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The hyperfine fields and charge and spin densities around hydrogen impurity sites in
iron, cobalt, and nickel are calculated using the local-density formalism in an embedded
cluster model. The sensitivity of the self-consistent spin density to embedding constraints
and the cluster boundary conditions is explored. A continuum-state boundary condition is
developed which serves to broaden the discrete cluster levels in a physically satisfactory
manner. The hyperfine field is seen to result from a delicate balance between negatively
exchange-polarized "bound-paired" states and positive "unpaired-band" contributions.
The theory shows a reduction in moment for atoms around the impurity site as observed;
the calculated moments and fields are in fairly good agreement with experiment, using up
to 38 atom clusters. The pressure dependence of the muon hyperfine field is presented.

I. INTRODUCTION

The electronic structure of impurities in metals
is a fascinating problem. In particular, the elec-
tronic structure of light impurities, such as hydro-

gen, has become a topic of great current interest
because of its important technical applications. A
number of interesting consequences for many met-

allic characteristics, such as magnetic, supercon-
ducting, and mechanical properties as well as many
technical applications, has prompted the extensive
recent interest in them. In particular, the muon

spin rotation technique has emerged as a powerful
probe to study spin densities, crystallographic posi-
tion, diffusion properties, etc. ' Although a proton
(or the lighter muon) with no core electronic struc-
ture is the simplest kind of impurity that can be
implanted into a solid, the electronic structure of
the proton in metals is a surprisingly complicated
subject and a number of theoretical models have
been developed. In the jellium model, the periodic
lattice structure is neglected and the positive
charges on the host ions are smeared out uniformly
to form a homogeneous density background. The
screening of the impurity is then treated in stand-
ard linear or nonlinear screening theories. In
metals with small ion cores and no d- or f-like
electrons, such continuum-based approaches are
justifiable and discrete lattice effects can be ac-
counted for perturbatively. Transition metals
with d bands crossing the Fermi level pose a more
difficult challenge. Solving the Dyson equation for

the isolated impurity problem using Korringa-
Kohn-Rostoker Green's-function techniques has
shown considerable promise for defect studies in

general. The band-structure methods with large
unit cells, the "supercell" methods, certainly pro-
vide a powerful though relatively expensive ap-
proach to dilute impurities in metals.

Related to the band methods, but requiring
much less computational effort, is the "molecular"
approach utilizing a finite cluster of host atoms
surrounding the impurity. A main problem in us-

ing cluster models to interpret properties of solids
is the choice and implementation of physically
reasonable embedding conditions for the cluster.
This implies construction of a model Hamiltonian
containing cluster-environment interaction (hope-
fully self-consistent) and imposing suitable boun-

dary conditions on the cluster wave functions. A
spherical signer-Seitz boundary condition can be
extended to the multiple-scattering Xa scheme'
where the approximation of a spherical potential
within atomic spherical regions is retained and par-
tial wave expansions are thus possible to exploit. "
Other methods, such as the linear combination of
atomic orbitals (LCAO) Hartree-Fock and discrete
variational (DV) Xa schemes, emphasize instead
the multicenter mixing and on-site hybridization of
atomic basis functions in the potential field of
solids. In the variational method, a boundary con-
dition is not readily usable because of the built-in
decay of LCAO-type basis functions. In Sec. II we
instead describe an alternative method where an
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asymptotic condition is imposed on the cluster
wave-function solutions.

As for hydrogen in transition metals, only a few

first-principles spin-polarized calculations have

been carried out. Keller' briefly reports calcula-

tions using an embedded cluster and the multiple-

scattering technique. Kanamori et al. ' used the
Korringa-Kohn-Rostoker Green's-function tech-

nique, while the only spin-polarized band calcula-

tion carried out to self-consistency is the thin-film

supercell study of Ni5H by Jepsen et al. ' These

calculations show that a considerable part of the
hyperfine field (i.e., contact spin density) arises
from electronic states close to the Fermi energy.
Thus we have chosen these systems to test the
theoretical model described in Sec. II; in Sec. III
we calculate the electronic structure of isolated hy-

drogen impurities in iron, cobalt, and nickel by the
LCAO-DV scheme. The hyperfine field, as experi-
enced by positive muons, is calculated and com-

pared to experimental results and theoretical calcu-
lations by other first-principles methods. This hy-

perfine field is found to be determined by a deli-

cate balance between negatively exchange polarized
"bound-paired" states and a positive contribution
from "unpaired-band" states at the Fermi level. In
any cluster method giving discrete energy levels as
a result, calculation of the latter positive term re-

quires a prescription for broadening of the discrete
levels. We also present, for the first time, a calcu-
lation of the pressure dependence of the muon hy-

perfine field.

II. THEORETICAL MODEL AND
COMPUTATIONAL PROCEDURE

peat the main steps. The single-particle equation

(h —e„)f„(r) =0 (2)

1

~cr = p ~ + ~coul + ~ex, o

where the first two terms are the kinetic energy
and Coulomb potential. The von Barth —Hedin'

potential was adopted for the spin-dependent
local-density exchange,

(4)

2p~
V,„=[@~(p)+v,(r, )]

. p

1/3

+[@,(r, ) —v, (r, )],

where p is the spin component of the total elec-

tron density p=p, +p, and

1/3

p„(p)=-p 3p

]/3
3

4'
p~(r, )= —Czln(1+re/r, ),

4(2)—1/3

v, (r, )=—
3(1—2-'")

X [CpF(r, /rI ) CpF(r, /~p)], —

is approximately solved by minimizing certain er-
ror moments on a diophantine sampling grid in r,

(g; ~h —e~g)=0.
The effective Hamiltonian for state of spin o. is
given (in Hartree units) by

A. The Hartree-Fock-Slater model

The local-density formalism is used in carrying

out molecular-orbital (MO) calculations on a finite
cluster of atoms. The MO eigenstates are expand-

ed in terms of symmetry orbitals:

P„(r)=+X,(r)C„, .

The symmetry orbitals XJ. are chosen here as linear

combinations of atomic orbitals located on the dif-

ferent atoms, corresponding to the cluster point-

group symmetry.
The variational coefficients C» are obtained by

solving the secular equation of the discrete varia-

tional method. This method has been described in

detail elsewhere, ' ' but for completeness we re-

F(z)=(1+z )ln(1+1/z)+z/2 —z ——, .

The parameters C~ =0.0225 a.u., CF C~/2, ——
rp =21, and rz ——2 rp were those suggested by
Moruzzi et al. '

The matrix secular equation (H ES)C=0-
where H and S are the Hamiltonian and overlap-

ping matrices, respectively, is solved by standard
procedures. Since the discrete energy eigenvalues
obtained for the molecular cluster is a sampled
representative for energy bands in a metal, we
broadened each energy level with a procedure
described in detail below. Fermi-Dirac statistics
were invoked on these broadened states to deter-
mine the Fermi energy and occupation numbers

f„(e) for each MO. The cluster charge density was
then constructed by summing over all MO's:
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In order to calculate the potential by one-dimen-
sional integrations, this charge density was cast in
a multicenter-overlapping multipolar form, '

(7)

with r„=r—8„.
The radial density basis set {pjI was constructed

from spherical atomic densities, calculated from
the wave-function variational basis, and from five
parabolic radial functions for each l (1 in the fully
symmetric representation of the molecular point
group. The coefficients {dJ were determined by
least-squares fitting to the eigenvector density of
Eq. (6). Higher / terms were found not to alter the
results significantly.

B. Asymptotic boundary condition

The sharp details of the energy density of states
(DOS), due to the finite number of valence levels

in an isolated cluster, are not relevant in an ap-
proximate description of a bulk crystal. A fre-

quently used procedure to obtain a smoothed spec-
tral density is to smear each energy level by a
Lorenzian with a constant width:

As earlier, we solve the single-particle equation (2)
by minimizing error moments with respect to the
variational coefficients cj, but not a». We have

&4; lb e» —
I
f&=0, i=1,2, . . .,N . (10)

This leads to an inhomogeneous equation system in

{cI:

[— ~ + Vo(r)]$» =e»P», (12)

Eq. (11) reduces to

(13)

Here u is the difference between the cluster poten-
tial [see Eq. (4)] and Vo. In the Appendix we give
an alternative derivation of these equations based
on the Green's-function formalism.

Volume normalizing and separating into ortho-
gonal terms, the new single-particle wave function
becomes

i=1,2, . . ,N . . (11)

A particularly simple form is obtained by choosing
4; as the orthonormalized eigenfunctions to the
homogeneous problem of the isolated cluster, i.e.,
Eq. (3), and with P» being an eigenfunction to
some model Hamiltonian

The main drawback of this method is that all lev-

els are smeared equally, independent of their char-
acter as localized or diffuse states. Energy-
dependent (or k-wave-vector-dependent) boundary
conditions can overcome this limitation "but are
not easy to impose on the LCAO-type of basis
used here.

We instead require that the solutions to the
Hamiltonian [Eq. (4)] have a certain asymptotic
form P» at the energy E» By asympto. tic we here
mean r~ Oo, where the tails of the atomic orbitals
in (1) have vanished. The requirement can be ful-
filled if the function P» is included in a new ex-
pansion of the wave function:

(9)

I

If {4&I is a complete function set, the last term is
zero. This is never true with a localized finite-
numbered basis set. We may consider that 1( is
composed of two orthogonal parts, the first of
which is associated with cluster-localized states.
We used this part to determine properties of the
embedded cluster. The probability that we will
find the cluster state 4; at energy e is thus propor-
tional to

Id;(e) I2oc
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By an energy normalization we may set d; de
=1; thus one electron is distributed over each clus-
ter spin orbital. The actual population is deter-
mined by integrating

~
d;

~
up to the Fermi ener-

gy
Therefore, we can interpret d; as the line profile

or density of states arising from cluster level i.
The total density of states analogous to Eq. (8} can
be written as

D(E}=Q ~
d„(E)

~
(16}

Notice that Eq. (15) is also valid for e=e; and
that if (4;

~

u
~
P} is slowly varying with energy,

~
d;

~
approaches a Lorenzian function with width

as e~e;. Also notice that the expression is not
dependent on the actual amplitude of asymptotic
function P. However, there is a dependence on the
choice of integration volume through the term

(P ~
P) in particular, if P is not a square integrable

function.
In the derivation of Eq. (15) no restriction on Vo

and the type of asymptotic function Pk [see Eq.
(12)] has been made. As a simple example we
chose the plane wave e' "' in order to simulate
propagating states in a periodic lattice. The
minimum integration volume not truncating the
atomic orbitals was chosen and a constant potential
Vo was set at the bottom of the valence energy lev-

els. The exact level profile [Eq. (15}]and thus the
structure of the DOS were slightly dependent on
these choices and on the integration accuracy.
However, since the integrated population was fed
back to the potential on subsequent iterations, the
converged self-consistent charge and spin densities
were found to be insensitive to those parameters.

C. Basis sets

The atomic orbitals used in the molecular-orbital
expansion were obtained by solving the self-con-
sistent free-atom problem. Several numerical free-
atom basis sets were considered in these calcula-
tions. A reduced overlap between orbitals on dif-
ferent atomic sites produces an improved variation-
al basis but the limited spatial extent of valence or-
bitals should not be so great as to significantly af-
fect diffuse conduction-electron states. Also the
atomic core orbitals should not be distorted appre-
ciably. Spherical wells of varying depth and radial
extent were added to the atomic potentials so that

different basis sets could be constructed. For the
transition metals Fe, Co, and Ni, a well of depth
0.2 a.u. with sloping walls beginning at 5 a.u. best
satisfied the criteria listed above. This basis set
consisted of 3d, 4s, and 4p orbitals with the core
frozen. For the hydrogen impurity (or muon), ls,
2s, and 2p orbitals were calculated with a well of
depth 5 a.u. with sloping walls beginning at 4 a.u.
Since we were mainly interested in the hyperfine
fields, both ls and 2s orbitals were included in the
basis set in order to ensure that the variational
freedom was enough to describe the different radial
behavior of orbitals of different spin.

III. HYDROGEN IN IRON, COBALT,
AND NICKEL

In hcp Co the muon site has been determined to
be the octahedral interstitial site through con-
sideration of the magnetic dipolar field distribution
as the easy axis of magnetization changes in the
temperature range 500 to 600 K.' Although no
unambiguous site determination has been done for
the fcc phase, it is generally assumed that the
muon also occupies this site in fcc Co and Ni.
Neutron diffraction also verifies this site for hy-
drogen in Ni. Therefore, only the octahedral sites
were considered in the ealeulations with fcc Ni and
fcc Co. No magnetic dipolar field is present here
due to the cubic symmetry. At the noncubic inter-
stitial tetrahedral or octahedral sites in bcc Fe, the
dipolar fields seen by muons are averaged to zero
because of rapid diffusion between crystallographi-
cally equivalent but magnetically inequivalent
sites. ' Both the tetrahedral and octahedral sites
were considered in our calculations as well as the
substitutional site, inspired by recent experimental
data on vacancy trapped muons. ' The hcp phase
of Co was not included in the present work be-
cause of a more complicated analysis required with
a nonvanishing dipolar field.

Since the cluster boundary condition least affects
the electron density at the center of a cluster, the
muon was placed at the origin surrounded with
2—3 shells of host atoms. The cluster geometries
which were used are shown in Fig. 1. For compar-
ison with host properties, calculations were also
made without the muon present using the same
cluster geometries.

Total densities of states (TDOS}, D (E), with the
hydrogen present, are displayed in the top portions
of Figs. 2—4. The visible difference in details of
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(a) {b

I

I

I

I

I

I

FIG. 1. Cluster geometries used for (a) substitutional site in bcc Fe, (b) octahedral interstitial site in bcc Fe, (c)
tetrahedral interstitial site in bcc Fe, and (d) octahedral interstitial site in fcc Co and Ni. Filled symbol denotes hydro-

gen positions and unfilled symbols show host-atom positions.

the TDOS between the HFe&4 cluster with D4I,
point symmetry and the HFe&6 cluster with the
lower D2d symmetry has no significance. It merely
reflects the difference in integration accuracy and
in plane-wave projection onto different symmetry
representations. Integrated DOS are nearly invari-
ant as mentioned in Sec. II. Without the muon,
the Fe~4,Pe~6 TDOS are essentially the same except
for the appearance of a low-lying peak 9 eV below
the Fermi energy (EF) and outside the TDOS plot
range in Figs. 2 —4. This level is mainly of H 1s
character and has also been observed by Jepsen
et aI."

The average magnetic moment per Fe atom in
the pure Fe~4 and Fe&6 clusters was 2.8pz. Since
none of the Fe atoms in these cluster geometries is
surrounded by all its neighbors, one may expect a
moment between the experimental bulk value of
2.2' and the free-atomic value of 3@~, as ob-
tained by Hund's rule and assuming the 3d 4s con-
figuration in the metal. A test calculation with a
Fe atom at the origin, surrounded by its eight first

neighbors and six second neighbors, also gave an
average moment of 2.8pz, while the moment on
the center atom was 2.lpga. The average magnetic
moments in the Coi4 and Ni38 cluster were 1.9p~
and 0.6pz, respectively, comparing well with the
experimental values of 1.7pz and 0.6p&. Adding
the H atom to the clusters caused the moment in
the first-neighbor host atoms to decrease by be-
tween 0.1 and 0.2pz in all cases. First-neighbor
moments were taken as the 3d moment from a
Mulliken spin-density analysis of the eigenvec-
tors.

A. Hyperfine fields

The energy dependence of the local density of
states (LDOS) is defined as

p (R,E)=g ~
d„(E)

~ ~
4„(R)

~

Their difference defines the local spin density,
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FIG. 3. Total density of states (TDOS} for spin ), l,
local density of states (LDOS), and local spin density
(LSDOS) for octahedral position H in Co cluster. Ener-

gy levels with density at the H site are indicated in the
lower panel.

LDOS

This negative density at the muon site is due to the
exchange interaction with a more or less localized
host d moment giving a different radial shape for
the spin-up and -down wave functions.

(ii) The negative field 8~ is balanced by a posi-
tive contribution Bq arising from the higher popu-
lation of spin-up states. The energy dependence of

LSDOS
HNi o
TDO

I I I I I

-6 -5 -4 -3 -2 -I 0
(e V)

FIG. 2. Total density of states (TDOS) for spin t, $,
local density of states (LDOS), and local spin density
(LSDOS) for (a) octahedral position H and (b)
tetrahedral position H in Fe cluster. Energy levels with

density at the H site are indicated in the lower panel.

LDOS

(18)

5p(R, E)=p, p, . Here t deno—tes majority spin,
parallel to the host magnetic moment. The
energy-integrated spin density at the muon site R
determines the hyperfine fields,

Bhr= 52.42 f 5p(R, E)dE

in units of tesla (T).
We distinguish between two contributions:
(i) A negative contribution 8~ arises from paired

states of energies more than -2 eV below EF, i.e.,
states which are equally populated for both spins.

L SDOS

I I I I I I I I

-6 -5 -4 -5 -2 -I 0 I 2
(eV)

FIG. 4. Total density of states (TDOS) for spin f, &,

local density of states (LDOS), and local spin density
(LSDOS) for octahedral position H in Ni cluster. Ener-

gy levels with density at the H site are indicated in the
lower panel.
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the local density and spin density from the un-

paired states are shown in Figs. 2—4 where the en-

ergy levels belonging to the fully symmetric repre-
sentation of the point group are also indicated.
These are the only states having a density at the
origin. Calculated hyperfine fields for the dif-
ferent clusters are given in Table I together with
the magnetization in tesla at the interstitial site
without H impurity.

The general agreement between calculated Bqf
and experimental values is quite good considering
that these results are for a nonrelaxed lattice and
neglect the zero-point motion of the light muon.
The paired contribution 8~ in Ni agrees well with
the spin density from bound states, —0.24 T, ob-
tained by Kanamori et al. ' and indicates that our
basis set with the compressed 1s and 2s orbitals on
H is able to describe the different radial behavior
for spin-up and spin-down wave functions. Since
B2 can be expected to depend on the number of
states close to E~, we increased the number of Ni
atoms from 14 to 38. The change in Bhf was
minimal, Bhf ——0. 15 T for the smaller cluster and
—0.13 T for the larger one. All results given in
the tables and figures are for the larger cluster. As
we will show later, lattice relaxation around the
muon or hydrogen atom cannot explain the differ-
ence between the theoretical and experimental
values in nickel. Although the relative difference
is -50%, the absolute deviation is not bigger than
in the Fe and Co host, where the higher magnetic
moment gives much higher spin densities. The
basic limitations of our model for broadening the
discrete cluster energy levels seem to be reached.
Hence the better agreement between the calculated

Bhf at the octahedral position in Fe should not be
taken as a support for this position in preference to
the tetrahedral site. The difference between the
hyperfine fields at the two positions is, in fact;
much smaller than the difference in digolar fields
so that diffusion between octahedral and tetra-
hedral positions cannot be excluded by these cal-
culations.

A calculation with the muon at a substitutional
Fe vacancy gave a hyperfine field of —0.84 T with

8& ———2.41 and 82 ——+1.57 T. At this site the
positive peak in 82 at EF was much higher and
sharper than for the interstitial sites. The negative
net field disagrees with the preliminary calcula-
tions by Kanamori et al. ,

' but is in good agree-
ment with the measured field —0.95 T for a muon
trapped at iron monovacancies. '

B. Volume dependence and lattice distortion

Since a change in the spin density with a change
in the neighbor distance may be calculated more
accurately than the absolute hyperfine fields, we
carried out several calculations with different lat-
tice constants. The results are summarized in
Table II. Three major effects were found with a
uniformly compressed lattice:

(i) The paired contribution Bi decreased in mag-
nitude (less negative) and the relative volume
dependence almost followed that of the nearest-
neighbor host moment.

(ii) Energy levels close to E~ were shifted up-
wards in energy, relative to E~, depopulating those
states (antibonding states predominate).

TABLE I. Muon hyperfine fields. First column gives the host and site used in the calculations o = octahedral, t =
tetrahedral interstitial sites. Columns 2 and 3 give the paired {Bl ) and unpaired (B2) contributions to the hyperfine
field (Bhq) (column 4). Experimental value is given in column 5. The last two columns give the calculated and experi-
mental interstitial magnetizations in tesla, without the muon impurity present.

Host and site
Muon hyperfine field

B2 Bgg~Bi+B Expt. (Ref. 1)
Interstitial magnetization {T)

Calculated" Expt. (Ref. 24)

bcc Fe o
bcc Fe t
fcc Co 0

fcc Ni o

—1.73
—1.69
—1.03

—0.22

+ 0.45
+ 0.25
+ 0.57

+ 0.09

—1.28
—1.44
—0.46

—0.13

—0.58'

—0.07

—0.01
—0.06
—0.06

—0.02

+ 0.10
—0.16

? —0.16
hcp

—0.07

' Extrapolated to 0 K from 700 K. In hcp Co the experimental Bh~ is —0.61 T.
No basis functions were included on the interstitial site; therefore these values are less certain than the muon hyper-

fine fields.
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TABLE II. Volume derivatives of the muon hyperfine field. Column 1 gives the host
and site used in the calculations, o = octahedral, I; = tetrahedral interstitial sites. Column 2
gives experimental volume derivatives at 300 K as obtained from hydrostatic pressure experi-
ments (Ref. 26). The site in Fe is unknown. Column 3 gives calculated value. Column 4
gives the contribution from paired states which can be compared with the calculated volume
derivative of the nearest-neighbor host moment (column 5) and the experimental value for
the pure host (column 6) derived from pressure derivatives (Ref. 27) and compressibility data
(Ref. 28).

Host and
site

d 1118hg

din V
expt.

dlnBhf

din V
calc.

d1118)

din V
calc.

dlnp, (nn)
din V
calc.

dlnp,

din V
expt.

bcc Fe o
bcc Fe t
fcc Co o
fcc Ni o

?
+27

+ 1.6
+12
—0.6
+ 0.7

+ 0.8
+ 1.1
+ 0.8
+ 0.2

0.7
0.8
0.4
1.9

0.7

?
0.4

(iii} The density contributions at the muon (or
H) were increased for each unpaired spin orbital.

These results can be understood as follows: The
net magnetic moment in Fe, Co, and Ni decreases
with pressure because the 3d spin density de-
creases. This implies a decrease in the exchange
polarization forces, and thus a decrease in the
magnitude of B~. The depopulation of states near

EF is expected because of an increase of the mixing
matrix elements between the host and impurity
states which pushes up some of the antibonding
states across EF. Since the local spin density is
positive at Ez (Figs. 2 —4), B2 becomes less posi-
tive, opposite to the change in B&. However, when
the local spin density is small at EF the increase in
each orbital density may cancel the depopulation
effect and B2 becomes almost constant or even
more positive. This is the case in Fe but the net
change is small; the volume dependence mainly a-
rises from the change in BI. For the octahedral
position, we also carried out calculations with the
two nearest-neighbor Fe atoms relaxed 5% out-
wards. A small increase in B2 was observed while
the nearest-neighbor Fe was less perturbed by the
impurity charge and its magnetic moment thus
increased compared to the unrelaxed case. This
gave a more negative B&. The total hyperfine field
was Bhf ———I.30 T and the volume dependence
d (ln Bhr)/d(lnV) =+0.8.

In Co the depopulation is the dominant effect,
driving Bhf more negative when the lattice is
compressed. However, it should be pointed out
that the volume dependence of the magnetic mo-
ment may be underestimated. No experimental
value for the cubic phase is known to the authors.

In the hexagonal phase the value is d (In Bhf)/d
(lnV) =1.9, considerably higher than in Fe and
Ni, but there is also a much higher orbital contri-
bution to the magnetic moment than in the cubic
structures.

The Ni results are once again very uncertain for
the same reasons mentioned earlier, although the
sign and order of magnitude are correct.

C. Charge and spin densities

Contour maps of the charge density for several
H-impurity clusters are presented in Fig. 5. In
Fig. 5(a) a cut through the (110}plane reveals the
bond formed between hydrogen and its near neigh-
bors at the octahedral site in bcc iron. This bond
is represented primarily by the low-lying state
about 9 eV below EJ;, as mentioned previously.
The H environment is seen to be highly aniso-
tropic. The corresponding interstitial tetrahedral
site in Fe is shown in Fig. 5(b), for the (100) plane.
The midbond charge density is somewhat lower in
this case mainly because of the greater nearest-
neighbor distance.

The (110) densities for fcc Co and Ni are shown
in Figs. 5(c) and 5(d), respectively. Here the
hydrogen —metal bond length is a bit greater,
and the resulting bond contains noticeably less
charge. Thus, in cobalt the midbond density is
-0.25e/A greater than the interstitial den-
sity, while in iron the midbond density is

0-0.50e/A greater than the interstitial density.
In order to make more quantitative comparisons,

we present radial (spherically averaged) charge and
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(a)

(c)

FIG. 5. Charge density maps for (a) (110) plane in Fe through octahedral H site, (b) (100) plane in Fe through
tetrahedral H site, (c) (110) plane in Co through octahedral H site, and (d) (110) plane in Ni through octahedral H site.
Contour interval is 0.0675 e/A .

spin densities about the hydrogen sites in Fig. 6.
In Fig. 6(a) data for the octahedral site in iron are
given. In the upper panel appear charge densities

p for isolated H, the unperturbed Pe~4 cluster, and
the self-consistent solution for HFe&4. The pile up
of bonding charge at the H site and for some dis-
tance away from the proton, exceeds that due sim-

ply to superposition. The integrated density
(right-hand scale) shows that the proton (or muon)
is fully screened at a distance of —1.2 bohr. In
the lower panel we see that the spin density of the
unperturbed Fe&4 cluster practically vanishes at the
octahedral site, increasing smoothly as one moves
out toward the host moment. With the H impuri-

ty present, negative polarization is observed, ex-
tending out to R=0.6 bohr. Beyond this point the
HFe&4 spin density merges smoothly with that of
the unperturbed host. Thus on the scale plotted
here, the H-induced spin density damps rather rap-
idly. Nevertheless, the magnitude of the near-

neighbor moment is reduced by -0.1p&.
The results for the Fe tetrahedral site, shown in

Fig. 6(b), are superficially quite similar to those for
the octahedral site. Here complete charge screen-
ing occurs at a slightly larger distance, —1.3 bohr,
and the region of negative (minority) spin density
persists out to -0.8 bohr. This extended region is
partly due to the slight predominance of minority
spin in the t site in the iron host.

The corresponding data for octahedral sites in
Co and Ni are given in Figs. 5(c) and 5(d). The
charge-screening radii are seen to be further in-
creased to —1.4 bohr, and the minority-majority
spin crossover moves out to —1.2 and 1.3 bohr,
respectively. The charge and spin densities at the
H site are seen to be reduced, compared to the iron
host, for both Co and Ni. This result is consistent
with the relative bond lengths Fe 0:Fe t:Co o:Ni o
= 1.43:1.60:1.77:1.73 A and host magnetic mo-
ments.
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IV. SUMMARY APPENDIX

The local spin density of interstitial sites in Fe,
Co, and Ni was found to critically depend on its
energy dependence at the Fermi energy.
Molecular-cluster calculations cannot account for
this unless a physical model for broadening the
discrete energy levels is adopted. The proposed
model with an asymptotic condition on the cluster
wave functions, gives, in general, a good agreement
between calculated and experimental values for the
muon hyperfine fields and their pressure deriva-
tives. In particular, the interpretations of the
underlying mechanisms are easy to make with the
LCAQ-type of basis wave functions and a separa-
tion into paired and unpaired contributions.

Lattice relaxation around the impurity was not
found to be important and the effect can be es-

timated from the volume dependence of the hyper-
fine field as measured through pressure experi-
ments.

The large zero-point motion of the muon was
not accounted for and the finite extent of the
muon wave function can have a substantial effect
on the hyperfine field. ' As the muon samples re-

gions closer to host atoms, effects similar to those
discussed in connection with the uniformly com-

pressed lattice will appear: i.e., destabilization of
near-neighbor host moment and depopulation of
antibonding states near Ez. These effects work in

opposite directions, so real quantitative estimates
are not possible. However, we speculate that zero-
point motion leads to a shift in the hypeifine field
similar to that of a contracted lattice.
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The Green's-function formalism provides a
physically understandable alternative derivation of
Eq. (13), giving expansion coefficients in terms of
the asymptotic wave function. We begin with the
usual zeroth-order Hamiltonian and eigenfunctions
satisfying

(H E)g~—=0

with the related Green's-function equation

(H E)GE—(r, r ') = —5(r —r ') .

(Al)

(A2)

Taking the trial wave function

itE, k =6+pc c'

(A3)

and operating on (A3) with (H E), gives—
r

gc;(H E)4;=u (r—) Pk(r )+pc;4;(r )
l l

Rearranging, one obtains

gc;(H —E)4;=—u (r)Pk(r), (A4)

where H is the cluster Hamiltonian. Taking the
inner product with every function 4J, and intro-
ducing the amplitude at„we obtain Eq. (13).

In this picture the propagating state Pk is per-
turbed by its interaction with the cluster potential.
This perturbation causes a mixing with cluster
states 4;, which becomes large for E=E;. By
separating the result into orthogonal cluster-
localized and long-range components, we are able
to give an account of the energy broadening of the
cluster levels needed for interpretation of local
properties.

Identifying the function P@ with Pk [see Eq. (12}]
we then introduce the perturbation
u (r }= V,i„„„—Vp and write down the solution of
the Schrodinger equation for the cluster potential
as

P~k=Pk+ fGE(r, r ')u(r')PEk(r')d r' .
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