
correlation E. For every k (S(k,ro ) ) has sharp res-
onances for two frequencies which define two
dispersions co i (k) and ro2(k). These are represented
in Fig. 3 for 64=1 (defect potential steeper) and
different values of K. While the E dependence of
the host band co2 is rather weak (order of magnitude
is 1%, not visible in the figure), the correlation in-

fluence on the defect band ro i is very pronounced.
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2-

FIG. 3. Dispersion curves of a defect crystal with dif-
ferent defect site correlations. Values of parameters are
A =1.5, M =1, J=—0.25, c'=0.1. co~ and coq are the
defect-band and the host-band dispersions. The values of
the correlation E are 0, 0.04, and —0.01 for curves a, b,
and c, respectively.

crystal with no correlations was taken as reference
system. As a consequence there are now two types
of defects and four interconnected correlation func-
tions and the expression for the k- and co-dependent

self-energy is changed from Eqs. (2.18} to (3.11}.
Owing to this alteration of the reference system the
Green's function may now be calculated for all con-
centrations. The averaging procedure employed in
this paper can be extended, without difficulty, to an
arbitrary number of types of defects. It may be em-

ployed, therefore, to deal with solid solutions of
more than two components. In this method arbi-
trary correlations may be prescribed. The larger
their range, the more extended are the calculations.

The conditionally averaged Green's functions
(which were calculated by averaging over those con-
figurations only in which there is an atom of a
given type at a certain lattice site} are the basis for
an SCPA treatment of ferroelectrics with correlated
defect sites.

The results show a strong influence of the corre-
lation on the ferroelectric properties. Compared to
a random distribution, an attractively correlated
distribution increases the polarization and the criti-
cal temperature, while a repulsive correlation de-
creases P and T, . ' ' Both for VCA and CPA
crystals with random defects as reference systems

the general calculations described above were car-
ried so far that the results are obtained in terms of
integrals over the Brillouin zone and inverses of
low-dimensional matrices. These can be calculated
explicitly (numerically if necessary) for any special
crystal.

The dispersion curves derived from the Green's
function show a strong correlation dependence of
the defect band (coi in Fig. 3); its dispersion in-
creases with increasingly attractive correlations.
This remarkable influence of correlations can be il-
lustrated with the help of a simple model. We con-
sider the localized vibrations which arise since the
frequency co, is too large for the host crystal, so
that no propagating phonons can occur, and dis-
cuss, in a one-dimensional model, the limiting cases
k =0 and k=m. .

k =0: (A} For repulsive correlations (dashed line
in Fig. 3} the average distance between defects is
large. co i(0) is then mainly determined by the mass
of a single defect, its one-body potential, and its
coupling to the rest of the crystal. It is relatively
large. (B) For attractive correlations (dotted line in
Fig. 3) the defects are clustered, e.g., in pairs. Such
a pair is vibrating as a whole in the rest of the crys-
tal. As compared to (A) the vibrating mass is now
larger and, thus, the frequency smaller.

k=n". (A) The situation is now similar to case
(A} for k =0. For, due to the smallness of the am-

plitude of the nearest-neighbor vibrations, the oppo-
site sense of these vibrations leads only to a slight
increase of the frequency. (B) Now the two atoms
of a defect pair vibrate with opposite sense against
each other. Owing to the NN interaction there is
now an increased coupling constant leading to a
marked rise of the frequency.

Correlations in solid solutions have been deter-
mined experimentally, e.g., by diffuse x-ray or neu-
tron scattering. ' Measurements of Fe„Cri
with 6.5 at. % Fe (Ref. 24), e.g., yielded correlations
of the same order of magnitude as those assumed

above: Measured NN correlations were K=0.02,
while the correlations presumed in this paper
ranged from K = —0.01 to K=0.04.

The calculated correlation dependence (e.g. , of
the dispersion or polarization curves) can be tested
by comparing specimens of the same material with
different defect site correlations. Such specimens
are produced if the crystals are grown by different
procedures (e.g., from the melt and from solution).
The actual correlations could then be determined by
diffuse scattering experiments and the dispersion by
inelastic scattering.
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APPENDIX: DERIVATION OF EQ. (4.1) FROM EQ. (4.9)
FOR VANISHING CORRELATIONS

For defects distributed at random, i.e., for P'=P Pc 0
—I, we prove the auxiliary equations

V—X=(1+(r)P-, -, ) '(t —(r))(1+Po-, t) ',
(r ) =(1+(r )P-, -, )( V—X }(1+P-,-, r),

PZ = (G)(L+ (r )P-, -, L)-',

LP=(L+(t)PO c I) '(G),
g =(1+P-,-, L«&)-'&G)(L+(t)P-, -, L)-' —P-, -, (L+«)P-, -, L) '.

(Ala)

(A lb)

{A2)

(A3)

Since, in the vector space Xz, Po o, t, (t ), V, and X are matrices, we have to pay attention to the order of
multiplications. Equations (Al) follow from Eq. (2.11) and the one-particle T matrix by insertion. Equation
{A2) is proved by multiplying the relation

(G) =p+p(l —(r)p+(r)po OL) '(r)P

from the right by (L+(r)PO OL)
' and factoring out the expression P(1—(t)P+(t)PO 0 I. ) '. 0ne thus

obtains

(G)(L+ (t)Pc 0 l)-'=P(l —(t)P+ (r )Pc 0 I)-'[(I—(r )P+ (r )Po 0 I}+(r )P]

x(L+ (r )P-, -, L)-'

=P(L-(r)P+(t)P-, -, L) '.
Equation (A2) then follows from the definition of R, Eq. (A3) is proved in an analogous way, and Eq. (A4) is
proved by making use of Eq. (A3) as follows:

(L+Po OL(t)) '(G)(L+(t)LPO c )
' —Po 0(L+(r)Pc OL)

=(L—P(t )+P--l(t ) ) 'P(l+ (r )P—I) ' —P—(L+ (t)P-
=(I.—P(t&+P-, -, l&t&)-'[P —(l —P&r&+P-, -, L«))P-. -. ]{L+«»-,-, L) '

=(l—P&r)+P-, -, L(r ))-'[(P—P-, -, l)(1+«)P-, -, )](l+«»-. -.L)

=(I—P(r)+P-, -, L(r &)-'(P—P-, -, l) .

These auxiliary equations are then used to obtain the desired results: Introducing Eqs. (Alb) —(A4) into Eq.
(4.9) one has

(I -'-„)=(G--„)+(G--;)(I+(r)PO o ) '[(I+(t)PO o(V—X}(1+P Ot)]

&&[1—(1+POD (r)) '&Goo )(1+(r)POD) '(I+(r)PO 0)
XIV—X)(1+Po Or) —Po 0(1+(r)P0 0) '(I+(r)P00)(V —X)

x{i+P-,-, r)]-'(1+P-.-. «&)-'&G-, -„) .

Reducing by (1+(t)PO 0) and (1+Po 0 t) one obtains
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+(1+Pe o (t})Poo(V—X}—(6o o )(V—X)) '(6-;-„) .

Making use of Eq. (Ala} then leads to Eq. (4.1).
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