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Order in computer-generated binary arrays of hard disks grown from a seed cluster is
studied. As the composition and ratio of disk diameters are varied, we find both crystalline
and amorphous samples, as well as “hexatic” configurations with short-range translational
order but extended orientational correlations. A single impurity disk placed at the center of
an otherwise homogeneous array traps dislocations and disclinations when its diameter de-
viates sufficiently from that of the disks packed deterministically around it. For still larger
deviations, the impurity disk gives rise to chaotic arrays of stacking faults and grain bound-
aries. An alternative spiral packing algorithm leads to a particularly simple transition from
order to deterministic chaos. The ratio of disk diameters plays the role of a control param-

eter.

I. INTRODUCTION

Dense random-packing models of identical parti-
cles have been under active investigation for over 20
years. Although conceived initially as models of
dense liquids,' they now appear relevant as structur-
al models of metallic glasses.>* An important topo-
logical feature of these packings is a tendency to
maximize the local density by forming tetrahedral
clusters. Because tetrahedra cannot be close packed
to fill space, highly frustrated, or “jammed,” parti-
cle configurations result. Radial distribution func-
tions deduced from dense random-packing models
agree well with diffraction experiments on metallic
glasses,? despite the fact that two different particle
sizes are required to obtain stable glasses in the lab-
oratory.*

The situation is quite different in two dimen-
sions,” where triangular packing units not only
maximize the local density, but also combine neatly
into a space-filling lattice. Here, one can impose a
controllable amount of randomness via a finite con-
centration of particles with the “wrong” diameter.
Following early work by Nowick and Mader,® ran-
domly packed planar arrays of ball bearings with
two different sizes were studied by Nelson, Rubin-
stein, and Spaepen.” Translational and orientational
order parameters useful in studies of equilibrium
melting® were used to characterize the degree of dis-
order in various arrays. For dilute concentrations
of large spheres imbedded in a matrix of smaller
ones, the resulting configurations displayed short-
range translational order, but extended correlations
in the orientation of local crystallographic axes.
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Such packings are a quenched analog of the equili-
brium hexatic phase, and result from the tendency
of large spheres to trap dislocations. Depending on
the relative concentration of large and small
spheres, and on the ratio of sphere diameters, one
also finds completely amorphous configurations
(with short-range translational and orientational or-
der), as well as packings whose crystalline order is
disrupted by networks of grain boundaries.

In this paper we study similar questions in arrays
of hard disks generated on a computer via a simple
deterministic packing algorithm. The procedure is
a two-dimensional version of one used by Bennett’
to study packings of uniform hard spheres: Succes-
sive particles are brought into contact with a grow-
ing cluster subject to the condition that they be as
close as possible to the center of an initial-seed con-
figuration. The method has the advantage that it is
extremely easy to produce packings with large num-
bers of particles, and that the resulting three-
dimensional radial distribution functions agree rath-
er well with large annealed ball bearing packings in-
vestigated by Finney.!° Although the extrapolated
density is 4% lower than Finney’s value, the “glo-
bal” algorithm described above works considerably
better than a more “local” packing criterion also
studied by Bennett.’

Order in any two-dimensional structure is con-
veniently characterized by translational and orienta-
tional correlation functions. A complex translation-
al order parameter,

=e' 4TI (1.1)
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FIG. 1. Array of approximately 3200 disks deposited around a smaller one via a deterministic packing algorithm. The
small disk has coordination number 4, and the two asterisks are 7-coordinated particles. All other disks have coordina-
tion number 6. The entire array is riddled with stacking faults, indicated explicitly by lines in the lower left corner. The
orientations of the two widely separately hexagonal patches are identical.

can be associated with every particle coordinate T;.
Density modulations at wave vector g are measured
by the structure function,

N —
zp'q’(rj)

j=1

fold crystallographic axes are probed directly by®
Go(F)=(YE(P)Ys(0)) ,
where

1,}6(?):961'0(?) .

(1.3)
2

).

where the summation is over N particle positions
{Tj}. The angular brackets can represent an aver-
age over thermal fluctuations and/or some distribu-

1
q)=— 1.2
S (@) N< (12)

(1.4)
The field ¢4(T) is defined on the midpoints of lines
joining near neighbor atoms as determined by, for
example, the Dirichlet construction.!! These lines

tion of quenched-in disorder. The function S(q) is,
of course, measured in x-ray diffraction experi-
ments. Correlations in the directions of local six-

make angles {6(T)} with respect to some reference
axis.
Crystalline states have extended translational or-
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der and well-defined crystallographic axes, while
amorphous, liquidlike arrays should exhibit only
short-ranged translational and orientational correla-
tions. An interesting example of an intermediate
“hexatic” configuration is shown in Fig. 1. This
circular array of disks was produced via a deter-
ministic Bennett algorithm. All disks have the
same diameter, except for a single disk in the tri-
angular seed shown at the center. The diameter of
this smaller disk is 0.4 times the diameter of the
disks packed around it. The resulting array is dom-
inated by regions of triangular crystal, interrupted
by ‘“stacking faults,” across which crystalline re-
gions are translated, but not rotated relative to one
another. The faults run in those discrete directions,
related by 120° rotations. Occasionally, these faults
coalesce to form small regions of square lattice.

The translational order parameter (1.1) associated
with Fig. 1 will clearly be largest when =G,
where G is a reciprocal-lattice vector of the defect-
free triangular solid. The quantity p g (T), however,
will be dephased on a scale comparable to the
separation between stacking faults. The translation-
al correlation function

Gr(T)=(pg(Tp%(0)) (1.5)
presumably decays exponentially for large 7,
Gr(F)~e T (1.6)

where the translational correlation length £ is a
typical microcrystallite size. Orientational order, on
the other hand, is only slightly affected by the
stacking faults. The orientation of the hexagonal
cell in the lower right of Fig. 1 is virtually identical
to that in the upper left, despite the intervening dis-
order. The orientational correlation function G¢(T)
is presumably large to distances exceeding the sam-
ple size. Since the range of orientational correla-
tions &4 exceeds the sample size, and it is in particu-
lar much larger than £,

Ee>>ET . (1.7)

Orientational correlation lengths of order 1 mm
in the presence of translational order extending only
a few hundred angstroms have in fact been observed
via x-ray diffraction in the stacked hexatic!' phase
of smectic liquid crystals.'” It should be stressed,
however, that the microscopic structure in other
systems with hexatic order is almost certainly quite
different than that shown in Fig. 1. Crystals disor-
dered by isolated dislocations, for example, also
display extended orientational correlations.”® It is
worth emphasizing in addition that Fig. 1 should be

distinguished from a crystal disrupted by a random
network of grain boundaries. Both the orientational
and translational correlations would decay on a
scale comparable to the grain size in such systems.

In Sec. II we study orientational and translational
order in binary mixtures of hard disks placed to-
gether according to a two-dimensional Bennett algo-
rithm. On the scale of the 2000-disk samples con-
sidered, we find either crystalline, hexatic, or
genuinely amorphous (liquidlike) arrays. To better
understand the dependence on disk radii and com-
position, we first examine the effect of a single disk
with “wrong” size placed in the triangular seed of a
sample with otherwise uniform disk diameters.
When the ratio of the diameter of the inhomogenei-
ty disk to the diameter of the disks in the surround-
ing matrix is close to unity, the perturbation ap-
pears to heal at distances far from the center of the
sample. For larger deviations of the diameter ratio
from unity, however, first dislocations and then dis-
clinations are trapped in the vicinity of the inhomo-
geneity disk. One might expect hexatic and amor-
phous arrays to result from dilute concentrations of
the corresponding impurities. For still larger devia-
tions of diameter ratios from unity, a single inho-
mogeneity produces chaotic arrays such as that
shown in Fig. 1.

Strictly speaking, both translational and orienta-
tional correlations may ultimately decay to zero at
any finite impurity concentration because of effects
due to impurity clustering. We have estimated the
resulting translational and orientational correlation
lengths in the limit of dilute impurity concentra-
tions and as the ratio of disk diameters tends to-
ward unity. These lengths can be very large and are
in fact both much larger than the sample size for
the “crystalline arrays” studied here. Situations in
which £7 is finite, but &¢ far exceeds the sample
size, are also possible.

Hard-sphere arrays in three dimensions are often
relaxed by imposing a softer potential, and then al-
lowing the particles to move toward configurations
of lower energy.’ It would be interesting to observe
the effect of such a relaxation on the two-
dimensional arrays considered here. The isolated
dislocations and disclinations trapped in many of
our samples are topological defects, and cannot be
removed by making local changes in a crystalline
matrix.!* Presumably, many of the defects found in
the hard-disk arrays would remain after relaxation.
Defects can annihilate each other or move to the
boundary, however. The chaotic array of stacking
faults shown in Fig. 1 might also disappear when
allowed to relax in a softer potential.
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FIG. 2. Different kinds of order in binary hard-disk
arrays as a function of the large-sphere concentration C
and the diameter ratio R. Crystalline, hexatic, and amor-
phous order on the scale of our 2000-disk samples are in-
dicated by points marked X, H, and A, respectively.
These crude assignations suggest the “phase boundaries”
shown as dashed lines.

Figure 1 is a good example of the “deterministic
chaos” mentioned in the title of this paper. Exactly
the same pattern of stacking faults would be found
upon repeating the experiment.’* In Sec. III we
pursue this theme further and consider determinis-
tic spiral growth algorithms. The most interesting
results occur for an “alternating spiral,” in which
successive large and small disks form a curve spiral-
ing outward from the origin. As the ratio of disk
diameters is decreased from unity, we find a transi-
tion from crystalline packings to arrays, which are
disordered in the angular direction of spiral growth,
but translationally ordered in the radial direction.
This structure is a kind of glassy analog of a rolled
up two-dimensional smectic liquid crystal.

Transitions to deterministic chaos also occur in
the logistic maps of the unit interval.!® Although
the systems studied here are more complex, one
might hope that techniques developed for logistic
maps could be profitably applied to deterministical-
ly packed hard-disk arrays. Perhaps the results
presented here will stimulate further investigations
along these lines.

II. TWO-DIMENSIONAL BENNETT MODEL

In this section, we discuss arrays generated via a
two-dimensional Bennett algorithm.” The starting
point is a triangular seed of hard disks. Successive
disks are brought in from infinity, and placed so
that they (i) just touch two disks in the growing
cluster without any overlap, and (ii) are as close as
possible to the centroid of the initial-seed triangle.
When disks with uniform diameters are used, the

result is a perfect triangular crystal. Disorder can
be introduced by packing disks with two different
diameters. A random number generator determines
if the next disk to be packed will be large or small.
The probabilities are' chosen to ensure a definite
composition after many steps in the procedure.
Large arrays with the same composition and ratio
of disk diameters seem to have statistically similar
properties. The results are insensitive to which of
four possible triangular seeds is used, especially in
the more disordered configurations.

It is convenient to discuss the results in terms of
the “phase diagram” shown in Fig. 2, as a function
of the composition

N 2.1)
c=—— .
N 1 +N s
and the ratio of disk diameters
R=d,/d, . (2.2)

Here, N; and N; are the numbers of large and small
disks, while d; and d; are the corresponding disk di-
ameters. Since a state with parameter values (c,R)
is equivalent to one defined by (1—c,1/R), it suf-
fices to consider only the ranges O<c<1 and
O<R <1. The lines ¢=0 and c=1 must result in
crystalline packings, as does the line R=1. The
behavior for small R is complicated, because small
disks can become lost in the spaces between the
large ones. To avoid such complications, we have
concentrated our attention for finite compositions
on ratios such that

R>0.7. (2.3)
A. Results for a single-impurity disk

In Ref. 7 hexatic configurations of ball bearings
were generated by dislocations trapped on a minori-
ty concentration of large spheres. Here, we look for
defects trapped by a single impurity placed in the
seed which forms the starting point of the Bennett
algorithm. The algorithm is essentially determinis-
tic from this point on. In contrast to experiments
on real ball bearings, it is particularly easy to vary
R smoothly on the computer. In some sense, the re-
sults should be relevant for dilute concentrations of
impurities with the corresponding value of R, i.e.,
near the lines c=0 and c=1 in Fig. 2. The isolated
impurity disks discussed here, however, occupy spe-
cial positions at the center of the growing cluster.
Their ability to trap defects can change when
packed further away from the origin.
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FIG. 3. Configurations of identical small disks packed around a large one at four different diameter ratios. The trian-
gle at the center is the seed which initiates the Bennett packing algorithm. 7-coordinated particles are indicated by aster-
isks, and 5-coordinated ones by diamonds. The 5’s and 7’s may be viewed as disclinations, while isolated 5-7 pairs are
dislocations. All other particles have coordination number six.

Defects are easily visualized in two dimensions or some other convenient algorithm such that no
via a coordination number construction used for near-neighbor bonds cross. A corollary of a
equilibrium melting by McTague et al.!® and to theorem due to Euler implies that the mean particle
analyze ball-bearing arrays by Spaepen.’ One first coordination number obtained in this way for an in-
covers a particle configuration with a net of trian- finite sample is exactly six.!! Disclinations show up
gles whose vertices are at particle positions and as isolated 5- or 7-coordinated atoms. The devia-
whose sides connect near neighbors. Near neigh- tion of the coordination number from 6 acts like a
bors are determined by the Dirichlet construction'! conserved topological charge. Dislocations appear
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FIG. 3. (Continued.)

as isolated 5-7 pairs of disclinations. The corre- heals at distances far from the center. All coordina-
sponding Burgers vector is just the “dipole mo- tion numbers in the 4000-atom clusters we generat-
ment” of the disclination charges rotated by 90°. ed were 6 for R >0.87185. At this value of R, two
Grain boundaries are described by alternating quartets of anomalous coordination numbers ap-
-5-7-5-7- chains. This construction, although often pear. The quartets are “charge quadrupoles,” in the
quite illuminating, is less useful in very amorphous sense that each has two 5’s and two 7’s and carries
arrays, where the density of 5’s and 7’s can be quite no net Burgers vector. They have little effect on
high. It also depends sensitively on the algorithm their surrounding environment. At R;=0.85578,
for assigning near neighbors in regions where the two isolated dislocations appear, in addition to the
particles approximate a square lattice. quartets like those described above [see Fig. 3(a)].

As R decreases from unity with a single large The two quartets at the center of Fig. 3(a) were the

disk at the center, the resulting disturbance initially only anomalous coordination numbers for



6260 MICHAEL RUBINSTEIN AND DAVID R. NELSON 26

60 00000y
0®000 0 o °

FIG. 3. (Continued.)

R=0.85579. The isolated dislocations occur just
before the coordination of the large disk changes
from 6 to 7. For smaller R values, the 7 on the im-
purity disk is always compensated by a nearby 5,
and more dislocations appear. Some of the 5-7
dislocation dipoles begin to separate, however, as
shown in Fig. 3(b) for R=0.8. Note that the bila-
teral symmetry present in the seed dies off very rap-
idly, in contrast to more ordered structures like Fig.
1. Presumably, this happens because Fig. 3(b) con-
tains many more anomalous coordination numbers.

One might expect a trapped disclination when
seven smaller disks just fit snugly around the inho-
mogeneity.  The  resulting  array  (with!’
R =R, =0.76642) is shown in Fig. 3(c). There is
indeed an isolated 7 at the origin, and a scattering
of widely separated 5’s and 7’s at distances which
are quite far away. As R decreases still further, the
arrays continue to exhibit swirling colineations of
particles like those evident in Fig. 3(c). Disclina-
tions with coordination numbers 7, 8, and 9 remain
trapped at the origin. A qualitatively different ar-
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FIG. 3. (Continued.)

ray is obtained when R reaches 0.35 [Fig. 3(d)].
Here, the order is broken up by a few stacking
faults, small portions of square lattice, and many
grain boundaries. A good example of a grain boun-
dary occurs just to the left of the bottom of the fig-
ure. The swirling pattern of Fig. 3(c) is recovered
(with a 10-coordinated disclination at the origin) for
R=0.3.

The behavior as R decreases from unity with a
small disk at the center is also of interest. As
shown in Fig. 4(a) for R=0.9, the perturbation due

to the small disk eventually heals. At R=0.85638,
two quadrapoles appear, followed by an isolated
dislocation appearing at the edge of our 4000-disk
samples for R =R[=0.82370. A quadrapole with
a 5 on the inhomogeneity disk also appears at
roughly this value. This dislocation moves in to-
ward the center for R=0.81577 and R=0.81479
[Figs. 4(b) and 4(c)]. Note the additional topologi-
cal debris (carrying a nonvanishing Burgers vector)
in the upper-left portion of Fig. 4(c).

When R =R =~0.7013, five larger disks are just
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(a)

R=0.9

© 00000000

FIG. 4. Configurations of identical large disks packed around a small one at four different diameter ratios.

able to form a pentagonal configuration around the These curious configurations occur for a range of

inhomogeneity. The resulting array [Fig. 4(d)] has
an isolated fivefold disclination at the origin, and
other isolated 5’s and 7’s as well. Although a wedge
of defect-free material appears below the seed, we
expect that this grain will eventually be choked off.
Defects are already beginning to appear near the
bottom. As R decreases further, the arrays eventu-
ally organize into an arrangement of stacking faults
like that shown in Fig. 1 and discussed in Sec. I.

diameter ratios near R=0.40.

The configurations triggered by a small impurity
disk at the origin should be contrasted with those
found in quenched ball-bearing arrays.” Here, iso-
lated small spheres are usually found imprisoned in
a rigid hexagonal hole formed by the matrix of
larger spheres. Once trapped, a small impurity
sphere is powerless to impede formation of a crys-
talline array. The behavior for a large inhomo-
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FIG. 4. (Continued.)

geneity disk is qualitatively similar to the ball- B. Binary mixtures

bearing results, at least for R >0.8. It is conceiv-

able, however, that the disclination trapped by the Figure 5(a) shows a 50-50 mixture of 2000 hard
impurity in Fig. 3(c) would screen itself at least par- disks with diameter ratio R=0.80 generated via the
tially by polarizing the surrounding medium in an Bennett algorithm. The structure function S(q) is
annealed ball-bearing array. It would be interesting shown in Fig. 5(b). The high, approximately uni-
to see how the effect of a single impurity disk is al- form density of 5- and 7-coordinated particles, and
tered by annealing or by softening the potential. the isotropy of S(q) indicate an amorphous, liquid-
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R=0.81479
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FIG. 4. (Continued.)

like configuration. The structure function, as well Figure 6 shows the average “packing fraction” of
as the orientational correlation function G¢(T) [Fig. disks as a function of sample radius for the two
5(c)] were obtained via a fast-Fourier-transform seeds mentioned above. Qualitatively similar results
technique from an approximately 1200-particle were obtained for other compositions and diameter
square section cut out of the center of the circular ratios. These packing fractions were obtained by
sample. The seed was composed of two small disks ~ determining the area covered by all disks (large and
and one large one. The functions S(q) and G4(T) small) contained in a circle of radius r inscribed
did not change significantly from run to run, or about the centroid of the seed triangle and dividing
when the seed was changed to one small and two by 7r2. Although there is considerable scatter, the
large disks. results for both seeds seem to be tending toward a
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(d)
R=0.70130
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FIG. 4. (Continued.)

limiting amorphous packing fraction persist for at most two or three mean disk diame-
ters. The isotropy of this pattern reveals the ab-
p4~0.825£0.02 . 2.4 sence of extended orientational correlations. Figure

The packing fraction of a “phase-separated” config- 5(c) shows that in fact G4(T) drops to zero within a
uration consisting of two perfect triangular lattices few mean disk diameters.
each containing equal numbers of large or small A considerably more ordered array is generated
disks is for 50-50 mixtures with R=0.95 (Fig. 7). There are
. a few trapped dislocation pairs, and six symmetrical
p*=5—‘/—§=0.907 >p4 - (2.5) Bragg spots are evident in the structure function.
The orientational correlation function decays to a
From the width of the first ring in S(q) [Fig. large nonzero value for large r. As noted in Ref. 7,

5(b)], we can infer that translational correlations quenched-in volume fluctuations caused by the in-
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FIG. 5. (Continued.)

homogeneous disk diameters in elastic solids lead to
power-law singularities at a set of reciprocal-lattice
vectors {G},

N (3)~“_}F—n: . (2.6)

l§—G|" "¢

The system is structurally like a solid at a finite
temperature with no disorder. The exponent 7 g
depends on the amount of frozen-in disorder. Al-
though Fig. 7(b) is certainly consistent with Eq.
(2.6), it is not clear to what extent our deterministi-
cally packed hard-disk arrays are describable by an
elastic solid with quenched disorder.

Figure 8 shows a 50-50 mixture of disks with
R=0.90. The numerous dislocations (5-7 pairs) evi-
dent in Fig. 8(b) are often well separated, but oc-
casionally seem to align into grain boundaries.
Translational correlations extending roughly four or
five mean disk diameters are suggested by the radial
width of S(q). There is, however, a noticeable six-
fold anisotropy in the first ring. The correlation
G¢(T), after a rapid drop, decays very slowly. The
large-r behavior of G¢(r) is consistent with the alge-
braic decay of orientational order expected in arrays
disordered primarily by quenched-in dislocations.’
The structural properties of this configuration are
quite similar to the equilibrium hexatic phase.® The
hydrodynamic theory of hexatics® also suggests a
tendency for dislocations to align in grain boun-
daries. The orientational correlations in Fig. 8(c)
appear qualitatively different from those charac-
teristic of amorphous [Fig. 5(c)] and crystalline
[Fig. 7(c)] arrays.

We now survey results for arrays generated at a
number of different composition and diameter ra-
tios in the ranges 0.05<c <0.95, R >0.7. The re-
sulting structure and orientational correlation func-
tions were classed as amorphous, crystalline, or hex-
atic, depending on whether they most resembled
Figs. 5, 7, or 8. These crude assignations are sum-
marized in Fig. 2. At least on the scale of our 2000
particle samples, one finds regions which are amor-
phous, crystalline, or hexatic. Although it is hard
to draw precise conclusions, areas of hexatic
behavior seem interposed between crystalline and
amorphous regions.

It is tempting to introduce the ‘“phase boun-
daries” indicated by dashed lines in Fig. 2. The pre-
cise meaning of such boundaries, however, is un-
clear. One might worry about the effect of the seed
configuration on our finite size samples. Changing
the seed did occasionally lead to noticeable changes
in S(q) and G4(7), particularly in the more ordered
samples. It is also possible that, strictly speaking,
all configurations with the slightest amount of dis-
order will be amorphous, in the sense of having fin-
ite (although perhaps very large) translational and
orientational correlation lengths. Although isolated
impurities may perturb the order only slightly, rela-
tively improbable clusters of inhomogeneous disks
could conspire to trap dislocations and disclina-
tions. Translational and orientational coherence

0.90 T T T
< 0851 &
5 ’ + M
5 $0ee Tl e o s *
b4 L vl S J
o +
.
©
=z
S
< 080 =
a

0]% ] | 1

0 005 010 Q.15 0.20

1/r

FIG. 6. Packing fraction for disks contained within
circles of radius 7 as a function of » ~! in two samples at
50-50 concentration with R =0.8. The samples were ob-
tained from different starting seeds and realizations of
the Bennett algorithm.
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FIG. 7. (Continued.)

would then be destroyed on scales comparable to
the separation between these clusters.

Assuming the above picture is correct, these
lengths can be estimated for low-impurity concen-
trations and for R near 1. For concreteness, we dis-
cuss dilute concentrations of large disks, and as-
sume that such disks trap isolated dislocations for
R <R, and isolated disclinations for R <R, <R;.
This scenario is consistent with our results for a sin-
gle large disk at the origin. When R is less than R,
all samples will be amorphous when viewed on a
large enough scale, since the trapped disclinations
break up both translational and orientational order.
For R, <R <R, translational order will be des-
troyed by dislocations trapped on the large disks.
However, order can also be broken up at sufficiently
large scales, for any R, provided clusters of impuri-
ties can trap dislocations and disclinations.

To estimate this effect, let us take R <1, and con-
sider the effect of a roughly circular “Cluster of n
neighboring impurities, with n >>1. These unusual
configurations occur with a number density per unit
area of roughly

piln)~c"/d}, 2.9

where c is the concentration of large disks. The di-
ameter of the cluster is of order Vnd;. When em-
bedded in a matrix of smaller disks, we suppose that
its effect on distant regions is like a single impurity
disk at the center, with an effective diameter d > d.
Replacing the original cluster by n —1 small disks
and one larger one, we see that d must satisfy

d’+(n —1)d?~nd}? , (2.8)

so that the new cluster occupies the same area as
the original one. In the limits # >>1 and R—1, we
find that the new effective diameter ratio is

. d

Rz; ~[2n(1—R)+1]"12, (2.9)
The cluster sizes n; and n,, such that dislocations
and disclinations are trapped follow from equating
R to R, and R, are

1-Ri 1 (2.102)
MTTRF (1-B) :
for dislocation trapping, and
1-R; 1
=—— (2.10b)
"2=5R? (1-R)

for disclination trapping. Upon inserting these re-
sults into Eq. (2.7), we can define translational and
orientational correlation lengths as the separation
between the corresponding clusters,

Er=1/Vpi(ny), (2.11a)
§e=1/Vpiln,y) . (2.11b)

As c tends to zero, these lengths diverge algebraical-

ly,
§T~ds/c“/2)"‘ , (2.12a)

Eg~dy /P (2.12b)

Note from Eq. (2.10) that exponents can be quite
large for R <1. As R tends towards unity for fixed
¢ >0, we find a rapid exponential divergence,

£rd (1—R?) | Inc | /(l R)
~dexp | | ———— -~
TG0 4R?
(2.13a)
(1 R2)|1nc[
~d,ex /(1 _R)
g6 p 4R2
(2.13b)

Note that since R;>R,, &¢ always exceeds &r.
In fact, the ratio £¢/&r diverges as c—0 or R—1.
As c¢ tends to zero for R; <R <R,, &r should
behave as in Eq. (2.12a) with n; ~1. Since n; is of
order three or four times n, in this range of R, &5
will again be much larger than £7. Finite size sam-
ples will appear hexatic, just as one would have
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FIG. 9. Small disks (crosses) packed in a deterministic spiral around a large disk (indicated by the square) with a diam-

eter 1.25 times larger. The small dots indicate the sequence in which the disks were deposited.
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FIG. 10. “Alternating spiral” packing of 4000 small (circles) and 4000 large (squares) disks with diameter ratio

R =0.98. Inset shows the bond orientational order parameter ¢ =e

(2.15a)
(2.15b)

Er(c,R)=L (solid-hexatic) ,
£6lc,R)=L (hexatic-liquid) .

The dashed lines in Fig. 2 may be viewed as arising
from these conditions, with L ~Vv"2000d, when d is
a mean disk diameter. ‘

III. SPIRAL GROWTH ALGORITHMS

Results different from those obtained via
Bennett’s procedure follow from more ordered
spiral growth algorithms. Starting with a single

%8 averaged over successive turns of the spiral.

disk at the origin, more disks are added to produce
a circular pattern spiraling outward from the origin
(see Fig. 9). Each new disk is required to touch the
previous one, as well as an additional disk in the
preceding turn of the spiral. Every turn of the
spiral serves as a kind of template for the next.
When disks with uniform diameters are used, one
grows a perfect triangular crystal. With a single
disk with the “wrong” diameter at the center, the
algorithm, of course, remains completely deter-
ministic. Ambiguities present in the early stages of
Bennett’s construction!® are avoided entirely. With
the ratio of disk diameters as a control parameter, it
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FIG. 11. Alternating spiral packing similar to Fig. 10, with 1500 large and 1500 small disks and R =0.6.

is interesting to search for the kind of “‘determinis-
tic chaos” evident in Fig. 1.
There is actually very little “chaos” evident in

Fig. 9, where the spiral is built around a large disk
such that

1
—=1.25. .
d. (3.1)
The second, smaller disk was placed just to the
right of the large one, and the packing continued in

a counterclockwise direction. Six stacking faults ra-
diate out from the center of an otherwise perfect
crystal. As d;/d; varies, the stacking faults disap-
pear and reappear, and the entire pattern seems to
rotate smoothly. Similar results were obtained with
a single, small inhomogeneity disk at the center.

An interesting transition to deterministic chaos
does occur for an “alternating spiral” algorithm.
Here, one forms a spiral composed of alternating
large and small disks. = For diameter ratios
R =d /d; near unity, the kind of “twisted crystal”
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FIG. 12. Contours of constant intensity for the structure function associated with Fig. 11.

shown in Fig. 10 for R =0.98 is formed. The inset
shows the quantity

l)bn=‘<e6i0(?)>n ’ (3.2)

where the average is over all azimuthal near-
neighbor bonds in the nth turn of the spiral. In the
perfect crystal formed for R =1, ¢, is fixed at uni-
ty for all n. For R =0.98 there is a helical variation
of ¥, with n in the complex 9 plane.

The average v, becomes an increasingly erratic
function of n as R is decreased further. The pack-
ing of disks found for R =0.6 is shown in Fig. 11.
Although 9, is quite chaotic, a remarkable degree
of residual order is evident in the x-ray structure
function displayed in Fig. 12; note the sharp onset
of intensity as g increases outward from the origin.
The weak fourfold asymmetry is due to the square
sample cut from the center of Fig. 11. This striking

intensity pattern (which resembles a solar eclipse) is
consistent with a periodic solidlike packing in the
radial direction, but liquidlike or amorphous order
azimuthally. In this sense, Fig. 11 is structurally
identical to a rolled up two-dimensional smectic
liquid crystal.
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