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Anomalies in both the acoustic- and optic-phonon spectra associated with the ferroelec-

tric and ferroelastic phase transition in terbium molybdate have been quantitatively mea-

sured by simultaneous Brillouin and Raman spectroscopy. The most striking singular

behavior observed is the divergent damping of both the A ~ optic phonon and the C~~ acous-

tic phonon upon approach to To from below. To was determined to be 159 C for our sam-

ple by measurement of the pyroelectric response. The A ~-mode frequency determined from

the Raman spectrum shows little temperature dependence, while the C~~ elastic constant

determined from the Brillouin spectra decreases by about 60/o between room temperature

and To. There is no evidence of a dynamic central peak. The observed anomalies in the

acoustic velocity and damping are incompatible with a model based on bilinear coupling be-

tween the acoustic mode and the A ~ mode seen in the Raman spectrum. However, a satis-

factory account of all the experimental observations (including the anomalies in C~I and

C») can be obtained by assuming the presence of a second A
& optic phonon with a negligi-

ble Raman scattering cross section. We note that the dynamic variables below To are not

simply related to the distortion, as has often been assumed previously. On the basis of this

model we use the acoustic velocities and damping to determine the frequency and damping

parameters of this unseen mode. It is emphasized that the singular behavior of the damp-

ing of the observed A
&

mode has yet to receive adequate theoretical explanation.

I. INTRODUCTION

Since the discovery of ferroelectricity' and the
unusual associated elastic and dielectric behaviors
in the rare-earth-metal molybdates sustained atten-
tion has been given to the dynamical aspects of the
phase transition with often confusing or apparently
contradictory results. X-ray and neutron scatter-
ing have established that in Tbz(Mo04) 3 and

Gdq(Mo04)3 (referred to hereafter as TMO and

GMO, respectively) the transition from the
paraelectric Dqd phase to the ferroelectric and fer-
roelastic C2„phase occurs at To-160'C, is weakly
first order, involves a doubling of the tetragonal
unit cell, and is associated with a doubly degenerate
soft optic phonon at the M point of the tetragonal
Brillouin zone. Although this mode is expected on
group-theoretical grounds to give rise below To to
two A~ symmetry soft modes, Raman, infrared, 6

and neutron observations have not borne out such
simple expectations. In particular, although at tem-

peratures below =O'C two A~ components are
resolved (at 44 and 49 cm '), the evolution of
the spectra between room temperature and To is
dominated by an extreme broadening (and complete

indistinguishability) of these components with little
evident softening of the frequency parameters.
Furthermore, the several attempts to account for
the observed ' acoustic-phonon behavior in terms
of bilinear coupling with the optic phonons have
not been quantitatively or sometimes even qualita-
tively successful. Some of these attempts have in-
volved widely differing assumptions about the fre-
quency and temperature dependence of the so called
"missing mode" —i.e., the companion to the broad
A& feature 47 cm '. These range from assuming
that it remains degenerate in both frequency and

damping with the observed Raman mode to postu-
lating that it lies at very low frequencies and might
be responsible for the unresolved central peak ob-
served in neutron scattering and inferred from some
Raman experiments.

Yao er al. ' have made the most thorough at-
tempt to date to explain the acoustic behavior, using
models encompassing all these possibilities, and
have concluded that, while it is possible to fit C»
alone, the behavior of C2z and C» is not simultane-
ously consistent with any of their models. We have
modified their approach, particularly as regards the
orientation of the normal-mode eigenvectors with
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respect to that of the distortion, and we show below
that it is in fact possible to fit all the available
acoustic and Raman data in the context of a model
invoking a linear coupling with an "unseen" mode.

II. EXPERIMENTAL PROCEDURE

The experiments reported here on TMO were
conducted in order to (1) provide a definitive search
for the missing mode down to previously inaccessi-
ble low frequencies (=0.02 cm '), (2) measure care-
fully both the frequencies and lifetimes of the Ai
optic phonon and the appropriate acoustic phonon
over the temperature range between 25 and 180 C,
and (3) elucidate the existence and dynamic charac-
teristics, if any, of the central peak. The experi-
mental procedure involved simultaneous measure-
ments of Raman and Brillouin spectra (using a
double-grating spectrometer and a tandem Fabry-
Perot interferometer, respectively, both with a
molecular-iodine reabsorption cell to remove elasti-

cally scattered light) together with in situ measure-

ment of the pyroelectric coefficient. The resonant
reabsorption of elastically scattered light with a
molecular-iodine filter completely removed stray
light from all the spectra. As described in detail
elsewhere' all spectra were corrected through the
use of computer-assisted normalization procedures
for distortions imparted by subsidiary iodine ab-

sorptions. The pyroelectric coefficient was mea-
sured by using the chopped (1-kHz) laser beam it-
self to heat the crystal periodically in times (with
peak-to-peak temperature modulation of a few mil-

lidegrees) and measuring the amplitude of the volt-

age thus induced across the sample. As shown in

Fig. 1., when the sample is uniformly illuminated
with 5145-A light from an unfocused laser beam,
the pyroelectric responses agree very well with ear-
lier measurements, and provide an accurate deter-
mination of To in our TMO sample (TO=159.0 C).
With the beam focussed to 100-pm diameter, as in
the spectroscopic runs, the pyroelectric response
shows two differences. First, the main peak is
broadened and diminished, reAecting the existence
within the scattering volume of a steady-state
laser-induced temperature smearing of 1 —2'C.
The consequences of this for the Brillouin spectra
very near To will become evident below. Second, a
much weaker secondary maxirnurn at an apparent
temperature of 162 C is associated with an approxi-
mately 3-'C difference in temperature between the
scattering volume and the unilluminated bulk of the

III. RESULTS

The Raman spectra, shown in Fig. 2, are obtained
in the x(zz)y geometry (where the A i modes are ac-
tive) with 100-pm slits, using an iodine cell to re-

move completely any light whose frequency lies

Y

Q lO M

QEz
gto +
c(Z ~fUJAIg LLJ

R

— I.O

0.0

150
I

I55

))d
e

I60 I65
r('c)

FIG. 1. Pyroelectric response in TMO vs temperature
using chopped S145-A laser beam for heating. Lower
portion: solid curve from uniform illumination of entire
sample volume; dashed curve focused (100-pm) beam.
Open circles labeled a —h represent the temperatures at
which the spectra shown in Fig. 5, labeled corresponding-
ly, were taken. Upper portion: circles and triangles
represent integrated intensities of LA Brillouin peaks cor-
responding to ferroelectric and paraelectric phases,
respectively.

crystal. This local heating (induced by -70 mW of
5145-A light in our experiments) is associated with
absorptions of the Tb + and is more severe at other
wavelengths or higher powers. Its effects are thus
expected to be present in any Raman or Brillouin
spectra of TMO, although they will be negligible
except very near To.

It should be noted that absorption of 5145-A
light may produce excited-state dipoles in signifi-
cant numbers in TMO. Depending upon the life-
times of such excited states, the associated internal
electric fields could in principle affect both the stat-
ic and dynamic ferroelectric behavior near T, . Re-
latively long-lived optically excited polarization
fields have been studied, for example, in BaMnF4. '

Our observations in TMO indicate that the thermal
effects of optical absorption dominate any exciton-
related dipolar effects, but more experiments would

be required to assess the latter quantitatively.
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exhibit a rather striking anomaly just below To.
This anomaly parallels that in the optic mode re-
vealed in the Raman spectrum. The latter exhibits
a curious reversal of the usual behavior near a
structural phase transition manifesting its critical
behavior mainly in its width rather than in its fre-

quency parameter. We shall have more comment
about this relationship below.

IV. DISCUSSION AND CONCLUSIONS

The main observ'ations from the high-resolution
spectra are then (1) the Cii elastic constant softens
in accord with previous reports, ' ' ' (2) the
acoustic-phonon damping is strongly singular (more
so than previously reported) and results in over-
damping of the acoustic mode within a degree or
two of To, (3) there is no evidence of a dynamic
central peak associated with critical fluctuations or
relaxing phonon self-energies, etc., near To, (4) the
spectral shapes at all temperatures can be fit well
with the damped-harmonic-oscillator model using
the values for c0,

'
and I,' displayed in Fig. 7.

We shall now discuss the compatibility of our
Raman and Brillouin observations with existing
coupled-mode theories for the TMO transition
dynamics. Essentially all of the theoretical specula-
tion and experimental interpretation involving the
dynamics of the improper ferroelastic transition in
the molybdates has been concerned with the funda-
mental anharmonic interaction between one acous-
tic and two "soft" optic phonons. Phenomenologi-
cally, this interaction enters the free energy through

1a term of the form 6;„,= ——,Weri, where e and rt
represent, respectively, the dimensionless-strain

(acoustic-mode) and order-parameter (optic-mode)
amplitudes, and E the coupling coefficient. The
same physical process can of course be described in

go 0

FIG. 8. Equipotential curves in the {g&,g2) plane for
the free energy of Dorner et al. , rotated so that g20=—0,
for W& ——0 [part (a)] and for tan2$ =(383
+5 $3g 0 )/{B2+2 $2&0). Dashed lines indicate the ex-

pected orientations of the ellipse for the two cases, and

[in part (b)] the line r)q
——0.

a microscopic formulation involving the acoustic-
and optic-phonon Green's functions and self-
energies. Various theoretical' and experimen-
tal' ' paper have treated this interaction on vari-
ous levels and with varying degrees of approxima-
tion. A particularly clear and tractable discussion
of this formalism has been provided by Levanyuk.
Its application to TMO has been given by Yao
et al. ' We shall adopt the spirit of this approach
here, with some differences, as discussed further
below.

The free energy describing the TMO system has
been written down by various authors, "' ' in

essentially equivalent fashion. Perhaps the most in-

structive notation to begin with is that of Dorner
et al. They write the free energy E as a function of
the parameters q, y~, and y2 where g is the absolute
value of the order parameter and its two com-
ponents are rly; for a given choice of coordinates.
As they note, it is possible to rotate the axes in the
xy plane without changing the functional form of
their expression [their Eq. (10)]. They choose axes
such that y~ ——1 and y2 ——0. However, it is impor-
tant to remember that below the transition, such ro-
tation is impermissible, and, in fact, the two normal
modes of the soft-mode branch are determined
unambiguously by the symmetry of the free-energy
minimum. If we use their choice of coordinate
axes, and expand the free energy about the point

(rto, O) representing the static distortion in those
coordinates, it is easily shown that the normal-mode
eigenvectors are tilted with respect to those axes by
an.angle f defined (in their notation) by

(3Bi+5Wii) o)
tan2$ =

(B2+28'2'go)

as discussed in the Appendix and illustrated in Fig.
8. Thus, their static variables do not coincide with

the dynamic variables below To.
In order to avoid this confusion, we prefer to de-

fine our coordinate axes above To to be parallel to
the eigenvectors of the soft-mode branches below

To. In this case, it is obvious as a corollary to the
statement above that the static displacement will

not lie along either of the order-parameter axes. '

Thus, in general the order parameter has the form

(rt sing, rl cos((), and the static displacement is de-

fined as (rlosingo, i)ocosgo). Using this coordinate
transformation, we obtain the free energy as written

by Yao et al. ,
' in which the portion relevant to the

interaction of the modes considered here takes the

form
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[(K2+K3)singo+Kqcosgo] go
2m 0)

[(Kq+K3)cospo —K4sinpo] 71 0

m Qq
(4)

where m =0.0461 g/cm is the effective mass for
the optic mode, ' the normal-mode frequency for
the dynamic variable 5g; is denoted Q;, and the or-
der parameter is given by

g 0( &)= — [2+(160—T) '~ ]
no(2'o)

3
(5)

G;„,= —,K2g (e, +E~)

+ —,g e6(K3cos2$+K4sin2$ },
where e; are the strains referred to the axes charac-
teristic of the paraelectric phase, and K; are cou-

pling constants. It must be emphasized that the ex-
pression above is valid for any choice of origin for
P, as noted by Dorner et a/. ; however, our choice
of coordinates differs from any used previously. In
particular, the choice made in Eq. (3.16) of Yao
et al. ' is not a priori the same as ours. We shall

see, however, that the two almost coincide acciden-
tally. This corresponds to the statement that K4 is
nearly zero in our coordinate system. Below we
give a plausibility argument for this condition.

It is now necessary to write Eq. (1) in terms of
the strains of the ferroelectric phase, e;. This corre-
sponds to a rotation of the crystal axes by 45'.
(Note this has no effect on P.) The transformation
is easily carried out, and the relevant portion of the
free energy becomes

G;„,= (K2+K3cos2$ +K4sin2$ )g e
&

+ (Kp K3cos2$ —K4sm2$ )q 'e2 . (2)

Let us now expand this free energy around the
equilibrium position, to obtain the coefficient of
5';e~ The coef. ficient for e2 will differ only in the
sign of K3 and E4. Noting that not only must we
expand q but also the trigonometric terms cos2$
and sin2$, we obtain the coefficient for e~.

[(K2+K3)sinpo+K4cosp p)rj05rl ~

+ [(K2+K3 )cosp0 —K&sinp 0]rlo&/2 . (3)

From this, following the notation of Yao et al.,
' we

obtain the expression for C» in the ferroelectric
phase, taking into account only the morphically in-
duced bilinear coupling terms:

(as in Ref. 14, we use T, = 156'C, in the notation of
Ref. 4) where go(TO}=0.59X10 ' cm . The ex-

pression for Cq2 is the same with the signs of K3
and K4 reversed. Note that here and in what fol-
lows we use Q~ 2 and I ] z to denote the theoretical
soft-mode frequencies and dampings, to distinguish
these quantities from the experimental values coo

and. I 0 (Fig. 4), obtained from the Raman spectra,
which probably represent some superposition of
peaks. The various relationships among these quan-
tities are discussed below.

For the case Po ——m /2 and Kq 0 the——expression
(4) reduces to that given by Yao et al. ' While
there is no reason to assume a special value of Po,
there is a plausible reason that the value of
E4 should be small in our coordinate system. We
have chosen coordinates such that the two order-
parameter components rl &

——gosinpo and

gz ——qocosgo correspond to the dynamical variables
below the transition. Thus, we could expect that
the expansion of the free energy (2) about the equili-
brium point should be an ellipsoid of revolu-
tion with its major axes along the coordinates.
This requirement reduces to the condition
8 G;„,/Bg, Bg2 ——0. Since the only term in the free
energy which is proportional to go and which con-
tains cross products of g~ and q2 is the term in-
volving K4 in (2), we conclude that that term must
be small. While this argument is not rigorous, it
does make it plausible that the value of K4 should
be small. In fact, we shall show below that a
reasonable description of all the data is possible
with E4 ——0. This means that our coordinates in
fact coincide closely with those chosen by Yao et
al. ' using a very different criterion.

In addition to the morphically induced bilinear
coupling considered above, there are also fluctua-
tion terms which may contribute to the acoustic
anomalies. A calculation of these effects requires
knowledge of the soft-mode frequencies and damp-
ing factors for the soft-mode branch throughout the
Brillouin zone. Although this information is not all
available, some attempts have been made at approx-
imate evaluation of the integrals involved. "'
These attempts all involve assumptions as to the
dispersion and damping as a function of wave vec-
tor. Nevertheless, such an approach is necessary for
the description of the acoustic data above To since
the fluctuations terms are the only ones contribut-
ing in that region. In this temperature region, satis-
factory agreement has been obtained. "' Yao et
al. ' have extended this analysis belom To as mell,
and have found that the fluctuation contribution is
quite negligible in that region. Hence, we shall ig-
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nore it in what follows.
We first consider whether the elastic constant

data below To may be described consistently within
this model. The model outlined above provides ex-
pressions for the temperature dependences of C»,
C», and C22. The parameters involved in these ex-

pression are E2, E3, K4, Po, Cii, C ii, Qi, and 02.0 0

Of these, the values of 0; are known at room tem-

perature from Raman and ir data, and we shall take
them both to be 44 cm '. %e shall assume that
one mode, 02 is temperature independent, con-
sistent with the observed A

&
Raman spectrum.

Furthermore, the values of C„and C» may be ex-0 0

tracted from the available acoustic data"'2 above
To. The value of C» is available quite directly
from the data, and the data of Hochli' and that of
Yao et al. ' are all consistent with the value
C ii ——80.7X10' dyne/cm . The value of C~i, on
the other hand, is available only rather indirectly
from data above To, as the combination'
Cii ———,(C ~i+C i2)+Cs6. The necessary data are

o ~ -o -o -o

available from Hochli, and yield a value of roughly
77.5X10' dyne/cm, while the data of Yao et al. '

for Ci i above To indicate a value of about
78.2 X 10' dyne/cm . Since we found that the fit is

-~c
11

C4

E0

o
O

2
C3

EXP~Cn
I

I

I

I
L

I

I

I

—15

—12

X
9

CU

6

0 ~ I I I I

50

pEX

27r /

T&
/.

r & i I

100 150

FIG. 9. Comparison of the experimental temperature
dependences of the LA phonon damping (dashed curves)

with the calculated results (solid curves) based on assum-

ing that the unseen component is degenerate with that
observed in the Raman spectrum. Value of the coupling
constant has been determined at room temperature. Note
the qualitative deviation of the curves for the elastic con-

stant and the quantitative disagreement between the ex-

perimental and calculated I"'s.

extremely sensitive to this parameter, we shall allow
it to vary somewhat in the fit. We attempt to
describe the data assuming various behaviors for
Q).

If we assume that the missing mode Q& is degen-
erate with the mode observed in the Raman spec-
trum, we find 0, roughly independent of tempera-
ture. However, it is then not possible to describe
the acoustic behavior. This is because the main
temperature dependence in (4) then lies iil 7) 0 and
the calculated curve has the wrong slope as shown
in Fig. 9. Therefore, we must allow 0& to vary
with T. Clearly, it would be possible to fit the ob-
served behavior of C» by allowing Qi to assume
any value required. In order to define the parame-
ter values unambiguously, however, we may use the
values of the other acoustic constants which are
also given by the expressions above.

The second and more satisfactory procedure is
then as follows. We begin by attempting to fit the
data setting E4 ——0. For a given value of C» it is
easy to solve for the values of E2, E3, and $0 wljich
describe the room-temperature data for C», C»,
and C2i. We next use the value of Cii at To from
Yao et al. ' to determine the remaining parameter
0&. We then compare the resulting values of C~&

and C22 with the data at To. By repeating this pro-
cedure for various values of Cii we find that the fit
is extremely sensitive to the value chosen, mainly
via the effect it has on the parameter Po. The value
which best approximates the data at To is
Cii ——78. 1X 10' dyne/cm . This value lies within
the range of the literature values indicated above.
The other parameters chosen by this procedure
are as follows: E2 ——0.454 X 10 dyne/cm,
E3——0.087 X 10 dyne/cm, and $0 =76'. A
consistency check on these results can be made by
using the relation given by Yao et al. :
E3cos2lfl Q71 o ——2C 66' g. At room temperature this
gives a value of about 2.2 mrad for e6, which is
within some 30% of the value available in the litera-
ture.

Given the parameter values chosen from the
room-temperature data by the above procedure, we
then use our data on Cii as a function of tempera-
ture to determine the temperature dependence of
Qi. These values are shown in Fig. 10(a). Finally,
we use these values of A~ to calculate the behavior
of C» and C2z predicted by our model, and corn-
pare these to the behavior found by Yao et al. '

The agreement [Fig. 10(b)] is quite satisfactory at
all temperatures. We note also that our value of Ez
is the same as that found by Yao et al. within ex-
perirnental error, so that their analysis for the data
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analysis closer than about 70'C below To. Of
course, our analysis indicates the presence of two
modes. Our point here is simply that it is not possi-
ble to draw the same conclusion from the Raman
spectra alone near To.

When a mode with a strong-scattering cross sec-
tion (e.g., the LA mode} couples a weakly scattering
mode (e.g., the "missing" soft mode), intuition sug-
gests that the latter should acquire significant inten-
sity if the spectral profiles of the two modes over-
lap. At first glance, it would appear that there is a
contradiction, since the missing soft mode should
then become quite obvious in the spectrum. To in-
vestigate this point we have considered the spectral
profile of the scattered light within the bilinear cou-
pling model. Since the dominant coupling near To
is the soft component Qi, we shall for simplicity
consider only that coupling in what follows. The
scattered spectrum is given in general for two cou-
pled modes by the expression

I }

IOO 50
T, - T (K)

S(q,co)= — Im g F;F~X;J(q,co),
(n+1}

~ ~

lJ =Q, S

FIG. 10. Upper portion shows the soft-mode parame-

ters which result from the model discussed in the text.
Bottom shows the corresponding fit to the acoustic data

for the three acoustic modes that show the strongest

anomalies. Dashed lines are guides, solid lines show the

experimental data of Yao et at. (Ref. 14), the points for

C» represent our data, and the points for the other two

elastic constants represent calculations based on the

model.

above To would be unchanged.
The parametrization of the data given above

seems to work quite well, However, there is one
disturbing aspect of this situation which requires
careful discussion. First, the portion of the free en-

ergy which governs the fiuctuations of the order
parameter" does not predict a soft-made behavior
below To which remotely resembles that shown in

Fig. 10(a). Furthermore, there is no independent ex-
perimental evidence for such a soft-mode behavior.
Indeed, although two modes near 44 cm ' may be
resolved below O'C, and extension of this analysis to
higher temperatures yields mode parameters which
indicate some mode softening, fits describing the
Raman spectra equally well are possible using a sin-

gle strongly-damped-harmonic-oscillator function
with a frequency parameter quite independent of
temperature. Hence, the parameters resulting from
a two-mode analysis must be strongly correlated,
and, in fact, it is not possible to carry out such

where n is the occupation number for an excitation
of energy Aco, the F; represent the scattering
strengths of the uncoupled modes, and the general-
ized susceptibility components X,J- are given by

Xj
X J

and

&X,X,
~OS

l —KX,X,

where the X„represent the uncoupled susceptibili-
ties of the acoustic and soft modes, respectively.
The uncoupled susceptibilities are described by
damped harmonic oscillators

Xg =(N —cog +2lc01'q )

Xz = (co —0 i +2l co I i )

where the parameters co„Q~, y„and I
&

are in-

dependent of frequency. For our case, we wish to
see if the soft mode would acquire scattering inten-

sity from the acoustic mode due to this coupling.
Hence, in order to investigate this, we shall set

F3 —0, and inspect only X« in Eq. (6). The expres-
sion for X~ given above may be written as a
damped-harmonic-oscillator function (7) with
frequency-dependent frequency and damping
parameters
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K (Qi —co )

(II 2 2)2+4 2r2

For the modes under consideration here, we easily
identify

K =qrio(K2+K3 )sinPo l(m'p) '~

from the behavior of Cii [Eq. (4), K4-0], and us-

ing the fact that co, =q Cii lp, where p is the mass
density. It can be shown by simple algebraic
analysis that no peak is evident in the spectral
response due to the term X«when the soft mode is
overdamped and located at frequencies significantly
above co,

'
and y,'. This conclusion is also supported

by calculations which we have performed for the
parameter values extracted from the fit which show

that even very near To the deviation of the line
shape from that of a simple damped harmonic os-
cillator is well within the experimental noise.
Hence, the experimental observations are in fact
consistent with the model given above.

As a byproduct of this analysis, as noted above,
we obtain a measure of the optic-mode damping I'i
from the values of y,

'
by using Eq. (8). These

values are also displayed in Fig. 10(a) for the tem-

perature range where unambiguous determination is
possible. These values lie quite far below the values
extracted from an earlier two-mode analysis of the
Raman spectrum at much lower temperatures.
However, since the latter analysis is based on

decomposition of two strongly overlapping peaks in

the Raman spectrum and ours incorporates new

data (i.e., the observed values of y,') we believe the
present determination to be more reliable. Since the
soft mode is apparently a very weak scatterer, the
values are consistent with the observed Raman
spectra.

Despite the success of the preceding analysis, it
remains somewhat unsatisfactory to postulate the
existence of a mode which has never been unambi-

guously observed. In view of these considerations,
we must emphasize that our model is a tentative
one and will remain so until unambiguous indepen-
dent evidence can be obtained for the existence of
the soft mode 0 i.

In summary, then, we have the following answers
to the problems posed in the Introduction. Our
search at high resolution and high contrast for evi-
dence of a very-low-frequency mode showed no evi-
dence of such a feature, either overdamped or pro-

pagating. From careful study of the Raman and
Brillouin spectra we have shown that in order to ac-
count for the anomalies in the elastic properties of
the crystals within the context of the free energies
which have been derived theoretically it is necessary
to postulate the existence of a soft-mode branch
which is similar to that postulated by other work-
ers.s' By using the complete free-energy expres-
sion (2), taking into account the fact that the static
distortion and the soft-mode eigenvectors are not

simply related, we have obtained a fit which simul-

taneously describes all the available acoustic data.
We have also concluded that the lack of scattering
intensity for the "unseen" optic mode is consistent
with the failure of our high-contrast attempts to ob-
serve it, if its intrinsic scattering intensity is negligi-
ble. However, we have emphasized that in the ab-
sence of an unambiguous direct observation of the
mode our interpretation remains tentative. Our
high-resolution measurements of the Brillouin line

shape provide determinations of the acoustic damp-
ing, which in turn allow us to extract soft-mode
damping parameters in the context of the proposed
model. There is substantial disagreement between
these values and the extrapolation of those inferred

by Shigenari et al. Further, our search for central
peak scattering in TMO has shown no evidence for
such a mode with observable intensity outside
+0.02 cm

Finally, we emphasize again the need for theoreti-
cal understanding of the most striking anomaly
near To. The singularity in the damping of the op-
tic mode observed in the Raman spectrum with the
concomitant increase in the Brillouin width. There
is at present no theoretical explanation for such a
strong anomaly in that damping, especially in the
case of the branch which does not soften.
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APPENDIX: THE FREE-ENERGY EXPANSION

In this appendix we give the details of the deriva-
tion of the tilt angle between the order-parameter
axes and the axes of the free-energy ellipsoid. The
fact that dynamical variables and the static distor-
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tion are not collinear in the low-temperature phase
leads us to include additional terms in the free-

energy expansion (2) resulting in a somewhat dif-
ferent form for the free energy related to the in-

teraction of the acoustic and soft modes of the sys-
tem. Since this derivation forms the basis for our
conclusion that the static distortion is not collinear
with either dynamic variable in the low-temperature

phase, it forms an important link in our argument.
The plan of our approach is as follows. We shall

write the free energy in the (211,r12) plane, where the

q; are the coordinates of an orthogonal representa-
tion of the order-parameter space. That is, the
magnitude of the order parameter is given by

2}p——211+2)2. We then find the condition that the
major and minor axes of the equipotential surfaces
near a minimum lie along the coordinate axes. Us-

ing this condition, we fix the coordinates by an ap-
propriate choice of free-energy parameters and solve
for the position of the static order parameter value
below Tp.

It is convenient to visualize the curve generated

by the intersection of the free-energy surface
F(r11,212) and the plane F =F,. If F, is near the
free-energy minimum Fp at rip then this curve will
be roughly an ellipse in the (rl1, 212) plane. An el-

lipse with its axes a and b along the coordinate axes
x and y may be represented by the form
c=x la +y Ib, where c is another positive can-
stant. Any cross term between x and y in this form
represents a tilt of the axes with respect to the coor-
dinates. Thus, if we expand the free energy about a
minimum at gp,

F(rt)=Fp+ 25211+ 25212
dF 2 BF
Btf ] B'g 2

BE
+B

I1 92
(Al)

then the condition that the major and minor axes lie
along the coordinates is just that the last term be
zero. That is, we require that

BE
(A2)

B77 $ B77 2

at 3) = rtp (r11p, r12p). In——addition, there is the im-

plicit condition that we are expanding around an
extremum, which may be expressed as

=0

BE BE
Bn, =BR, =' (A3)

We now use these conditions in discussing the
free energy form proposed by Dorner et al. [their
Eq. (10), as modified by Eq. (14)], where the portion

relevant to our concerns here is

F= , tp~—rl2+ , Q—B,f' '(rl; )

+ , g—Wf'"(rl, )+ (A4)

and

+4B3(91 12)9192

QWufa (gi ) Wl( l 1+92 }+ W2(91+ 92)g lrl2

+6W3 ( '9 1 + '9 2 }( 1 1
—'9 2 ) 1 1'92 .

Constructing the derivatives of this free-energy
function in order to apply the conditions (A2} and
(A3} is a straightforward, albeit intricate, procedure.
It turns out, however, that the condition (A3) may
be ignored for our purposes here, since the condi-
tion (A2) yields the requisite information, as fol-
lows. Constructing the cross derivative and then
making the substitutions 21 1

——21 p sing and

rl2 ——2)pcosp, we obtain the condition

B221psin2$p —3B3&pcos2fp+2W2r/psin2$p

—5W33) pcos2$p ——0, (A5)

which immediately yields the solution

o'

tan2$p ——

82+28'2g P

Note that in writing Eq. (A5) in terms of r/p we
have implicitly assumed that it is evaluated at the
position of the minimum defined by Eq. (A3). The
value of Pp which results from this treatment gives
the orientation of that equilibrium position from
the origin in the coordinate system defined by (A2)
such that the axes are parallel to the major and
minor axes of the equipotential ellipse. Alternative-

ly then, if we change coordinates so that that
minimum falls on an axis (as is normally done) then
the equipotential ellipse will be tilted by an angle
—pp which is just the complement of the angle
defined by Yao et al. ' and referred to in our dis-
cussion before Eq. (1).

Finally, we emphasize that a nonzero value of Pp
does not imply a nonzero value for E4, as discussed
after Eq. (4) in the text. In that discussion, we have
used an approximate treatment of the free-energy

and we have converted their notation (yt) to ours by
the substitution rl;—:rlpy;. The functions represent-
ed by the sums are given by

gB f ('9 )=Bl'('91+'92)+2B'91'92
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expansion analogous to that given above, to argue
that choosing the axes such that they are parallel to
the dynamic variable eigenvectors is in fact nearly
equivalent to setting E~ to zero. Yao et al. '

choose coordinates by setting E&—=0, and then, us-

ing equations derived for the condition t)o ——(t)o,O),

they found that the dynamic variables were tilted
with respect to those axes. In fact, the two condi-
tions placed on the coordinates in this fashion are
incompatible, and in the present treatment we find
that the coordinate systems defined by the dynamic
variables and by the condition E4—=0 practically
coincide, while that defined by the condition

7]p = (7)p 0) is rotated significantly with respect to
the first two. According to our fits to the data, we
find that the rotation angle is Po ——76'.

In concluding this appendix, we note that similar
considerations may apply in the case of other struc-
tural phase transitions with multidimensional order
parameters, where it has usually been assumed that
the static distortion is proportional to the eigenvec-
tor of one of the dynamic modes in the low-

symmetry phase. The present discussion makes it
clear that such is not always the case, and that tak-
ing these effects into account may significantly alter
the interpretation of experimental data.
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