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Properties of the q-state clock model for q =4, 5, and 6
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The two-dimensional clock models for q =4, 5, and 6 were simulated on lattices of size

256 and 1024. Various properties were computed including the specific heat, susceptibility,

vorticity, and correlation times. However, only a Monte Carlo renormalization-group

analysis was capable of locating quantitatively the phase transitions for q =5 and 6. The

results agree with the qualitative picture obtained for the Villain version of the clock

model. The relevance of this work to the two-dimensional melting problem is discussed.
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I. INTRODUCTION

Recently a series of computer simulations of
melting in two dimensions (2D} has generated a
great deal of controversy over the nature of the
phase transformation from solid to liquid. ' The
data from these computer experiments are interpret-
ed as either the result of a first-order transition as
in three dimensions or as the result of a sequence of
two second-order transitions of the Kosterlitz-
Thouless (KT) type. In addition to searching for
the solution to this particular problem, the comput-
er simulations have spurred the development of
more careful and sophisticated analyses.

To determine what the best method of analysis
would be, I have simulated the q-state clock model
which, for q sufficiently large, has three phases
analogous to those postulated by Halperin and Nel-

so (HN) for 2D melting. The clock models are 2D
planar spins where the spins are restricted to q
evenly-spaced orientations. At low temperatures
there is an Ising-type ordered phase with long-range
correlations. For q large enough (thought to be

q &4) there is an intermediate phase similar to the

low-temperature phase of the 20 planar model

where spin-spin correlations fall off as l lr", where

q is a temperature-dependent critical exponent.

At high temperatures there is a disordered phase

with exponentially decaying correlations.
The analogous situation for the HN theory of 2D

melting is the following. There is a low-

temperature phase of long-range correlations be-

tween the orientation of the bonds connecting

nearest-neighbor particles. However, the positional

correlations [i.e., the peak heights in the pair-

distribution function g(R}] decay as a power law

indicating the lack of long-range positional order.

This phase is destroyed by the dissociation of dislo-

cation pairs to form an hexatic phase with orienta-

tional correlations falling off as a power law and

positional correlations falling off exponentially.

The hexatic phase is then destroyed by the dissocia-

tion of disclination pairs and a liquid phase, with

exponentially decaying correlations, is created. The
difficulty in the simulations is locating an hexatic

phase and distinguishing it from the possibility of
two-phase coexistence between liquid and solid. In
all simulations done so far, large correlation times

have been observed at intermediate temperatures

making it difficult or impossible to reach thermo-

dynamic equilibrium (or at least to use enough

states to compute averages reliably).
The purpose of this work is first to obtain accu-

rate data for the clock models considered, second,

to see if effects found in 2D melting are found here

and, third, to determine what are the best methods

of analysis to understand the physics of these sys-

tems. Also, since this system is expected to behave

like the analogous four-dimensional gauge theories,
the results here may be of some value to particle
theorists.

In the next section I present the model and the
computational procedure. In Sec. III the results for
various quantities are presented. In particular I will

be using the Monte Carlo renormalization group
(MCRG) as a powerful tool of analysis. Finally, in

Sec. IV a discussion of the relevance of the results

to the 20 melting problem is given.

II. COMPUTATIONAL PROCEDURE

The reduced Hamiltonian for the q-state clock
model (also called the vector Potts model) is
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8;=,@=1,2, . ..,q, (1)

where the sum is over nearest-neighbor pairs on a
square lattice with periodic boundary conditions.

The algorithm for updating spins was the usual

Metropolis rule. A trial move consisted of random-

ly turning a spin one unit to the left or one unit to
the right. Turning more than one unit would be an

unlikely event except at high temperatures; thus we

discard this possibility. The spins to be updated
were chosen sequentially in the order in which they
are labeled. Thus, one less random number per up-

date is needed and it allows spin-wave-type excita-
tions to occur more easily. One expects this pro-
cedure to improve the sampling of phase space. Us-

ing this procedure the time to update one spin was

about 90 psec on the 190L array processor of Float-
ing Point Systems, Inc. using a compiled program.

For the 256 spin system 30000 passes through
the lattice were averaged over and 6000 passes were

skipped for the purpose of equilibration. For 1024
spins, S0000 passes were averaged over and 10000
to 20000 passes were skipped. Averages were com-

puted every five passes and standard deviations

were computed by dividing the averages into ten

data points. All errors quoted in this paper are
based on one standard deviation error bars, even

though there may be larger systematic errors which

are difficult to determine. Runs were begun either

by heating or cooling from the last configuration of
a previous run, usually 0.1 away in temperature.
Correlation times of most quantities were computed
to ensure that the running time was sufficient. The
program was tested by comparing the computed en-

ergy with that of the low-temperature expansion
(see Appendix) and with exact results for q =4.

III. RESULTS

A. Energy

Table I shows the energy for the clock models as
a function of temperature in heating runs of 256
spin lattices. For q =S a cooling run was also done
and the energy data were found to be approximately
within 1.0% of the heating run. The energy for
1024 spins is slightly higher (-1.0% higher) re-

flecting the fact that the periodic boundary condi-
tions cause the smaller system to be more correlat-
ed.

Figure 1 shows the specific heat C for all three
values of q. These data are equal to hE/b, T with
bT=0. 1 in most cases. As can be seen there are

TABLE I. Energy as a function of T and q for N =256 and heating. Error estimates are one standard deviation error
bars.

q =4 (exact)
Infinite lattice q=5

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

—1.9269+0.0004
—1.8579+0.0010
—1.7419+0.0024
—1.5500+0.0038
—1.2708+0.0053
—1.0356+0.0027
—0.9057+0.0016
—0.8177+0.009

—1.9263
—1.8591
—1.7456
—1.5463
—1.2266
—1.0280
—0.9096
—0.8172

—1.9730+0.0002
—1.9250+0.0005
—1.8367+0.0007
—1.6911+0.0017
—1.5474+0.0018
—1.4034+0.0021
—1.2757+0.0016
—1.1157+0.0026
—0.9929+0.0018
—0.9101+0.0017
—0.8341+0.0008
—0.7644+0.0016
—0.7141+0.0016
—0.6710+0.0012
—0.6277+0.0014

—1.9941+0.0002
—1.9663+0.0002
—1.8932+0.0007
—1.7616+0.0015
—1.6433+0.0011
—1.5495+0.0007
—1.4535+0.0012
—1.3406+0.0025
—1.1957+0.0030
—1.0598+0.0027
—0.9438+0.0012
—0.8533+0.0015
—0.7785+0.0013
—0.7191+0.0011
—0.6671+0.0016
—0.6249+0.0013
—0.5850+0.0009
—0.5509+0.0010
—0.5166+0.0011
—0.4914+0.0011
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To determine hT quantitatively I used

E' '(N): y—cos(8' ' —8' ')
&lj &

where 8 ' is the angl~ of the block spin at s

after m blockings from a lattice of N spins. The
vorticity of the blocked spins also matched giving

the same hT. The quantity

~ Q
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FIG. 1. Specific heat as a function of temperature. o
designates 1024 spins; 0 designates 256 spins.

B. MCRG

The most reliable method for determining the lo-
cation of critical points is MCRG. The method in-
volves matching thermodynamic averages of block
spins on lattices of the same size which originated
from two lattices, one of size 1024 spina and the
other 256 spins. If T& and Tz are the temperatures
of the two original spin lattices at matching, then
hT: Tz T& is a dis—crete—version of the beta func-
tion, and tells one how the temperature is renormal-
ized by a scale change of b =2. If AT =0 we have
a critical point. AT&1 is an ordered phase and
hT g 0 is a disordered phase.

The blocking rule is defined by vectorally sum-

ming four spins on a plaquette and choosing the
block spin to be that vector closest in direction to
the sum. The block spins also have q possible
states. Ties and sums adding to zero were eliminat-
ed by favoring slightly one of the four spins form-
ing a block spin. This blocking was continued until
we were left with a 2 X2 lattice.

two peaks in C for q =5,6 and only one for q =4.
This suggests there are two phase transitions for
q & 5. As we shall see in a moment these two peaks
are not located near the phase transitions. For q =4
the single peak is located near Tz and there appears
to be some size dependence to the height of the peak
as one expects for the standard second-order phase
transition.

gcos8 ' + gsin8 ':—((gz~')z ) .
l l

2.0 —=

E(m)

I.5—

I.O—

I

0.5
I

I.O
I

I.5

FIG. 2. Examples of E' ' vs T used to compute 4T.
Error bars are smaller than the symbol size.

(3)

was also computed, but it had larger error bars and
showed hysteresis between heating and cooling.
The matching was carried out by plotting E'
(256) and E' +" (1024), drawing a smooth curve
through the data points for E' ' (256) and reading
off hT. An example is shown in Fig. 2. The error
bar for this procedure is around +0.01 near the
transitions. The data for a case where ET=0 is
shown in Table II. Generally, matching occurs on
two to three length scales. (At least two scales are
needed to be certain of the values. )

The results for b, T as a function of T~ (the tem-
perature of the 1024 spin system) are shown in Fig.
3. For q=6 there are clearly three phases, an
Ising-type ordered phase (hT & 0), an x-y-like phase
(AT=0), and a disordered phase (b,T&0). The
boundaries of the three phase are at T, =0.6 and
T&&-1.3. For q =5 the x-y-like phase is much nar-
rower, as expected, with TI=08 and Tu=
These estimates are probably accurate to within
10% and are reliable since they are the same with

heating and cooling, tested for the q =5 systems.
For q =4 there is only one phase transition and we
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Block lattice Original lattice
iV = 1024 N =256

TABLE II. Matching of E' '(N) for q =6, T=1.0. For comparison v =1.07+0.15 for the Ising model

in two dimensions using one million passes on a
256-spin lattice matched to a 64-spin lattice. '

32X 32
16X16

8X8
4X4
2X2

1.3317+0.0019
1.3775+0.0026
1.4170+0.0058
1.4485+0.0077
1.6134+0.0093

1.3406+0.0025
1.3770+0.0051
1.4326+0.0069
1.6062+0.0102

C. Spin rescahng

The critical exponent g can be determined by
noting that when AT =0 we have

find T, =1.11+0.03, compared to the exact result

T, =1.1346. . ..
With the use of the fact that the correlation

lengths at T) and T2 differ by a factor of 2, we can
obtain the critical exponent v, which characterizes
the divergence of the correlation length, by the for-
mula

v = ln2/ln 1+—dbT
dT

For q=5 and 6, v= oo if hT is a differentiable
function of T as we expect. (It might not be for a
first-order transition. ) This is consistent with the
prediction that Tq and T«are Kosterlitz-Thouless
transitions. For q=4 we find v=1.25+0.20.
v=1 is the exact result since the four-state clock
model is equivalent to two decoupled Ising models.

((S( ))2) (N(m))1 —g/d

where N' ' is the size of the mth block lattice and
d =2 is the dimension of the lattice. In general the
data for the above quantity exhibits very large fluc-
tuations similar to those explained below in Sec.
III D; however, the data where the value for g is not
unreliable to much more than 20% is shown in
Table III. In general for bT+0 a log-log plot of
the data shows a curve instead of a straight line in-

dicating correctly that it is not critical.
Analysis on the Villain model predicts that g

varies in the intermediate phase from 4/q to
1/4. Our data are consistent with this predic-
tion at least near T&.

For q =4 we find q =0.18 at T= 1.1 and q =0.33
at T=1.2. (We used the best straight-line fit even
if there is a little curvature. )

I.O—

QQ(

D. Order parameter

The magnetization and susceptibility are defined

-O. I

O. I—

I
'~ I ) I

(M) = gcos8;, gsio8;),
l

X—:I/N((M ) —(M) ) .

(6)

0.0]

q=5

e

(M) drops sharply in magnitude at Ti and then

stays roughly constant at a value 15—20% of per-

-O. I

O. I

TABLE III. g as a function of T. T/2~ is the
lowest-order spin-wave prediction. These data are accu-
rate to around 10—20 Jo.
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0.2 0.4 0.6 0.8 I.O I.2 I.4
T

FIG. 3. hT vs T~ (1024 spin temp. ). The low-

temperature curves are the result of a low-temperature
renormalization group. Error bars are approximately
+0.01 for data near ET=0.

0.6
0.7
0.8
0.9
1.0

T/2m

0.095
0.111
0.127
0.143
0.159

0.07
0.16
0.17
0.28

0.10
0.15
0.19
0.24
0.32
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E. Vortices

Einhorn et al. s give a description of the phase
transitions in the clock models in terms of topologi-
cal defects. The transition between the ordered
phase and the x-y-like phase is described as a con-
densation of droplets of spins rotated with respect
to the net magnetization. The boundary of a drop
let is a closed string in analogy to the language used
in particle physics. Vortices, defined as a topologi-
cal defect where the change in 8 around a closed
loop is nonzero, are tightly bound by a linear poten-
tial (not logarithmic as in the x-y model because 8;
is discrete). A vortex pair is a positive and negative
vortex connected by strings. In the x-y-like phase
the potential between vortices is reduced on larger
length scales to a logarithmic potential (i.e., imagine
averaging groups of spins so that the change in the
averaged spin as a function of position becomes

0
~M

N

200- q, =5

N =256

feet alignment at least up to T=2.0 (M )/N exhi-
bits huge fluctuations in the x-y-like phase as shown
in Fig. 4. Apparent hysteresis due to these fluctua-
tions occurs for N=256 where for q=5, T=0.8,
(M~)/N=210 (heating) and 100 (cooling). The
susceptibility rises sharply near T&, remains large in
the x-y-like phase and slowly decreases as the tem-
perature increases in the disordered phase. Because
all of these quantities are very sensitive to long-
range fluctuations, it is not surprising that their sta-
tistical fluctuations are large. If these were the only
quantities we measured we would have a very
confusing picture of the phase structure of this sys-
tem.

more and more continuous. Note, this is not a
blocking transformation which maintains the sym-
metry of the spin). The transition from an x-y-like
phase to a disordered phase is then just that of a
Kosterlitz-Thouless vortex pair unbinding mechan-
ism.

In this simulation the vorticity is computed for
each plaquette. If u is the number of vortex pairs
per spin then a plot of inn versus 1/T gives a
straight line at low temperatures (Arrhenius law).
From this the chemical potential to create a pair of
vortices is found to be 2p=7.3 for q=6, 8.2 for

q =5, and 10.6 for q=4. The value found for the
planar model was 2JM =10.2" At high temperatures
u deviates from the Arrhenius law. This occurs at
T=1.3 for all q. At T= 1.2, u =0.025 for q =4 and

5, and v=0.035 for q =6.
Plots of the location of the vortices were also gen-

erated. The results showed that generally at tem-
peratures below Tq~ there were no vortex pairs
where the separation between members of the pair
were more than three lattice spacings. Above Tqq

there usually appeared some vortices that appeared
to be unbound, although this is somewhat of a sub-
jective result. The lifetime of many vortex pairs is
only around one pass, suggesting that they are not
true excitations. Also, note that near T&& in the
1024-spin lattice there are only about 30 vortex
pairs. These vortices are clearly not able to perform
the screening that is used in the KT theory to derive
quantitative results. Nevertheless the MCRG re-
sults seem quite plausible. Just as MCRG is expect-
ed to give reliable information on the infinite lattice
even though the lattices simulated are much smaller
than the correlation length, it appears here to also
work even though the mechanism which drives the
transition appears to operate on a scale larger than
the lattices used.

Finally, we note that in this system there ap-
peared to be much less clumping than was found in
the planar model or the two-dimensional melting
models that have been simulated. ' '"

~ HEATING

Q COOLING

IOO—

0.5
g i & I

I.O
T

I.5 2.0

FIG. 4. (M~)/N as a function of T, heating and cool-

ing.

F. Dynamics

The time-correlation function for E' ' and
((Sz ') ) were computed. In all cases the correla-
tion times for these quantities were much smaller
than the duration used for each data point, thus in-
suring that the computation of error bars is reliable.
This does not prevent systematic errors due to ex-
tremely long correlation times which are not detect-
ed by the above computation. This can be tested to
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some degree by heating and cooling the systems as
we have done for q =5.

The behavior of the correlation time r for (M2)
for %=256, as a function of temperature was as
follows: For very low temperatures ~ is essentially
zero; each pass is independent of the next. The
dynamics is such that isolated spins are turhing oc-
casionally, and then returning to their original
orientation. ~ then begins to rise to around ten
passes just below T~ and then rises sharply to
around 500 passes at T~. In the x-y-like phase ~ de-
creases from 500 to around 50 passes. As the tem-
perature is increased beyond T&&, ~ decreases gradu-
ally to around ten passes at T=1.8 for q = 5 and 6.
The correlation time for the energy is difficult to
determine because it does not fluctuate very much
and computing (E(t)E(0))—(E) is very small,
comparable to the computer precision.

For E' ', m & 1 we can compute the correlation
time r' '(X). With the use of these quantities as a
measure of the time scales for the blocked lattices,
we can employ dynamic MCRG (Ref. 10) to obtain
the dynamic critical exponent z whenever AT=0.
This is given by the formula

(m+1)(1024)

r'™(256)
(8)

IV. DISCUSSION

With the use of this formula z is typically between

1.3 and 1.8 in the x-y-like phase for q =5 and 6.
The error bars on E' ' are generally large. At
T=1.2, z=1.6 for q=4.

z was also computed by matching the block spin-
autocorrelation functions (cos[8 '(t) —8 (0)]).
In this case t plays the role of r in Eq. (8). The re-

sults were obtained for q=6, and showed that
z =1.6 consistent with those above.

The above values are considerably lower than
those found for the 2D Ising' and three-state Potts
models, ' where z=2.2 and 2.7, respectively. Also,
z is not a monotonic function of q for small q.

number and location of the vortices again is incon-
clusive. The dynamics, although interesting and
suggestive, are not very precise. Only MCRG gives
a clear and quantitative picture of the phase transi-
tion.

If we now consider the 2D melting problem
where the lattices are of comparable size and run-

ning times somewhat less, we might expect the
same kind of results. In fact, the situation is prob-
ably more complicated since there is not a fixed lat-
tice and the potentials used are generally more com-
plicated than those used here. Only thermodynamic
quantities, correlation functions, and pictorial
displays of defect and particle configurations have
been computed for 2D melting systems, which in
the present work are found to be inaccurate and
sometimes misleading.

If one compares the results of 2D melting simula-
tions with those of the present work, one finds qual-
itative similaritiies. Large, long-lived fluctuations
and hysteresis exist in long-range quantities (the en-

ergy in most melting problems is also somewhat
long-range, extending over a few to infinite numbers
of particle spacings). Correlation functions exhibit
large fluctuations and long correlation times
throughout the controversial temperature
range. ' ' The only aspect which appears some-
what different is that the clock models appear to
have fewer defects and less clumping than in melt-

ing or in the planar model. This probably accounts
for the broader specific heat peaks found here com-
pared to the planar model. " However, we must
emphasize that no simulation has been run longer
than the characteristic times for defect motion.

In conclusion, we have obtained quantitative in-
formation on the clock models for q=4, 5, and 6
using MCRG which agrees with the picture ob-
tained by analyzing the Villain version. Our results
suggest that simulations of 2D melting should focus
on short-range quantities such as near-neighbor
translational and orientational correlations and that
a MCRG procedure should be devised. This ap-
proach is currently in progress.

The results in Sec. III tell us a great deal about
what quantities are the most usefu1 for understand-

ing the phase transitions of clock models and other
similar systems. The specific heat tells us there are
likely to be two transitions for q =—5 and 6, but does
not tell us where the transitions are located. The
magnetization and susceptibility also give inaccu-
rate estimates of the transitions as well as having

large error bars and hysteresis. Knowledge of the
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and

b,a =1—cos(2ir/q)

u =exp( be/—T) .

(Al)

The first term in parentheses is due to a single spin
turning one unit from perfect alignment and the
second term is that due to two neighboring spins
turning one unit in the same direction. Using our

APPENDIX: LOW- TEMPERATURE
EXPANSION

The low-temperature expansion for E' ' for the
q-state clock model is'

E' '=2 —be(8u +24u +. ),
where

block rule, one finds

E'"=2 b—e(3u + ) . (A2)

(A3)

where A =1n(-, )/4b, e. This simple renormalization

group gives bT&0 for q finite and bT=O for
q —+ Oo as desired.

The single-spin excitations have no effect on block-
ing and the double-spin excitations remain only half
the time if the two spins are in the same plaquette
which occurs only one fourth the time. Matching
occurs when E' '(T) and E"'(T bT)—are equal.
To first order this gives
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