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Many-body effects on the L23 VV Auger spectra of metals: A renormalized theory
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A renormalized theory has been developed to study the effects of electron-electron in-

teraction on the line shape of the L23VV Auger spectrum of metals. The calculated spec-
trum for Al differs considerably from what would be expected for noninteracting electrons.
The electron-interaction effects introduce low-energy tailing, a plasmon satellite band, and

distortion of the main band.

I. INTRODUCTION
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FIG. 1. L23VV Auger spectrum of Al. The experi-
mental result of Powell is drawn as the solid curve. The
dashed curve is obtained by self-convoluting the nonin-

teracting electron density of states.

The L23VV Auger emission in a metal is a two-
electron process in which one electron of an electron
pair in the conduction band drops into a previously
ionized core level and the other electron is ejected
from the metal as an Auger electron. If one
neglects the effects caused by the localized core hole
and the interactions among the conduction elec-

trons, the Auger line shape is proportional to the
self-convolution of the conduction-band density of
states, '

I(2$ —E )=c f p(g+h)p(P —h)db, , (l)

where c is a constant, 2g Ett is the ene—rgy of the
ejected Auger electron, Ett being the energy of the

core state participating in the Auger process;
g„=g if g (EF/2 or g„=EF g if g )E—F/2 (Ez
is the Fermi energy) For . the noninteracting
electron-gas model, the conduction-band density of
states p(g) =a(' and the calculated result is
shown by the dashed curve in Fig. 1. Recent exper-
iments by Powell and others ' on the Auger spec-
trum of Al, shown by the solid curve in Fig. 1, ob-

viously disagree with the results of the free-electron
model. The maximum of the experimental curve
occurs at a higher energy, the main band is distort-
ed, a low-intensity secondary peak occurs at a lower

energy, and there exists a considerable amount of
tailing in the low-energy region. These features in-

dicate that electron-electron interaction effects, sur-

face effects, energy-momentum dependence of the
transition-matrix element, and the band-structure
effects may play important roles in modifying the
Auger line shape of Al.

In this paper we consider the effects of electron-
electron interaction on the L23VV Auger spectra of
metals. Effects of Anderson orthogonality, replace-
ment transitions, and shake-off transitions on the
position of the Auger peak have already been con-
sidered by several authors. ' In this paper we con-
fine our attention to the role of many-body interac-
tions on distortion of the main band, tailing, and
the occurrence of the secondary peak.

Hagen and Glick calculated the plasmon satellite
in the first-order effective interaction employing the
techniques of the many-body perturbation theory.
They used the self-energy of the electron as a
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parameter to obtain convergence. By using a realis-
tic value of the self-energy parameter, they found
that the maximum intensity of the plasmon band is
approximately 40%%uo of that of the main band,
which is larger than the experimental value. Our
aim in this paper is not only to calculate the
plasmon band, but also to evaluate the modification
of the main band and the tailing. In order to avoid
all divergence problems' associated with such cal-
culations, we present a renormalized theory" which
includes all self-energy effects in a systematic way.
The renormalization of the electron-, hole-, and
core-state propagators remove all divergences, and
the resulting Auger line shape develops a secondary
maximum due to plasmon production and low-

energy tailing and distortion of the main band due

to single-particle excitations.

II. FORMULATION

The transition rate for the excitation of an Auger
electron can be expressed as

(2)

where V;„, is the Coulomb interaction responsible
for the Auger transition; II; and %'~ are the proper
solutions of the total Hamiltonian H =Ho+Hi (Ho
being the noninteracting part of the Hamiltonian
and HI being the Coulomb interaction among the
electrons in the metal), with E; and E~ as the
respective eigenvalues. co in Eq. (2) is the energy of
the Auger electron and the delta function is intro-
duced to satisfy the requirement of the conservation
of energy.

Introducing an integral representation of the del-

ta function and carrying out some minor algebra,

Eq. (2) can be reduced to

I(co)= f ds e ' 'M(s),
m'

where the correlation function M(s) is given by

M(s) = (q,
~

o'(s)o(o)
~
e, & (4)

with Ot(s)=e' 'V;„,e ' ' as the transition operator
in the Heisenberg representation. Since the many-

particle wave function 4; & for the interacting sys-

tem is not known, a perturbation method is em-

ployed to construct
~

4; &, which requires the use of
the adiabatic theorem, S matrix, and Wick's
theorem.
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FIG. 2. Diagrams in zero and first order in effective
Coulomb interaction contributing to the Auger spectra of
metals.

Since we intend to use diagrammatic methods, we

express M(s) in the interaction representation as

M(s)=&@
I
TIaa((e )OI(s)OI(0)&a( —m)~~I

I
@&

where
~

4 & is the initial state of the noninteracting

many-~article system, T is the time-ordering opera-

tor, as (az) is the creation (destruction) opera-
tor for the core-state electron, and S is the scatter-
ing matrix of the perturbation theory, which can be
formally expressed as

S=T exp — dtHI t (6)

and Ol(s) is the transition potential expressed in the

interaction representation as OI (s) =e' "V~~„,e

The correlation function M(s) now can be ex-

pressed as an infinite sum by expanding the S ma-

trix. Each term in this expansion can be associated
with a Feynman-type diagram. Typical diagrams,
up to first order in effective interaction, contribut-
ing to the Auger process are shown in Fig. 2. In
these diagrams the single lines pointing downward

represent the holes in the conduction band. The
double lines pointing downward denote the holes in
the core state. The dashed lines represent the stati-
cally screened Coulomb interaction responsible for
the Auger transition, and the lines of bubbles

represent the effective Coulomb interaction describ-

ing the polarization of the electron gas during the
Auger process. The wavy lines represent the Auger
electrons.

Figure 2(a) is of zero order in effective interaction
and represents the Auger process in the absence of
any initial- and final-state interaction effects and is
described by Eq. (l). Figure 2(b) takes into account
the scattering or excitation of the conduction-band
electron by the initial hole in the core state while

Figs. 2(c) and 2(d) depict the polarization of the
conduction band by the two final-state holes in the
conduction band. Figures 2(e) and 2(f) are the in-

terference diagrams which occur due to interference
between the excitation of the conduction band by



6392 FITCHEK, PATRICK, AND BOSE 26

$F

The renormalized electron-hole propagators ap-
pearing as thick lines in Fig. 3 can by written as a
Dyson equation as shown in Fig. 4(a), and can be
expressed as

gF(k, co) =

where

co —et, —X(k,co)

A B C2

FIG. 3. Renormalized first-order diagrams contribut-

ing to the Auger process. Cross-hatched double lines are
the renormalized core-hole propagators. The thick solid
lines are the renormalized propagators for the electrons
in the conduction band.

the core hole and that by the holes in the conduc-
tion band.

Evaluation of the first-order diagrams leads to
divergence problems which have been discussed be-

fore. " In order to avoid such divergence prob-
lems, we have introduced a renormalization pro-
cedure which basically corresponds to replacing the
bare electron-, hole-, and bound-state propagators
by the corresponding renorrnalized propagators.
This procedure leads to a renormalized first-order
theory. " The renormalized first-order diagrams
which have been included in our calculation are
shown in Fig. 3. These diagrams contain all the di-

agrams of Fig. 2 and all similar higher-order dia-

grams. In these diagrams the cross-hatched double
lines pointing downward are the renormalized
core-state propagators and the thick lines pointing
downward are the renormalized propagators for the
holes in the conduction band. It will be noticed that
some unrenormalized electron lines still appear in
these diagrams. The reasons for such a procedure
are discussed in detail in Ref. 11.

X(k,a) )=X)(k,co)+iX2(k,co)

is the complex frequency and wave-number-

dependent self-energy which is calculated in the
random-phase approximation (RPA) [Fig. 4(b)].
The real part X ~(k, co) describes a shift of the bare
electron energy ez and satisfies the dispersion rela-

tion

Xi(k,co) =X,„(k)+PI

with

X,„(k)=- kFW' kF —k k+kF
1+ ln

2kkF k —kF

where kF is Fermi momentum, az is the Bohr ra-
dius, and X,„(k) is the exchange contribution calcu-
lated in the Hartree-Fock approximation.

' The
imaginary part of the self-energy describes the de-

cay of the single-particle excitations which are not
infinitely long lived due to the presence of the in-

teractions. Calculation of this quasiparticle damp-

ing both on and off the energy shell has been car-
ried out in the random-phase approximation by
Bose eg al. ' ' and others. ' '

The Dyson equation satisfied by the renormalized

+
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FIG. 4. (a) Diagrammatic representation of the Dyson
equation satisfied by the renormalized conduction-
electron propagator. (b) The self-energy is calculated in
the RPA with an electron or a hole in the intermediate
state.

(b)

FIG. 5. (a) Diagrammatic representation of the renor-
malized bound-state propagator. (b) The self-energy has
a radiative part and an electron interaction part with the
intermediate state hole in either the core or the conduc-
tion band.
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bound-state propagator is shown in Fig. 5(a) and
can be written as

l
gB(ko) =

ko EB——XB(ko)
'

where the self-energy can be expressed as

XB(ko ) =XB1(ko )+irB2(ko ) .

sistency, the initial core-state ho1e wi11 be con-
sidered along with its cloud of particle-hole pairs.
Thus the observed energy EB of this state will in-
clude the real part of the self-energy evaluated on
the energy shell

EB EB+~B1( B)

This self-energy of the bound-state propagator has
also been calculated in the RPA [Fig. 5(b)] and has
been discussed in detail elsewhere. "' For con-

and the width of this state will be taken to be

~B =~B2(EB) ~ (12)

III. CALCULATIONS

Using the rules for calculating diagrams discussed elsewhere, '0 we can write the contributions from dia-
grams of Fig. 3 as

lg(ko)= —,f dp1 f dp2 f dko1 f dko, f dse '"'V(p, —K)V(K —p, )
n(2m )'

X g f;(K—p1 —p2)f;(p1+p2 —K)e

Re
IB(kO) =-

n. (22r )'

lN iS l6) 2$
XgF(pl ko1)e gF(P2~ko2)e (13)

X f dp1 f dp2 f dp„ f Cko1 f Cko2 f Cko„ f ds e- V(p1 —K)V(K —p1)
3

X g fi(K P1 —P2)fi(P1+—P2

X g Ige(Pu) I
e

XgF(P1 kol )e gF(P2 ko2)e

XgB(EB—kou)l —'V(Pu~kou) j

lc(~)= 2 Re
m (2n. )'

X f dp1 f dp2 f dp„ f Cko, f Cko2 f Cko„ f dse '"'V(p1 —K)V(K —p, )

(14)

3

X X fi« —P1 —P2)fe(P1+P2 K)gie
i,e=1

—HE~i —~V )$ l.~,S
X(P v)e gF(P1,ko1)e

XgF(P2~ k)og2F(P2+Pu~ko2+kou)

XgB«B —ko. )l —&V(p. ~.)le ' .

(15)
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Term Ic(co) contains an extra factor of 2 since diagrams Ct and C2 have equal contributions. The dynamic
Coulomb interaction (line of bubbles in Fig. 3} is represented by [ i—V( p„,co„)],and V(K—p &) represents the
Coulomb interaction which is responsible for the Auger transition (dashed lines in Fig. 3). The matrix ele-
ment g;, (p„) occurs for the vertex in which a line of electron interaction joins an incoming and an outgoing
bound-state hole and f;(p&+ p2 —K) represents the matrix element for the vertex where an interaction line
joins with a core hole and a hole in the conduction band. gz(k, co ) is the noninteracting conduction electron-
hole propagator. All of these quantities have been defined before. ' In addition, the renormalized conduction
electron-hole propagator gz( k, ko ) and core-state propagator gs(co ) can be conveniently expressed in their spec-
tral forms as

i8(co' Ez) —i8(EF co')— X2( k, co')
gF(k, co) = —,. +

co co—'+ik, co co—' iA— [co' —ek —X&(k, co)] + X2(k,co')
(16)

and

dco 1 Xsg(co')
ga(

co co' —i A—[co' , Es —Xs—)(co'}] +Xs2(co')

Before proceeding to evaluate Eqs. (13}—(15), we have made several plausible approximations. First, noting
that the matrix element g;, (0)=5;, and that its dependence on p„ is rather weak, we have replaced g;, (p„) in

Eqs. (14) and (15) by the Kronecker delta 5;,. Furthermore, all three equations contain a product of the form

V(pt —K)V(K —p~) g f~(K —pt —p2)f (p~+p2 —K),

which we have taken to be a constant u. Investigations by Hagen and Glick, ' Joyes and co-workers, ' '
Heine, and Longe and Glick, ' imply that it is reasonable to neglect the momentum dependence of this ex-

pression. This expression is related to the Auger transition matrix and by setting it to a constant, we are basi-
cally assuming that the Auger transition-matrix element is energy independent.

We can now carry out the integrals over s, the frequencies and various angles in Eqs. (13)—(15). Equation
(13) then takes the following form:

r r

( )
a f d~ f d~ f d~l gF Pl~4+

I gF Pt g —~

where g=—(co+Es)l2. This equation can be further simplified by noting that for an interacting electron gas,
the conduction-band density of states is given by

p(co)= 3 f dpIm
1

(2m )

gF(p ~}
(20)

so that

I, (co)=a f dip(g+b, )p(g b, ), — (21)

which has exactly the same form as Eq. (1), except that p(e) in Eq. (21) is the density of states of the interact-
ing electron gas. The contribution from this diagram has been reported in previous publications. '

We now proceed to evaluate Eqs. (14) and (15). In terms of dimensionless variables, these equations can be
reduced to

22

Is(co)= — f p(co')dko' f p(co")dko" f du Im
m' e(u, u)

gs(ko +co —w2+Es )
Re (22)
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2m kFa dv gg(co +co —w2+Es )

Ic(co ) = a da b db dco'p(co')Re
v l

gF(b, w2 co—')
X[B(0.5 —a)ImV (u, u)]Re

l

—B(0.25+co' —w2)Im
gF(b, w2 co')—

[ReV (u, 0)+B(a 0—5)R. eV+( ug)
l

—B(0.5 —a )Re V (u, u )],

where

N +EB -p EB
c =cop/4EF, co'=, co"=, u)2= E'=

4EF
' 4' 4EF

'
4EF

'

Pv w2 —co —a I P2+Pu Iu=, a=pz/2k~, u=, b=
2k@ v 2kF

and e(u, u) is the frequency and wave-number-
dependent dielectric function which has been calcu-
lated in the RPA.

Calculations of Iz and Ic thus involve evaluation
of three- and four-dimensional integrals over rather
complicated integrand functions. In order to make
these computations tractable we have made several
further plausible approximations. As in the calcu-
lation of the soft-x-ray emission spectra, "we have
neglected the real part of X(k,co ) in the main band
region since it does not have any important struc-
ture in this range and is not expected to alter the
shape of the spectrum in any appreciable way. To
avoid numerical interpolation, we have also as-
sumed a constant value for the imaginary part of
the core-state self-energy, i.e., we have chosen
Xs2(co) =Lsd(E&) for all co. It turns out that it is
not such an unreasonable approximation in the
range of co's in which we are interested. Further-
more, it was found that Xs&(co) as calculated in
Ref. 11 can be approximately fitted to a parabolic
curve for values of co of our interest. Finally, we

have used the Lundqvist-Overhauser plasmon pole
approximation ' in evaluating 1m[1/e(u, u)] in
Eqs. (14) and (15).

Introducing these approximations, Eqs. (13)—(15)
were computed numerically for both the main band
and the plasmon satellite regions for aluminum.
The total contributions are plotted as the solid in
Fig. 6. The dashed curve in this figure corresponds
to the calculation in the noninteracting electron-gas

I

model. Several aspects of the calculated results are
noteworthy. The electron-electron interaction ef-
fects have given rise to all the features that we were

looking for. They have introduced a low-energy
secondary peak due to the production of a volume

plasmon during the Auger process. The electron in-

teraction effects have also introduced a low-energy
tailing of considerable strength, and a distortion of
the main band due to single-particle excitations.
Notice that the intensity at the secondary peak is
approximately 18% of that of the main peak. The
peak of the main band is only slightly shifted to the
high-energy side of the spectrum.

IV. SUMMARY

In this paper we have presented a renormalized
first-order theory of the Lq3VV Auger spectra of

0.5

0.0
—0.20

2(/EF

FIG. 6. I.q3VV Auger spectrum Al. The solid curve is
the total intensity calculated using the renormalized
theory. The dashed curve is the intensity in one-electron
theory.
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metals. We have considered important interaction
processes which can contribute to the Auger pro-
cess. We find that the renormalization of the parti-
cle and hole propagators removes the fundamental
shortcomings of a first-order theory. In the renor-
malized theory the self-energies of the electron-,
hole-, and bound-state propagators are introduced
in a natural way and do not have to be treated as a
parameter of the theory. As expected, our theory
gives rise to tailing and distortion of the main band
due to single-particle excitations and a secondary
peak due to the production of a plasmon during the
Auger process. The strength of the plasmon satel-
lite is found to be approximately 18% of that of the
main band, which is much higher than the ones
predicted and measured in the soft-x-ray emis-

sion" and absorption ' spectra of metals. This
is in agreement with the predictions of Langreth.
Recent experiments by Baro and Tagle show a
plasmon structure of similar strength (approximate-
ly 22%i in the L23VV Auger spectrum of magnesi-
um.

The first-order renormalized theory introduces
only a minimal shift in the position of the Auger
peak. The peak shift can be attributed partially to
many-body effects ' and partially to band ef-
fects. ' ' The shift of the Auger peak due to the
Anderson orthogonality effect, replacement transi-
tion, and shake-off transitions has already been cal-
culated in a nonperturbative way and has been dis-
cussed in Refs. 7 and 8.
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