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Dynamical properties of a cluster model of spin-glasses
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The dynamics of small decoupled Ising clusters with Gaussian-distributed interactions is ex-
amined. The exactly solved case of 4-spin clusters shows many dynamic properties of spin-
glasses. With a smoothly increasing cluster size the nonequilibrium susceptibility X is in quanti-
tative agreement with computer simulations of the Edwards-Anderson model of spin-glasses. A
smooth change of the microscopic time constant gives a sharp peak in X(T). Our results sup-

port the dynamical nature of the spin-glass transition.

Magnetic systems with random competing interac-
tions very often have a transition into a spin-glass
state with unusual properties. ' After more than ten
years of intensive research it is still not clear whether
the freezing of spins (or groups of spins) into ran-
dom directions is a nonequilibrium dynamic process
which occurs on a local level or whether it is an
equilibrium phase transition with an infinite correla-
tion length below a well-defined critical temperature
Tf. It turns out that a careful study of the dynamic
properties of spin-glasses is necessary for a better
understanding of the freezing process.

On the experimental side, T~ is remarkably well de-
fined by a sharp cusp of the magnetic response to a
small alternating field. Many recent dynamical ex-
periments have shown that a broad spectrum of re-
laxation times extending from 10 "sec to seconds or
longer exists in spin-glasses. ' Nevertheless there
may remain a transition in the infinite time limit,
since (l) Tf seems to converge to a static value for
low frequencies of the ac field, ~ and (2) the field-
cooled susceptibility is constant with measurement
times between seconds and days. '

On the theoretical side, the most important model
for spin-glasses has been proposed by Edwards and
Anderson (EA).6 It consists of spins on a regular lat-
tice with randomly distributed interactions. Since it
has been shown7 that anisotropic interactions are
necessary for a stabilization of the spin-glass phase
we restrict ourselves to the case of Ising spins.
Although this model is a great simplification of the
experimental situation, its properties are not trivial.
Even for the mean-field version (infinite range of
bonds ), which has an equilibrium phase transition,
the introduction of a dynamics is crucial to under-
stand the spin-glass phase. It should be noted that
at the transition the specific heat of this model has a
cusp in clear disagreement with experimental find-
ings. "0

The properties of the short-range EA model have
been extensively studied by Monte Carlo (MC) simu-
lations. " Many qualitative observations, in particular

long-time relaxation effects agree remarkably well
with real experiments. However, the size depen-
dence of exactly calculated quantities of small sys-
tems shows that there is no phase transition in ther-
mal equilibrium. " So a typical length gsA for aver-
aged spin-spin correlations increases smoothly with

decreasing temperature. At the T& taken from com-
puter simulations gsA is of the order of just two lat-
tice spacings. In fact, recent MC simulations" have
shown that below Tf a nonzero fraction of spins
freezes into small clusters. The rest of the spins
remains close to thermal equilibrium. These results
indicate that the spin-glass transition is a nonequili-
brium dynamic process. However, an understanding
of this transition is still missing. '

Since the correlation length is small at the freezing
transition it might be a reasonable approximation to
separate the system into independent clusters of size
gsz. This is done in the present work, which exam-
ines the following question: To what extent can the
spin-glass transition be understood by a model of
decoupled clusters of size gsA?" We investigate the
dynamics of Ising clusters with Gaussian-distributed
couplings. Our main results are the following:

(l) A model of 4-spin clusters is solved exactly.
For temperatures and observation times comparable
to MC data we find a remanent magnetization and a
nonequilibrium magnetic susceptibility X„,. For low

temperatures the autocorrelation function decays
nearly logarithmically over more than ten orders of
magnitude in time. The dynamic structure factor has
a strong "elastic" zero frequency peak.

(2) Taking a smoothly increasing cluster size gsA
into account we find good agreement (without adjust-
able parameter) between the calculated X„, and MC
data. In two dimensions we find T~- (int, b, ) ' ',
where t,b, is the observation time. Thus T~ is very
insensitive to t,b,.

(3) A single Ising spin in our model may be con-
sidered as an effective moment of a cluster of real
spins with its temperature-dependent relaxation
time. '6 In this case X„,(T, t,b, ) is estimated and

26 6303 1982 The American Physical Society



6304 BRIEF REPORTS 26

sho~s a sharp cusp as a function of temperature for
very large t,b,.
These results show that many spin-glass properties
can qualitatively be understood in terms of the relax-
ation of a distribution of independent clusters.

Our model consists of an ensemble of decoupled
Ising clusters. The dynamics is a Glauber master
equation'7 for the probability of a spin configuration
as used in MC simulations. " Thus we model pure
relaxation processes with a one-spin-flip dynamics. '

To obtain an analytic solution we first consider a ring
of four spins with energy

~=—J XS;S)—h $$;
ij I

where J is a nearest-neighbor coupling constant. The
transition probability for a spin S;e {—1, +1] is taken
as" (for h = 0)

W($;) = [1—S;tanh(ES; ~+ES;+~)]1

2t

1 — a ES(S; +S; ), (1)
27

with E = J/ksT, and r is the microscopic relaxation
time of a single spin. With Eq. (1) one easily obtains
equations for all correlation functions (S;(rp)
x $, (rp+ r) ) in the cluster where t is the time in units
of r and (. . . ) is an ensemble average over the pro-
bability of spin configurations. For to ~ one ob-
tains the thermal expectation value.

Now we introduce an ensemble of clusters by an
Gaussian distribution of couplings J:

We are interested in ensemble averaged quantities
[ (.. . ) ],„, where the average is taken with the distri-
bution equation (2). Adding a small oscillating mag-
netic field h (t) = hoe'"' a straightforward calculation
gives the averaged dynamic susceptibility

d [(S;)],„
6hp ho 0

=—[(sinh E+cosh E) '(1—tanh2E+icor) '],„.
(3)

The autocorrelation function in thermal equilibrium
is given by

[($1(0)$~(t))l„=(ate '+a+e ++a e ),„
(4)

with

~1= (1 —(S;S;+2))/2,
o.+=(1+ (S;S;pg) +2(S;S;+)))/4,
hatt

= 1/r, h, + =(1 + tanh2E )/r,
(S;$;~q) = (tanhE + tanh'E )/(1+ tanh~E)

(S;S;+t) = 2 tanh~E/(1+ tanh4E)

Also nonequilibrium properties can be calculated,
e.g., for the thermoremanent magnetization (TRM)
one obtains, after switching off the field h at t = 0

( (S;)),„(r)= {(S;)„exp—[(1—tanh2K ) r/r ])„(5)
P(J) = exp( —J'/2(AJ)')

(2m)' ' (2) with

(S,),q= (e4xsinh4H +2sinh2H)/(e~xcosh4H +4cosh2H +e ~x+2); H = h

B

We are interested in the question whether relaxation-
al effects are present for temperature and time scales
comparable to computer simulations. There kBT is
of the order of hJ and the observation time t,b, is
of the order 10' to 10 v. Indeed, for kBT & AJ and
r,b, = 10'r, Eq. (5) gives a nonzero TRM with tem-
perature, field, and time dependence which are simi-
lar to MC results. Also, even for very low frequen-
cies, the susceptibility X'(co = ReX(co) is very dif-
ferent from the equilibrium one X„=X(co = 0). For
instance, for cur = 10, Eq. (3) gives, for the devia-
tions from equilibrium b X = (X„—X )/X, ~, the values
hX = 0.0004, 0.006, 0.06, 0.35, and 1, for ks T/3 J
=2, 1.5, 1.0, 0.5, and 0, respectively. The presence
of very long relaxation times is even more evident
from Fig. 1. There for kBT & AJ the averaged auto-
correlation decays over many orders of magnitude in
time inaccessible to any numerical calculations.
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FIG. 1. Configuration-averaged spin-spin autocorrelation
as a function of time for different temperatures. kBT/b, J
0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, and 1.2,
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h. '= r exp(J$2sA/k&T) (6)

where the parenthetical expression is proportional to
the number gsA of spins in the cluster (for a two-
dimensional system). Exact calculations for small
systems of the EA model" have shown that (sA(T)
follows roughly the first term of a high-temperature
expansion of the correlation [ (S;SJ}2],„. This gives

Another interesting quantity of spin-glasses is the
dynamical structure factor which has been measured
by quasielastic neutron scattering. ' For low frequen-
cies (compared to ksT) it is proportional to S(cu)
=ImTX(ro)/cur. This quantity is shown in Fig. 2.
For low temperatures we see a large increase of the
zero frequency maximum, as shown in the inset. In
experiments S(~) is analyzed by fitting a Lorentzian
through the wings and taking the difference contribu-
tion around eo =0 as elastic scattering intensity.
From Fig. 2 it is obvious that by such a fitting pro-
cedure one would obtain a large "elastic" scattering
intensity for k&T & J.

Up to now we have studied a simple exactly solv-
able cluster model with a distribution of 4-spin clus-
ters. Although this model shows many long-time re-
laxation properties similar to the EA model, it does
not reproduce the maximum of the susceptibility for
t,b, = 10'v. However, if in fact our cluster size is
determined by the correlation length ps~(T), as men-
tioned above, we should consider a cluster model
with smoothly varying cluster size. For this case we
still can give a simple estimate for the nonequilibrium
susceptibility. We expect that the longest relaxation
time A.

' for the cluster moment should be given by
the Arrhenius law

(for the square lattice)

faA(T) = 2AJ/T

Taking again the distribution equation (2) for the
couplings J of different clusters, one obtains an esti-
mate for the fraction I' of cluster which are slower
than a given observation time t,b,

(8)

with

(ks T)' 4b.
0 ln

''
4

Only the clusters which are faster than X ' can contri-
bute to the equilibrium susceptibility (which for finite
EA systems is just a Curie law), therefore

(9)

In fact, recent computer simulations of the two-
dimensional EA model'3 have shown that Eq. (9) is a
reasonable approximation. In Fig. 3 we show again
our results: the dots and crosses are the data of the
right and left side of Eq. (9), respectively. Figure 4
also sho~s our estimate of X when I' is taken from
Eq. (8). For t,b, = 10'r which was also used in the
MC simulation we see a remarkable agreement
between the analytic form of Eqs. (8) and (9) and
the MC data. It should be noted that although we
have used a rough estimate only there is no adju-
stable parameter. Therefore we think that this agree-
ment justifies our approach. From Eq. (8) we see
that Tf defined by the maximum of X is very insensi-
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FIG. 2. Dynamic structure factor S (co) = ImTX(~)/cov as

a function of frequency co for k& T/hJ =3 (low max) and

0.5. The inset shows the zero frequency maximum as a
function of temperature.

FIG. 3. Nonequilibrium susceptibility for different esti-
mates as discussed in the text. a: tp» 10 7 b' tp» 10 7.
Curve c is for a slightly different model with t,»= 10 7 (T)

30/k~ 'I'
= 10 e ~o. The points and crosses show MC data for
the EA model taken from Ref. 13.
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tive to t,b, ', one has Tf —(lnt, bJr)' . So even if one
could increase the time in MC simulations by a factor
100, Tt would decrease by just 15'lo.

Although our cluster model reproduces the mag-
netic susceptibility of the EA model, X(T) has still a
rather broad maximum, in contrast to the experimen-
tally observed ac susceptibility. "Of course the max-
imum becomes sharper in higher dimensions and, if
cluster size increases stronger with decreasing tem-
perature. However, there may be another possibility
of understanding the cusp in X from a cluster picture.
In order to get a quantitative agreement between MC
and experimental temperature and time scales it has
been suggested' that each Ising spin represents an
effective moment of a group of real spins. In this
case the microscopic time scale v has its own ex-

EIkB T
ponential temperature dependence v = ape

where E is again of the order of the number of spins
in the cluster and 7p —10 "sec. In remanence ex-
periments one usually has t,b, = 10' v p, while in-

computer simulations t,b, = 10'7. This would give

E = 306J for ksT & AJ (=kttTf). With these times
t,b, and r(t), Eqs. (6), (7), and (8) give the suscepti-
bility c in Fig. 3. This demonstrates that a smooth
variation of cluster size and time constant with physi-
cally reasonable parameters can produce a sharp cusp
in the dynamic susceptibility.

Our model helps to understand the qualitative
behavior and temperature and time scales of a cluster
approach to spin-glass dynamics. For a more quanti-
tative description one has to go to more microscopic
models and use the computer to study the cluster
dynamics. This has still to be done.

Note added in proof. Recent numerical calculations'9 2a

have shown that the exponent in Eq. (6) seems to in-
crease in proportion to gE& instead of gaA. However,
since pa~( T) seems to diverge more strongly, than in
Eq. (7),' we expect X(t) to behave in a similar
fashion to Fig. 3. Only the exponent x in

Tf- (1nt,b,/r)" changes from —, to a larger value.
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