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Phase transitions in systems with multispin interactions
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An Ising-type model including n-spin nearest-neighbor interactions is introduced. The
ground-state properties of its Hamiltonian version are studied in one and two dimensions. The
model is self-dual in one dimension. The mean-field theory indicates that for n >n, the transi-
tion may become first order. Finite-size scaling suggests that n,=4 in one dimension. The criti-

cal exponents as functions of » are estimated.

The bulk of theoretical knowledge about the
cooperative properties of interacting systems has been
accumulated using models with pairwise interactions.
The same can be said about the study of critical
singularities near the phase transitions. From the
very outset it was clear that the two-body interaction
is only an approximation and n-body interactions
(n >2) are more adequate descriptions of reality.
There is evidence for important effects of many-body
forces in different fields ranging from the theories of
alloys! and surface problems?*3 to the helix-coil transi-
tion,* the structure of solid *He (Ref. 5) and others.®
Following Griffiths and Wood,”® the study of the
critical behavior of systems with »-spin interactions
(n >2) has been initiated by Baxter and Wu
(BW).”® Their exact solution of the n=3 Ising
model on a triangular lattice (the BW model) had
shown that the n=3 transition has critical exponents
which fundamentally differ from those of the n=2
(Onsager) case. Another system with four-spin in-
teractions® can exhibit a line of varying critical ex-
ponents. The treatment of other many-body interac-
tions seems to be prohibitively difficult. There is
clearly a need for a model whose properties can be
studied as a function of n.

In this Communication we respond to this need by
introducing what is perhaps the simplest nontrivial
model allowing for such a systematic approach. Con-
sider a one-dimensional (1D) quantum spin system
with the Hamiltonian

n
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with (#/J) >0, n=2, and Si* (a=x,y,z) being the

Pauli matrices at the site i. For D >1, (1) generalizes
to

He=J 3 TI S—h3sf 0>, @
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where R (n) is a domain containing » neighboring
spins on a D-dimensional lattice. R (n) can be, for
instance, a triangle with edge length L —1 with
n=L (L+1)/2 spins (triangular lattice), etc.

For n=2, (1) and (2) reduce to the Ising model
with a transverse field (ITF). For #/J=0 and n=3
on a triangular lattice, (2) is the classical BW
model’® whose ground state is a quadruplet. It can
be shown® that the general #/J=0 ground state of (1)
or (2) is 2"~ !-fold degenerate (in 1D and for n=3 the
four ground states consist of repeating patterns of
+++---,+—-—~-,—+~---,——+---,respec-
tively, the generalization for n >3 being evident).
For h/J—oo, the ground state is a singlet. In analogy
to the ITF model it is believed that there must exist a
critical field (4/J).(n,D) where a phase transition in
the ground state takes place with the opening of a gap
A at (h/J),, with A~[(h/J)—(h/J).]° between the
singlet and the excited states. Using standard argu-
ments® one concludes that the ground state of (1) or
(2) in D dimensions is equivalent to a (D+1), h=0
classical system for 7 >0 with n-spin couplings in D-
dimensional (hyper)planes which are coupled by fer-
romagnetic two-body Ising interactions. For D=1,

n >2, there are no exact results available concerning
the character of this transition.

We report here on calculations with (1) and (2)
which give first indications about the nature of these
quantum phase transitions. First, in 1D an exact du-
ality relation has been found which shows that the
critical field for the second-order phase transition has
the self-dual value (#/J).=1 independently of ».
Next, H, was treated with the molecular-field theory
(MFT) which indicates that, for any » such that
3<n <o, there is a first-order phase transition with
1< (/D (n)<2, and (h/J).(o)=1. Finally, (1)
and (2) were analyzed by the finite-size scaling (FSS)
method in 1D for 2=<<x =8 and in 2D for n=3, 6 on
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a triangular lattice giving the estimates of values of n.(D)=4 (1D), 37(2D) above which the transition may
- become first order as well as giving values of critical exponents «, 8, and v. The duality properties of (1) for

given n are obtained from the transformation in 1D:

L n
Tr= II SEwStw-1; Ti=[1Sk-1; TI=—SISF

Jj=0,1,2,... Jj=1

It can be shown that the operators T satisfy the usual
S =% spin commutation rules. Furthermore, if
h/J=g, then (1) can be rewritten with the 7’s and
H,(g)=gHr(1/g) holds for the whole spectrum of H.
In particular, if the model possesses a unique point at
which the gap vanishes then it must occur at the
point g.=1 (duality). This extends then the exact
result for n=2.

The MFT consists in approximating the coupling
term in (1) by J(o"—n o""18*), with o=(S*), and
by solving self-consistently for =0 (#/J). For n=2
one obtains the second-order phase transition at
(h/J)=2. For n>2 the multiplicity of solutions
leads to a first-order phase transition at

(h/De(W)=1[n/(n=1)1n(n=2)/(n=2)2]"21,

[1<(h/]).(n) <2], where o undergoes a jump

from o.=[n(n—2)1Y%/(n-1) to 0. Below

(h/D)c(n), o(h/J) is the largest solution of h/J

=na"2(1—a?)"? and is equal to zero otherwise.

(h/J). — 1 and o(n=c0) becomes the step func-
n=toco

tion. We believe this last result to be exact since it
corresponds to infinite-range multispin couplings. In
higher dimension the results will be slightly modified
but for n—oo the transition is also expected to be of
first order. This situation is reminiscent of g-state
Potts model for which the MFT predicts a first-order
transition for ¢ >3 (all D) and where the transition is
of first order for g —o0.1° The MFT results cannot be
trusted, however. The calculational method which
should improve upon the MFT should preserve the
intrinsic symmetry of H,, for instance, the 2"~'-fold
degeneracy of its ground state. The block
renormalization-group (RG) methods for quantum
systems!! cannot be used here since the RG gen-
erates interactions other that H,, thus rendering the
problem intractable.

We have applied the FSS method first formulated
in Ref. 12 and later extended and refined.!3!°

The FSS asserts that the correlation lengths for two
finite systems with linear ‘‘sizes’” L, L' and coupling
constants g, g’ are related by £, (g)=(L/L")¢,(g").
Since for our system H,, the gap A corresponds to
the reciprocal of the correlation length ¢ (i.e., the
dynamical critical exponent z=1) whence the FSS can
be reformulated with A’s. For both L, L'—co with a
fixed ratio L /L'=b, the FSS represents a renormali-
zation of the gap A(g) under a RG transformation
g'=R;(g). For finite L and L’, the FSS is only an
approximation (‘‘phenomenological scaling”’’®). The

HSIXﬂ—I]Slz

J=1

II S,-’.,,,Sfﬁ,,j_ll . 3)

Jj=0,1,2,...

fixed point g* of the R, transformation is the solu-
tion of

Ap(g*)=bA,(g*) . 4

g*=g*(L,L") should tend to exact value g, if L,
L'—oo with L/L'=b. The exponent v=s can be ob-
tained by linearizing (4) near g=g* Other exponents
(a, B, etc.) are obtained from similar considera-
tions.!4 15

We have found A(g) for H, for 2<n=<8 in 1D
and for n=3, 6 in 2D. The block sizes L were
chosen to be multiples of n: for n=2 we used L=(2,
4, ..., L&), n=3 with L=(3,6, ...,L%), etc.,
with L (¢, =16 and L9, =15 spins. The Lanczos
scheme was used.'* We have calculated the fixed
points g*=(h/J)., the ground-state energy E(g)/L
with its derivatives and the exponents «, 8, and v.
The results for v in 1D are represented on Fig. 1.
The 1/L plots for given n are aligned on almost
straight lines and the extrapolated values v, (n) are
in the insert. We obtained v, (3)=0.72 and
Ve(4)=0.5. For n >4 no extrapolation for the ex-
ponents can be made because the number of points
obtained is too small. It is characteristic that the “‘in-
itial’’ points of v, (n) (for L=2n) decrease below 0.5
(see Fig. 1). In studying first-order transitions using
the FSS, care should be exerted since the assumption
of FSS that £,,(g.)=c may not be satisfied. If the
transition is ‘‘weakly’’ first order, &, is very large but
finite at g.. Thus, strictly speaking, v cannot be de-
fined. But an ‘“‘apparent’ v., can still be calculated as
one would be studying a second-order case. If, with
increasing n, the first-order character increases [and
£..(g.) decreases] the apparent v, would tend to
zero.

The determination of n, for H, may be only a sub-
ject of estimation. Let us assume that for n=n,,
(1/L)Eo(g) near g, is linear in |g—g.| with a discon-
tinuous first derivative at g,. Since Eo~|g—g |~
then a=a'=1. With the hyperscaling (D +z)v=2—a
with z=1, v,=v(n.)=(D+1)"! results. For n<n,,
v>v,, and for n >n., £ may remain finite. An-
other evidence is provided by the behavior of
—(1/L)dEy(g,n)/dg corresponding to {0|5%0)
= (§7), which is the entropy of the (D +1) classical
system. The discontinuity of (S?) is the latent heat.
We present the curves of —(S?) for n=3, 5 in 1D in
Figs. 2(a) and 2(b). The slopes of —(S?) at g.=1 are
increasing and away from g.=1 are decreasing with n.
This is strongly suggestive of a discontinuity at g.=1
building up with n. The values of a(n) and B(n) are
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FIG. 1. The exponent v calculated for n=2, 3, .. .,8, L <16. The extrapolated (L =) values of v are in the insert together

with their error bars (1D).

consistent with this picture.® (Note that one may also
have a latent heat with a continuous order parameter
and with ¢ diverging'’). However, the accuracy of
the present and previous FSS studies!® 17 is not suffi-
cient to determine the nature of such a discontinuity:
it is impossible to distinguish a curvature near g,
(case a<1) from a jump at g.. In contrast, the accu-
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racy of determination of g, is very good.® Thus the
FSS reproduces well the self-dual value g.=1, which,
strictly speaking, yields only a second-order transition
point.

We have also performed the calculations in 2D for
n=3 and n=6 interactions on a triangular lattice us-
ing triangular blocks of edge length L—1=1, 2, 3, 4
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FIG. 2. (a): —(1/L) 8E((n,g)/0g as a function of g for n=3 (L=3,6,9,12,15) in 1D. (b): —(1/L) 9E((n,g)/dg as a function

of g for n=5 (L=5, 10, 15) in 1D.
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(n=3) and L—1=2, 3, 4 (n=6). The extrapolated
(L =o00) values of v and g, are v,,(3)=0.38,

Ve (6)=0.15, g.(3)=2.45, and g.(6)=0.68. These
reductions of both v, and g. (the duality does not
hold) indicate that the transition may become first
order for 3<n <6. We tend to believe that these
evidences for possible crossover from second- to
first-order phase transitions should encourage further
study of H, in D=1. Several extensions are possi-
ble: first, the increase of block sizes L would give
more reliable values for the exponents; second, the
inclusion of interactions with different »’s,
H,+H,+--- would give an indication for mutual
relevance of n, n' terms and would lead to more
complicated phase diagrams, quantum multicritical

points, etc.!®* The question of possible duality of
multispin interactions in higher D is also of current
interest.!” We are studying these questions at present.
Finally, the state of knowledge about H, is remi-
niscent of the very early stage of study of Potts-type
models. It would be intriguing to guess when rigorous
analytic results about H, will be obtainable.
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