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partition function of the Ising model on the periodic 4X4X4 lattic~
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The exact partition function of the Ising model on a periodic 4)&4)&4 simple cubic lattice
is presented. The methods used in deriving this quantity, based on low-temperature series,
are discussed. The zero-field partition function is analyzed to locate its zeros in the com-
plex plane, and these results are discussed.

I. INTRODUCTION

The Ising model, which has a long history of cal-
culations of every imaginable sort, ' is defined by the
partition function

Z(P, h)= g exp Pg(S;SJ —1)
S =+1 NN

+gh;(S; —1) . (1.1)

For studying critical behavior, two very successful
techniques are series expansions and the renormali-
zation group. For gaining understanding of the an-
alytic structure of the free energy considered as a
function of P and h, these methods are not always
very useful. The renormalization group describes
the behavior in the scaling region of a critical point,
while series tend to be dominated by nearby singu-
larities. A more promising approach may be the
study of the exact behavior of the free energy on
finite lattices. Roughly, one may argue that except
very near to a "critical point, " the finite system
behaves very much as the infinite system and that
this behavior should extend to the complex plane.

For this reason it is interesting to study the
behavior of finite Ising lattices. There already exist
some results in two dimensions on square lattices
and in three dimensions on simple cubic lattices. In
the latter case, these extend up to 3&3&3, and
3)& 3 g n should be possible soon. It is the purpose
of this paper to present a calculation of the parti-
tion function of the 4X4X4 periodic, simple cubic
Ising lattice, and some preliminary results on its an-
alytic structure. It is felt that these results, al-
though limited in scope, merit presenting since they
represent one of the largest three-dimensional sys-
tems for which exact results are known and may be
of use to others.

In Sec. II the computational techniques that have

been used are described. Since they are essentially
an adaptation of the standard methods for generat-
ing low-temperature series, not much detail is
necessary. Then the main results of this paper will

be given. The sheer volume of data generated pre-
cludes publishing all of it. Rather, the most useful
results are presented, and the remainder will be
made available upon request. What has been com-
puted are all of the complete partial generating
functions or "codes." From these have been derived
the complete set of high-field polynomials and the
zero-field partition function, which is a polynomial
of 96th order in u=e P. Here I will give only the
zero-field partition function, and defer the high-
field polynomials to another paper in which discus-
sion of the field dependence of the zeros of the par-
tition function is planned. Finally, I present an
analysis of the zero-field partition function in the
complex plane and compare this to the currently
known structure for the infinite volume limit.

II. DERIVATION OF THE PARTITION
FUNCTION

For the 4 Ising lattice there are 2 or about
2&10' distinct spin states. When translation in-

variance and cubic symmetry are taken into ac-
count, there still remain of the order of 10'
separate spin configurations to count. This would

be impossible by direct enumeration. There is a
method that has been exploited in deriving low-

temperature series which reduces the amount of la-
bor dramatically. This is the code method or
shadow-lattice method. Here, one separately sums
over even- and odd-site spins. Since all odd-site
spins couple only to even-site spins, for a given con-
figuration of even-site spins the sum over each
odd-site spin factorizes, and the resulting contribu-
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tion to the partition function is a product of 32 bi-
nomial factors. The full expansion of these gives
the 2 states, but only 2' (even) spin configurations
need be enumerated. There is a simplification due
to the fact that the odd-site spins are coupled to the
sum of their six even-site neighbors. Thus there can
only be seven distinct binomial factors, depending
on whether the number of neighbors with the value
—1, or flipped spins, is 0 through 6. The partition
function is then expressed in terms of a sum of fac-
torized polynomials of the form

no n) np n3 n4 n5 ng
&0 6] b2 63 b4 b5 b6 (2.1)

where n; is the number of odd sites with i flipped
even neighbors. Clearly we have

and

~0+n1+n2+n3+n4+~5+n6 (2.2)

(n~+2nq+3n3+4n4+Sn5+6ns)l6=n, ,

(2.3)

where n, is the total number of flipped even spins
in a given configuration. It is convenient to intro-
duce the variables

y+ ——exp( —2h+ ), (2.4)

u =exp( —4P), (2.5)

where h+ is a uniform field on the even or odd
sites, respectively. The partition function (1.1) has
been normalized so that when all of the spins have
the value +1, one obtains 1. For each even- (odd-)
site spin flipped to —1, one obtains a factor y+ (

For each pair of neighboring spins for which

S;SJ= —1, one obtains a factor v u; however, since
flipping any spin changes an even number of pairs,
Z depends only on u. It is convenient to associate
to each even flipped spin a factor u . Then one ob-
tains an expression for the partition function solely
in terms of the n's:

Z= g C(no n~, . . . , nq)(u y+) '
(n;)

71l =32

6

g(1+y u '} ',
i=0

(2.6)

where the C's are non-negative integers. It is con-
venient to represent all of the algebraic factors in
(2.6) by a special symbol or code from which the
method derives its name. Then we may write com-

pactly

Z=g C(n)[no, n&, . . . , nt;] .
(n)

(2.7)

TABLE I. Number of distinct codes for n, flipped
even spins.

ne

0
1

2
3

S

6
7
8

9
10
11
12
13
14
15
16

Number
of codes

1

1

2
4

10
19
40
79

139
224
354
511
712
913

1076
1186
1240

Given the coefficients C, it is a straightforward
matter to evaluate Z for given P, h+, h or to ex-
tract high-field polynomials or the zero-field parti-
tion function itself. The procedure to determine the
C's is to enumerate each even-site spin configura-
tion and count for each odd site the number of
flipped even neighbors. The number of odd sites of
each type are the n;. Finally, 1 is added to the ap-
propriate count C(n) A.modest amount of work
may be saved by exploiting various symmetries.
The cubic symmetry (the order of the group is 48) is
most important, saving an average factor of about
30 in the number of states to be enumerated.
Translation invariance and Z2 spin symmetry each
save another factor of about 2. (Translation invari-
ance saves less than one might think because it is
difficult to generate only translationally ine-
quivalent configurations and determine the symme-
try factor for each. } The number of configurations
that need to be enumerated is thus -2 /120, or
about 30 million. The program running on a CDC
7600 required about 50 psec to analyze each config-
uration for a total time of around 1500 sec. The
enumerations were performed separately for each
n, . Owing to Z2 spin symmetry, only 0&n, &16
need be computed explicitly. The cases 17 & n, & 32
can be obtained from the former by inverting the
order of the n's The nu.mber of distinct codes for
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each n, are listed in Table I. In a separate program
each of these codes was expanded to find the parti-
tion function restricted to fixed n, and n„ the num-

bers of even- and odd-site flipped spins. The sym-

metry under the exchange of even and odd sites and

h+ provides a stringent test of the algorithm, which
treats them in a very unsymmetric way. Setting

h+ ——h =h or y+ ——y =y and collecting terms in
Z for fixed n=n, +n„one obtains the high-field
polynomials, which are planned to be given and dis-
cussed in a separate paper. Their sum is the zero-
field partition function, which is a 96th-order poly-
nomial in u. It is given in tabular form in Table II.
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Since Z is a polynomial in u =e ~, its analytic
structure is trivial. It is completely described in
terms of its zeros,

Z=2g(u —u;) . (3.1)

3N/2

13F=N ln—2+ —g ln(u u;)— (3.2)

We may express this as an integral over a real posi-
tive density function,

p(u)= —+5(u —u;) .1 (3.3)

Thus

In the general case for a periodic cubic lattice of E
sites there are 3N/2 zeros. The free energy is then
given by

PF=N ln2+—I du'p(u')ln(u —u')
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(3.4)

The internal energy has the even simpler form

U= —N f du'p(u')/(u —u') . (3.5)

In their celebrated discussion of the mathematical

origin of phase transitions, Yang and Lee argued

that, when considered as an analytic function of the
fugacity or activity, the partition function could be
described in terms of the density of zeros in the

complex plane, and that a phase transition is associ-

ated with this set of zeros approaching the real axis

at the critical value. They also showed that under

some restrictions, obeyed in the Ising model, the

complex zeros of the partition function all lie on the
unit circle in the activity (i.e., e ") plane. Similar
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reasoning, of course, applies to the complex tern-

perature plane, though there is no circle theorem.
To be precise, there is a distribution of zeros that at
zero magnetic field and in the thermodynamic limit
approaches arbitrarily close to the real axis at T, .
In the case of the two-dimensional Ising model, this
distribution of zeros is known. They all lie on a cir-
cle in the sinh(2P) plane, or on two circles in the
e ~ plane. Also, these circles cross the real axis,
for physical temperatures, just at T, for the fer-
romagnetic and antiferromagnetic phase transitions.
We might then expect that in the three-dimensional
case as X—+ ao, (3.3) should give a well-defined lim-
it for p(u) with the zeros distributed on curves in
the complex plane. Other types of behavior are pos-
sible, but this is the simplest. In this case, I' and U
are given by dispersion relations where one inter-
prets p(u) as a discontinuity across a branch cut.
The placements of branch cuts are not unique in
general, but if we require that the free energy of the
finite lattice converge to an analytic function in the
cut plane, then the choice is unique and dictated in
terms of the zeros of Z.

In the finite-N case, the continuous distribution
p(u) is approximated by a discrete set of points. If
p describes zeros on a curve, then in the finite-N
case we may reasonably expect the zeros to lie on
curves. This is certainly the case for the two-
dimensional model where, for carefully chosen
boundary conditions, the discrete zeros all lie exact-
ly on the just mentioned circles. With this piece of
intuition, we proceed to the partition function of
the 4 system and compute the zeros. This is in
principle perfectly straightforward, though I found
it necessary to use double-precision arithmetic and
some care in order to obtain the roots. There are
some consistancy checks. First, the polynomial is
real, so that all the roots that are complex should
occur in pairs, and second, the polynomial is front-
to-back symmetric so each root also occurs in a pair
with its inverse. Both of these checks are satisfied
to high precision. It is necessary to mention these
things because it is not trivial to extract the roots of
a 96th order polynomial whose coefficients range
over 18 orders of magnitude.

The positions of the roots in the u plane are plot-
ted in Fig. 1. The first and most striking impres-
sion is that the roots do have a strong tendency to
lie on curves. A second glance reveals that the
curves do approach the real axis at the known criti-
cal points P, =+0.22 for the ferromagnetic and an-

tiferromagnetic transitions, which corresponds to
u =0.41 and 2.43, respectively. Another interesting
feature is a natural boundary which seems to isolate

~ ~

~ ~
~ ~ I

0

l.o i

FIG. 1. 96 zeros of the partition function in the com-
plex u plane.

the low-temperature point u=0, from the high-
temperature limit at u =1. In previous analyses of
low-temperature series, one has observed and dis-
cussed the appearance of an unphysical singularity
at negative real u. The series estimate for the singu-
larity is u = —0.2857, which is reasonably well ap-
proximated by the first zero on the negative axis at
u = —0.307. What is new is that the structure for
negative u appears to be richer than imagined.
Some hint of this structure is already seen in the
3X3g3 case.

The symmetry under u+-+1/u can be exploited to
map reciproml pairs of zeros to the same point.
This is the case if we choose

sinh (2P) =4u j(1—u)

IV. CONCLUSIONS

In this paper I have given an evaluation of the
partition function of the three-dimensional Ising

as our variable. In Fig. 2 the 48 pairs of zeros are
plotted. The structure around the unphysical singu-
larity appears more concentrated while the zeros
around the physical singularity are spread out. Al-
though it is by no means certain, it is tempting to
speculate that this "wishbone" structure will persist
to the thermodynamic limit since it is very well de-
fined for the 4 system. Also of some interest is the
pattern of zeros when viewed in the standard high-
temperature variable co=tanhP. This is given in
Figs. 3 and 4. The latter is an enlarged view of the
region around the origin. The negative u axis is
here mapped to the unit circle, and so the unphysi-
ml singularity and its associated branch cut appear
as four short segments on the unit circle. It is an
interesting question whether one may identify any
stable complex singularities in the Pade analysis of
high-temperature series, if indeed there are any,
with structures in the 4 system.
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FIG. 2. Zeros of the partition function in the variable sinh '(2P ).

model on a 4X4X4 periodic lattice. The global an-

alytic structure of the model appears faintly
through the imperfect image of the zeros of the fin-
ite systems partition function. The main features
that already have appeared in the 3& 3&(3 case still

exist and are somewhat more clear. In today's gen-
eral emphasis on the universal aspects of critical
behavior, there is not too much interest in the glo-
bal analytic structure of models. I hope that these
new results will help provide some insight into this
problem.
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FIG. 3. Zeros of the partition function in the variable

r0 =tanhP. FIG. 4. Central portion of Fig. 3 enlarged.
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