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We present the calculations of the ground state and lowest excited states of the one-

dimensional periodic Anderson Hamiltonian with two electrons per site and arbitrary mag-
nitude of the repulsive interaction U. We consider finite cells (up to 1V =4) and introduce a
new method, using modified periodic boundary conditions, to facilitate comparison of cal-
culations with different N. The ground state is found to be a nonmagnetic singlet in all

cases. The lowest-energy excitations for adding or subtracting one electron show that the
system is insulating and the lowest spin-flip excitations indicate a near instability to antifer-

romagnetism due to the "nesting" of the Fermi surface in one dimension. The lowest exci-
tations are shown to vary little with N and, for 3V =4, the results agree well with infinite-

cell.calculations, both for small U and for the Kondo-lattice regime. The primary results

are the continuous variation from U=O to the Kondo-lattice and mixed-valence regimes
and the importance of correlations, which lead to the insulating gap and dispersion in the
electronic and spin excitations.

I. INTRODUCTION

The physics of anomalous rare-earth elements

and compounds is the subject of increasing theoreti-
cal interest. ' Their properties, such as mixed-
valence and Kondo effects, are caused by the pres-

ence of a narrow band of strongly correlated f elec-
trons lying in the vicinity of the Fermi surface.
Some aspects of these problems can be explained
within impurity theories, which consider the
rare-earth compound as a collection of independent
f-impurity levels described by the Anderson impuri-

ty Hamiltonian. In addition, however, there are
collective effects that are unique to a periodic lat-

tice ' and cannot be described at all by an assem-

bly of impurities. The periodic Anderson Hamil-

tonian which contains the coherence effects appears
to be the most appropriate Hamiltonian able to
describe the important features of anomalous rare-

earth crystals. To our knowledge, this Hamiltonian
has been only studied up to now only within the
Hartree-Fock approximation, " perturbation expan-
sion in the interaction, ' variational approaches, ' '"
Green's-function truncation methods, ' ' the "al-
loy" coherent-potential approximation (CPA),9'7

and limited calculations on finite cells. ' The cen-

tral issue which has arisen is whether the ground
state is a nonmagnetic singlet with an insulating

gap
"' ' or a metal. ' ' None of these

methods is complete for large U and, in fact, each is

known to be unable to describe the Kondo effect,
even qualitatively. Therefore, it is essential to ad-
dress the central issues of this problem and to ex-
amine the full range from mixed-valence to the
Kondo regime, which has been studied independent-

ly as a "Kondo lattice." ' Furthermore, the ex-
istence of the insulating gap in this special case is
significant for more general cases because the gap is
one aspect of a Fermi-liquid formulation of Fermi-
surface properties with implications for many sys-
tems, insulating and metallic. '

Here we present exact calculations done on finite
cells, taking into account correlations in all regimes
(including mixed-valence and Kondo). Because of
the complexity of the many-body problem, only
small cells (up to N=4) can be treated exactly. For
that reason we present a new method, modified
periodic boundary conditions, to improve the extra-
polation to large cells (N~ao). Portions of this
work have been described in previous short pa-
pers. ' The outline of this paper is as follows. In
Sec. II we present the Hamiltoruan, give its diago-
nalization for trivial limiting cases, and discuss
essential properties of the ground state using the
impurity Kondo problem as a guide. The metho-
dology of the numerical calculations for finite cells
is given in Sec. III. In Secs. IV and V we present
the results for the lowest-energy electronic and
magnetic excitations of the interacting electron
problem. In Sec. VI we discuss the results and the
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imphcations for the properties of infinite Anderson
lattices.

II. MODEL

A. Anderson lattice Hamiltonian

~ = g [&ffk~fk~+ t cosk dkQk

+ V(dkofkcr +fkcA~ }]

with

+ I } X fk, tfk, )f»I )f(k, +k, k, )),
1 2 3

(2)

N, =Q(d»A» +fkofk»

where f» (fk ) and dk (dk ) are creation (destruc-
tion) operators for electrons in the f band and d
band, respectively, with wave vector k and spin o.

The broad d band is centered at energy e~ ——0 and
chosen to have the symmetric nearest-neighbor
cosine form. The f band is centered at energy ef, V
is a constant hybridization parameter between the
two bands, and U is the Coulomb repulsion in the f
band. The summation on k is restricted to the N
possible values of k, N being the number of sites of
the lattice. With regular periodic boundary condi-
tions, these values are k =2nmIN, n= 1, . . . , N —1.,

The summation on cr is restricted to the two
possible values o = + 1 or —1 (t or g). Both bands
are only spin degenerate, and orbital degeneracies
are completely neglected. This is the primary re-
striction which does not allow Eq. (2) to describe all
the detailed effects which are different for each type
of rare-earth ion. However, it is well known that,
apart from this restriction, the Hamiltonian de-
scribes the main physical situations of anomalous
rare-earth compounds including the Kondo effect

The periodic Anderson Hamiltonian is the exten-
sion of the original one-impurity Anderson Hamil-
tonian to the concentrated case of rare-earth
atoms regularly spaced on each site of a lattice. I,et
us write generally

A =H —pN&, (1)

where A and H represent the Hamiltonian per site,
respectively, in the grand canonical and canonical
representation, p is the Fermi energy (or chemical
potential), and Ez is the total number of particles
per site. For a one-dimensional lattice and using
the k-space notations, the Hamiltonians can be writ-
ten

and the mixed-valence regime. The Kondo effect
occurs when the atomic f energies ef and ef + U are
both far away from the Fermi level p and the
mixed-valence regime occurs when ef (or Ef+ U) is
near p. Before presenting our calculations, let us

discuss some simple limits where the Hamiltonian
can be solved exactly in the N —+ oo case.

ep (k) = —,(t cosk +ef )

+
2 [(t cask —pf )2+4 V ] ~ (4)

The main features of that band structure is the ex-
istence of a nonzero indirect energy gap, with ef in
the gap, and a narrow resonance near the gap edges
due to the small dispersion of Ep (k) near ef. The
indirect energy gap (between k=O and k=n.} is

given by

Gp =(t'+4V')'~' t =2V'It =—b, ,

when ef ——0 and V is small. The parameter 6 also
measures the width of the resonance near the gap
edges. These qualitative features as well as the or-
der of magnitude of the gap and the resonance
width are not affected by varying ef in the band,
except near the band edges. These well-known re-
sults can be contrasted with the one-impurity case,
where there is also a resonance of width b, at ef, the
so-called Friedel-Anderson virtual-bound-state
(VBS) resonance. The essential difference is the ex-
istence of a gap within the resonance in the periodic
case resulting from the coherent hybridization be-
tween the d and f bands.

A physical situation of particular interest, which
will be considered throughout this paper, is the case
where Nz ——2N. Then the ground state for U=O
has a filled lower subband and the system is insulat-

ing, with a gap -5 caused by the hybridization V.

One important problem, which is a motivation for
this study, is to know if this insulating phase
remains stable in presence of strong electron-
electron interactions.

C. The interacting cases: U+0

In cases with large interactions U, it is instructive
to consider the isolated ion limit where V=O. Then

8. The U=O limit

When there are no electron-electron interactions,
i.e., when U=O, the Hamiltonian is easily diagonal-
ized. The system is described by two hybridized
subbands op+(k) and Ep (k} wlfll dlsPelsloll lela-
tions
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H separates into f and d parts that can be diagonal-
ized separately in real space and k space, respective-
ly. The f part leads to a system of independent f
ions on each site. The energy is 0, ef, or 2'+ U if
the site is unoccupied, occupied by one f electron,
or occupied by two f electrons, respectively. First,
consider ef &0 and of+UfO, in which case the
lowest-energy states have one f electron on each site
and the d band is half occupied. The ground state
is magnetically degenerate (the f electrons with spin
either up or down) and metallic (the d band is par-
tially filled). If ef &0 in the upper half of the d
band (or of +U&0 in the lower half), there is frac-
tional f occupation, i.e., mixed valence, where the
lowest-energy state is degenerate with respect to the
sites of ions of different valence as well as the mag-
netic configuration.

In order to derive a unique ground state, it is
essential to include a nonzero hybridization V. This
completely changes the nature of the solution, as is
well known from impurity problems. ' In the one-

impurity case, exact solutions of the Kondo and
Anderson problems have now shown that the hy-
bridization leads to a nonmagnetic singlet ground
state in all cases. This is best known in the Kondo
regime, where Schrieffer and Wolff showed that
the Anderson Hamiltonian transforms into the
Kondo Hamiltonian with antiferromagnetic cou-
pling between the spin of the localized f electron
and the spins of the conduction electrons:

Hx gep dg~dt, ~——
k, cr

+(J/N) g [2(S„+dt„dt;,+S„di„di;,)
k, k'

+S„(dgidgi dpi' i)]-s

Xexp[i (k k')n]—,

comes very narrow when the f level is far away
from the Fermi surface, is distinct from the VBS
resonance of width b, which occurs in the vicinity
of the f levels. The singlet ground state develops
continuously to the mixed-valence regime, where
the Kondo and VBS resonances merge and lose
their distinct identity.

The subject of this paper is the nature of the
ground state and the lowest-energy excitations in
the case of a lattice of f states. Just as in the im-

purity case, the hybridization V is the essential in-

gredient to lift the degeneracy and determine the
ground state. We report exact results for finite
periodic cells for V+0, arbitrary values of U&0,
and all situations including the Kondo and the
mixed-valence regimes. Note, in particular, that we
study the "Kondo-lattice effect" by starting directly
from the periodic Anderson Hamiltonian without
assuming the SW transformation. There is at
present no derivation of the SW transformation in

the periodic case, therefore the present calcula-
tions give results which are independent of previous
work using the Kondo-lattice Hamiltonian, ' '

which is the generalization of (6) to a periodic lat-
tice off spins.

III. METHODS

A. The modified periodic boundary conditions

In this paper we consider finite one-dimensional
cells of N sites (labeled n = 1,2, . . . , N) closed into
a ring. Each cell is invariant under the N finite ro-
tations which transform site n into site n+b, n

This invariance leads to conservation of momen-
tum, so that the many-body states are eigenstates of
k satisfying the Bloch condition

where n is the impurity site and the f spin is
represented by the Pauli matrices. In the one-
dimensional case the Schrieffer-Wolff (SW) formula
18

and the boundary condition

SN=40 (10)
J=V (1/

~ ef ~
+ 1/

~ ef + U [ ), (7)

which reduces to J=4V /U in the symmetrical
case. The electrons at the Fermi energy are greatly
affectixl with a phase shift of m./2, the maximum al-

lowed by the unitarity limit. This is due to the in-
formation of a many-body Kondo resonance ' at
the Fermi level of width

Tx-t exp( t/J) . —

The Kondo resonance at the Fermi level, which be-

is equivalent to the Born —von Karman periodic
boundary condition

k =2m'/N, .

where the integers m define N points within the
one-dimensional Brillouin zone —m & k & m.

Our purpose is to carry out exact calculations for
different N and to draw conclusions relevant to the
limit N~oo. However, it is apparent that the
properties may vary in a nonmonotonic way with
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N. In particular, the k states that are closest to the
Fermi surface are most important in the ground
state of the interacting system; however, the relation
of the points in each finite set to the Fermi surface
varies with N. Let us denote by kF the Fermi wave
vector in the thermodynamic limit (i.e., when
N~ ~). There is no special reason that kz should
be included in the set of k points for every finite cell
of size N. For example, when the Fermi energy is
at the center of the d band, k~ ——+m/2 for the
decoupled d band, and the values +m./2 are included
in the set of k points only for N=4, 8, 12, etc.
When f dcou-pling is introduced, all the ground-
state properties will thus vary with N with oscilla-
tions of period 4. This makes impossible any direct
extrapolation to N~ao by comparing only a few

small cells.
To improve this situation we have introduced

"modified" periodic boundary conditions including
an arbitary phase tp:

choose

y=yo(N) =No/2 .. (14)

There remains a simple odd-even alternation cpm-
ing from the fact that for N odd only kF n——/2 .is
reached while for N even both kk. ——m/2 and

kF —— n—/2 .are included. Here we concentrate upon
even values of N, where Eq. (14) corresponds to reg-
ular periodic conditions (yo ——0) for N/2 even and
"antiperiodic" boundary conditions (q&o

——n.) for N/2
odd. This method has been systematically used on
a simpler interacting fermion Hamiltonian (for
which larger cells could be treated) and the extrapo-
lation to N +co w—as greately facilitated. Here we

are more modest since the complications of the
Hamiltonian limit us to N(4. The only direct
comparison is between the results for N=2 with

q=m and N=4 with tp=0.

4N =foe" . (12)
B. Principles of the calculation: Ground state

This leads to

k =2nir/N+y/N, (13)

so that by choosing y any k point can be reached.
This is illustrated in Fig. 1 in the case of a simple
cosine band. The same set of k points is recovered

when q is increased by 2m. /X so that each ground-

state property varies with q with period 2n. /N.
The "best" results are obtained when y is chosen so
that kz is included in the set of k's for each finite
cell. For this particular choice of q, different size
cells can be best compared and the oscillations with

N are broken. In the example where kF ——m/2, we

The exact diagonalization of H is performed by
diagonalizing its representative matrix in each sub-

space corresponding to a choice of qr and to the pos-
sible values of the following quantum numbers
which commute with H: the projection of the total
spin on the z axis,

g (dktdkt ~kidki+fktfkt fki fki)2=

(15)

the total number of electrons Nz given by (3), and
the total wave vector E. We have first determined
the absolute ground state of H for N„=2N with en-

ergy E2~, spin X ' and total wave vector E . This
determination has been performed by using the
Lanczos procedure, which greatly reduces the size
of the matrix to be diagonalized (for N=4 and

Nz
——8, the original matrix is of order 1236).

In the Lanczos algorithm one starts from a trial
normalized vector Pi on which H is apphed,

Hfi a lfl +P142 (16)

FIG. 1. Energy of noninteracting states of a finite cell
with N =4, as a function of k defined by the modified
periodic boundary conditions. The phase p shifts each k
in the finite set by y/N, as in Eq. (14). The optimum
phase y=yo is that for which the Fermi wave vector of
the infinite system, k~, is included in the set of k points.

+&.4.+i (17)

where P„+i is normalized and orthogonal to

where ai and Pi are determined unambiguously
such that gq is normalized and orthogonal to gi.
The procedure is repeated on P2, etc., up to step n,
where

W n + n —24m —2+ Yn —1|('yg —]+apt('q
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The fact that H is symmetric implies
many simplifications: All the coefficients in (17)
are zero except a, P, and the y's, and, furthermore,
P„=y„. Finally (17) reduces to

Hgn =Pn —lan —i+ixngn+Pngn+l . (18)

fk, , Io&

(19)

where a product of Nz different creation operators
has been considered with the conditions

In the basis I g„),H is represented by a tridiagonal
symmetric matrix. At each step the tridiagonal ma-
trix is determined and diagonalized by a standard
subroutine. In the present problem we find that
after approximately 20 Lanczos steps the ground-
state energy is obtained within 10 accuracy.

The trial starting vector has been chosen of the
ofm

~A —d~ . . d~ f'~
y'1 k),o) k &op/ kp+])op+

&+«)=E2N+i«) —EZN . (24)

In fact the definition of the one-electron excitation
energy involves the eigenvalues of 4 instead of H,
and is given by

@'2N+ i«) —I'ZN =&+«)—lM .0 (25)

Thus e+(k) represents the one-electron excitation
shifted by iu. Similarly, we have determined the
hole excitation energy,

ground-state energy of H for Nz 2N——+1 and
E =K +k by using the trial starting vector

4i =fkA"i . (23)

The same result is obviously obtained for o.=+1, so
that this excited state is magnetically doubly degen-
erate. The ground-state energy found in the sub-

space is denoted E2N+i(k) and is calculated with
the same y value as for E2N. Then we define0

q

k;=E, g o;=X'. (20) N'2N —&2N-i«) =& «)—P ~ (26)

E = g k~ = g (2m' IN +y/N)
r

y for N even
—ir+y for N odd .

(22)

Furthermore, the exact ground state is an analytic
continuation of the U=O state, generated by mixing
higher-order electron-hole excitations with no
change in the analytic character or crossing of
states. We have calculated the ground-state energy
EzN and we have verified that it is a periodic func-
tion of y with period 2m/N. The ground state thus
determined, we then proceed to find the low-energy
excitations from the ground state.

C. Electronic and magnetic excitations

In order to determine the excitation energies for
adding one electron, we have determined the

For Nz
——2N, we have tried several trial starting

vectors corresponding to all possible values of K
and X' and we have always observed that the abso-
lute ground state can be generated by the starting
vector representing a filled d band,

Pi= gdk. Io&, (21)
k, a

where the product contains the N different k points
and the two possible values of o. Thus the ground
state for Nz 2N is a ——nonmagnetic singlet with
X'=0 and E =E given by

with

(k) =E2N E2N —1 (k) (27)

by determining the ground-state energy E2N l(k)
of H for Nz

——2N —1 and E =E k, using th—e tri-
al starting state

0
41 dkcrf i (28)

The electronic excitations can be also conveniently
described in terms of electronic gap

Gkk =@+(k')—e (k)

E2N+1(k )+E2N —1(k) E2N (29)

These gaps define the difference in the energies re-
quired to extract an electron of wave vector k and
to add an electron at wave vector k'.

By varying y, any k value can be reached and
continuous curves e-+(k) can be drawn. When there
is no interaction, the variations of E2N and

E2N+l(k) with q cancel and we recover the single-
electron and -hole curves exactly (except some spe-
cial effect which will be described in Sec. IV A). In
the presence of electron-electron interactions, there
are artificial oscillations in e +—(k) of period 2m/N
with best results for the set of k points that corre-
spond to y=y0. These oscillations are much more
pronounced if there is a large dispersion of the
points from which is constructed the resulting
many-body state. In principle, these artificial oscil-
lations must disappear in the large-N limit where
e+-(k) must reproduce the exact electron and hole
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dispersion curves of the infinite system.
It is also interesting to determine the magnetic

excitations from the N~=2N ground state. Each
excitation can be found by two independent calcula-
tions. On the one hand, one can determine the
ground-state energy Ezz(k) in the subspace with

the quantum numbers

Xp ——2/, X'=+2, K=K +k . (30}

On the other hand, one can calculate the first excit-
ed state in the subspace X~ =2%, X'=0,
E=E +k. We have checked that these three
states, with X'= + 2,0,—2, form a degenerate trip-
let as expected from the general property of spin-
rotation invariance of H. The ground state for Eq.
(30) is determined by starting with the following tri-
al function:

(31)

As introduced in (32), k is necessarily of the form
2nm/N and cannot reach any value by varying qr.

So we can calculate only X gaps Gk '~, each gap be-

ing a periodic function of p with period 2n/N, and.
we cannot draw a continuous curve as in the case of
the electronic excitations e +-(k). The electronic and
magnetic gaps have the same magnitudes when
there is no electron-electron interaction, so that we
must recover

Gkk ——Gk
'

k for U~O, (33)

except for cases in which the triplet states are for-
bidden. These exceptional cases have an important
role in finite cells as we shall see in Sec. V. When
finite interactions are introduced, this equality does
not hold and it is interesting to study the different
excitation gaps independently.

IV. RESULTS FOR THE ELECTRONIC
EXCITATIONS

A. Small-U limit

In principle, as explained in Sec. III C, our
method must give the analytic result of Sec. IIB
when U~O. In fact, we observe that there is an ap-
parent discontinuity between the analytic results
valid for U=O and the limit U—+0. This is due to
the fact that in the presence of the U-term (even if

The result is independent of k& and we define the
magnetic excitation spectrum by

(32)

—e0 (k)+kg —k}], (34)

where the right-hand side means the minimum con-
sidering all allowed k~ and k2. For example, in the
case of e~ ——0, adding an electron in the upper sub-
band at k=O costs energy -t, whereas adding two
electrons (of opposite spins) at k& ——k2 mand a-—
hole at k = —k

~
—k2 ——0 costs energy 2@0+ (m )

—e0 (0)=2V /t. For finite cells only few k points
are available in that the reduction of e+(k) cannot
be as complete as for N~ oo. This is quantitatively
shown for E/ 0 in Fig——. 2 where we have represent-
ed by full curves the result obtained for e+(k) when
it does not coincide with e0 (k). In the infinite-
system limit the physical meaning of e+(k) is basi-
cally different when it corresponds to @0+(k) or
when it corresporids to a many-body excitation.
When e+(k) corresponds to @a (k) one can speak of
a single-electron excitation well separated (by a gap)
from the continuum of other excitations. When

/
/

/
/

/
I

I
/

N=2
+TT

OQ
l
I

/
I

I
/

I
/

/

FIG. 2. Lower limits of the electron (hole) excitations
for U~O as a function of k (i.e., y) for different N. The
results are shown as solid curves where they differ from
the dashed curves, which are the one-electron eigenstates
for U=O.

U is infinitesimal) states far from the Fermi level

can decay by excitation of electron-hole pairs. This
mechanism can be compared with the Auger effect.
It can occur here because of the special band shape
when U=O. The excitation energy e+(k) for U=O
is obtained from the ground state N& ——2N by put-
ting the extra electron at wave vector k in the upper
subband which is completely empty; this is the ener-

gy e0 (k) given by (4). However, for U+0, the
presence of the four-operator term allows us in
some cases to reach a lower energy by putting in-
stead two electrons at wave vectors k~ and k2 in the
upper band and a hole at ki+k2 —k in the lower
band. Thus, for U, infinitesimal e+(k) is given by

(k) =min[co+ (k) eo (ki )+@0 (kz)
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e+(k) is the result of an Auger-type mechanism it
is the bottom of a continuum of one-electron excita-
tions. For finite cells the continuum is not formed
so that in our calculations one cannot really distin-
guish between the two situations.

When V« t there results a very flat band with
dispersion of order b, =2V /t. The lowest gap is
not changed by this mechanism and remains the in-
direct O~m gap, Go' =2V /t=b, . However, the
lowest direct gap changes from G"&i &2

——2V for
U=O to 600——6", =2k. Note that the direct gap
at ~/2, G~&2 ~&2, is not reduced for N=4, while it is
reduced in the infinite-lattice case

B. Kondo-lattice regime

Here we present the results obtained for large U
in the electron-hole —symmetric case where

ef = —U/2, N~=2N, and p is zero by symmetry.
The electronic excitation energies e+—(k) are given in
Fig. 3 for U =1.5t, V =0.2t, and even N=2 and 4.
Note that the electron-hole symmetry is recovered
by the fact that e+(k) =e (n —k). In each case g&

has been varied so that each k is reached. As ex-
pected from the discussion of Sec. III C, the curves
are affected by large artificial oscillations of period
2n/N that is due to the large dispersion of the d
states from which are constructed the resulting
many-body states. We have represented by dots the
best set of points in each case, i.e., corresponding to
y=yo(N). When going from N=2 to N=4, one
observes clearly the doubling of the period and the
decrease, by almost a factor of 2, of the amplitude
of the oscillations. The four best points for N=4
have a very flat dispersion and the corresponding
excitation energies are comparable to that of the
two best points for N=2. When N +~, one cou—ld
expect a finite gap with very flat electronic and hole
dispersions near the edge of the gap. This very

small dispersion must be attributed to the formation
of a narrow many-body resonance due to the Kondo
effect, as occurs in the Kondo-impurity problem.

The same calculations have been done for several
values of U. To summarize the results we have re-

ported the electronic gaps (best points} obtained for
N=4 as a function of U in Fig. 4. We recall that
increasing U corresponds to decreasing ef simul-

taneously such that ef ——U—/2. For small U the
gaps Go' and G"&z z2 vary as U with coefficients
which are respectively positive and negative. This
agrees well with recent perturbation expansions in
U done by Yamada and Yoshida' for the infinite
(N~ao) one-dimensional Anderson lattice. In or-
der to compare quantitatively we have shown the
parabolas corresponding to their U terms by
dashed curves and we can observe that the agree-
ment is remarkably good. For large U all the gaps
converge to the same asymptotic curve which scales
like Vi/U. More quantitatively this asymptotic
behavior is estimated to be

G" —7V /U. (35)

0.4

From Eq. (35} the electronic gap scales as the
Kondo coupling constant J=4V /U when J~O.
This agrees well with finite-cell calculations done
directly on the Kondo-lattice Hamiltonian, ' where
it has been found that the electronic gap scales as J
while the magnetic gap scales as J for J~O. The
results for the electronic gap are also comparable
with renormalization-group (RG} calculations done
directly on the Kondo-lattice Hamiltonian. The
charge gap obtained with the three-site blocking
method of Ref. 7 is reported by a dashed line in Fig.
4. The agreement is perhaps fortuitous because the
RG method of Ref. 7 gives a result only slightly

+1.

N=2 N=4

FIG. 3. Lower limits of the electronic excitation spec-
trum as a function of k in the symmetric Kondo-lattice
case with ef ———U/2, U =1.st, V =0.2t, and N =2 and
4

g

0 1 2 3
INTERACTION U IN UNITS OF t

FIG. 4. Electronic gaps 6" (solid lines) and magnetic

gaps G '& (dotted-dashed lines) as a function of U in the
symmmetric Kondo-lattice case with ef ———U/2,
V =0.2t, and N =4. Dashed lines give perturbation re-
sults for N = ao from Ref. 12, and Kondo-lattice results
from Ref. 7 using Eq. (7) for J.
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lowered by renormalization below the finite cells re-
sult for N=3 (without periodic boundary condi-
tions). More recent RG calculations show that
the gap varies as exp( —1/J) when J—+0 but no
quantitative curve for the gap has been drawn. This
improved result would be lower than the U
behavior obtained here for finite cells. However, we

cannot hope to recover the exponential behavior

Tk —exp( —1/J) for finite cells. This behavior
must be only asymptotically recovered in the limit
N~ oo.

0.4

G,
"- 0.2

U

,~mag

Z

1 2 3
INTERACTION U IN UNITS OF t

FIG. 6. Electronic gaps as a function of U in a
mixed-valence case where ef ——0, V =0.2t, and N =4.

C. Mixed-valence regime

We present now corresponding results in a
mixed-valence case. The energies e-+(k) are given in
Fig. 5 for U=1.5t, V=0.2, and ef =0. With this
choice of ef, the lower f level is near the Fermi en-

ergy while the other one (at ef+ U) is far above.
Here, also we discuss only the curves obtained for
N=2 and 4. Note that there is always a gap but
now we must choose p pO (in the gap) if there are
exactly two electrons per site. This means that the
f level has been effectively shifted, as found in
Hartree-Pock" and CPA (Refs. 9 and 17) calcula-
tions so that ef is not in the gap. We observe a
great difference between electrons and holes. The
hole dispersion curve depends little on N and looks
like the simple U=O curve shown in Fig. 2, while
the electron dispersion curve shows the same artifi-
cial oscillations of period 2m /N in k as in the Kon-
do case. We think that the artificial oscillations are
present in both cases; however, in the hole case their
amplitude is smaller since the many-body states are
formed from less dispersive states, the f level being
just below the Fermi level. Another important
difference from the Kondo regime is the dispersion
of the best points. The gaps for N=4 have been
plotted in Fig. 6, and one can see that they do not
vary much with U and they tend to constant values

of order b when U~oo. The minimum electronic
gap is actually increased above the U=O case. This
gives strong support to previous con-
clusions "' ' that a gap —5 remains even in the
presence of strong electron interactions U ~gh.

B. Continuity between the regimes

and

5i, =e (0)—e (ir) . (37)

0.'l

We have completed our study of electronic exci-
tations by varying ef from —U/2 up to values of
order +6, keeping U fixed, in order to see the cross-
over when coming from the Kondo-lattice regime to
the mixed-valence regime. As expected, the cross-
over arises when ef becomes of order —h. There is
complete continuity for the gap and the electronic
dispersion when ef varies. This is illustrated in Fig.
7 where, for U =1.5t and V =0 2t, we hav.e plotted
representative measures of the electronic and hole
dispersion defined by

(36)

-U/2 -0.5 —h, 0+6,
f ENERGY ef IN UNITS OF t

0.5

FIG. 5. Electronic excitation spectrum in a mixed-
valence case where ef——0, U=1.5t, V=0.2t, and N =2
and 4.

FIG. 7. Dispersion of the lowest-energy electron and
hole excitations 5, and 5I, derfined in Eqs. (36) and (37)
as a function of ef for U =1.5t, V =0.2t, and N =4.
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One can observe the crossover between widths
smaller than b, in the Kondo-lattice regime to
values of order b, in the mixed-valence regime.
Note that the resonance width for the holes remain
always larger than the resonance for the electrons
indicating as asymmetric resonance around the gap.
Obviously, for ef smaller than —U/2, electrons
and holes are interchanged and the crossover arises
when ef+U=b, .

0.5
Gmag&

V. RESULTS FOR THE MAGNETIC
EXCITATIONS

A. Small-U limit

FIG. 9. Magnetic gaps 60"and G ' as a function of
q in the noninteracting case U=O for V =0.2t and
N =2, 4, and 8. The dashed curves correspond to the ex-
act result for N~ cc.

For e/=0 and U =0 the dispersion relation for
the magnetic gap in the infinite lattice is

Gk
' =[t sin (k/2) +4 V ]'~2 —t sin(k /2),

(38)

which is given by the full curve in Fig. 8. For finite
cells of size N, there are N gaps Gk 's, k =2nm /N,
each of which is a periodic function of qr even for
U =0. The value given by (38) is exactly recovered
only for special values of q& for which Gk's is

minimum. This is illustrated in Fig. 9 where we
have plotted Gk

's as a function of q& for U =0 for
two values of k (k =0 and m) and for N =2, 4, and
8. One can see how the oscillations with fp decrease
when N increases and how Gk's(q&) reaches its
minimum value which corresponds exactly to for-

0.5

.Qv
K--

MOMENTUM k—

FIG. 8. Dispersion of the magnetic gap Gk'. The
solid curve for U=O is given analytically by formula
(38). The other curves {dashed curves) correspond to the
Kondo case (E) and mixed-valence case (MV), with
ef ———U/2 and ef ——0, respectively, and U = 1.St,
V=0.2t, and N=4. Only the three points for k=0,

m. /2, and m are known {they correspond to the best points
of Figs. 10 and 11) and the dashed curves have been
drawn as a guide to the eye.

mula (38) (dashed lines in Fig. 1). For N =4 the ex-
act value is recovered for q=O [which is the value
of y, y=y0(N), which gives also the best values for
the electronic gap], while for G~jf(y) (not shown)

the exact value is recovered for y=n/4.
For U—+0 there is a potential reduction in the

magnetic gaps by many-particle excitations just as
for the electronic gaps. The lowest gap is given by
Eq. (34); however, for triplet magnetic excitations
we must add the condition k&+k2 because of the
Pauli exclusion principle for electrons of the same
spin. This turns out to be an essential difference in
the small cells with X(4, so that in these cases
there is no reduction of the lowest magnetic gap at
any k. For larger cells there exists a triplet excita-
tion with energy only slightly above the singlet, and
for N~ oo the magnetic and electronic gaps must
approach the same value. This shows that the
dispersion of the magnetic gaps found for N &4 is
not representative of large cells. Nevertheless, we
can get very useful information from the small
cells. In particular, for large U the minimum mag-
netic and electronic gaps, both at k =a /2, can be
compared and we can find the relative sizes of the
gaps in the Kondo and mixed-valence regimes.

B. Kondo-lattice regime

The results for Go' and 6 ' as a function of y
for %=2 and 4 are reported in Fig. 10 for the
Kondo-lattice set of parameters of Sec. IV B:
ef ———U/2, U=1.5t, and V =0.2t. One observes
the same kind of oscillations with y as for U=0
and the best values can be estimated from the
minimums of these curves. The best points have
been reported as a function of k in Fig. 8 where
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1.5
tions done with blocks of three sites, represented by
the dashed curve in Fig. 4. It is clear that the two
results are very similar.

10 0.2
Gmag

C. Mixed-valence regime

0.5 0.1 N=2

FIG. 10. Magnetic gaps 60' and 6 ' as a function
of q in the Kondo-lattice case for ej ———U/2, U =1.5t,
V =0.2t, and N =2 and 4.

they can be compared with the U=0 results. The
same kind of dispersion relation is observed with a
minimum value at m.. However, the absolute value
at k =m is considerably smaller and scales like V
instead of V . While the absolute value for k =0 is
only slightly smaller than the corresponding elec-
tronic gap, this is not the case for k =n where the
U =0 relation (38) is completely changed. This can
be attributed to the nesting of the Fermi surface in
one dimension which leads to a near antiferromag-
netic instability. Note that, although no long-range
antiferromagnetic order exists at T=O, neverthe-
less, antiferromagnetic correlations of the spins
must be present because of the small energy for ex-
citations at the zone boundary.

The dependence of the magnetic gap upon U in
the Kondo-lattice regime, when e/ =—U/2, is
shown in Fig. 4 where Go' and G ' have been
plotted as a function of U for %=4,gal=0. For
small U it seems that the gaps behave linearly with
U or with a very strong U term, considerably
larger than for the electronic gap. It would be in-

teresting to check this point by perturbation expan-
sions in U. When U~ao, Go's behaves as V /U,
as do the electronic gaps, while the smallest gap
G~'s tends to zero more quickly as V /U t. The
same kind of differences between the order of mag-
nitudes of the smallest electronic and magnetic gaps
has been already observed on the Kondo-lattice
Hamiltonian, where the electronic gap is of first or-
der in Jwhile the magnetic gap is of second order.
In the same manner as for the electronic gap, we
have compared our results with the RG calcula-

V. DISCUSSION

The results presented above give exact descrip-
tions of homogeneous mixed valence and the Kondo
problem for small finite cells. The important prob-
lem is to extrapolate to the infinite one-dimensional
lattice. In particular, it is essential to check wheth-
er the lowest electronic and magnetic gaps vanish or
approach finite limits when E mao. The co—mpar-
ison of our X=4 results with calculations done on
the infinite lattice, such as small-U perturbation ex-
pansion' or RG (Ref. 7) calculations for large U, is
already a strong support. Also, the modified
periodic boundary conditions help to extrapolate
our results to X~ao. For example, we can com-

) 0 Gmag

0.5 0.2 'N-2

FIG. 11. Magnetic gaps Go' and 6 ' as a function
of q in the mixed-valence case for e~ ——0, U=1.5t,
V =0.2t, and N =2 and 4.

The corresponding results in the mixed-valence
regime are presented in Figs. 6 and 11, and the
dispersion in k has been reported in Fig. 8 to com-
pare with the other regimes. Here also the magnetic

gap for k =n is an order of magnitude smaller than
the O~m minimum electronic gap. Nevertheless,
even if the gap is very small, it tends to a constant
value when U~oo. While the other gaps tend to
values of order 6, G '~ tends to a value which
scales hke b, /t-V /r . This is also a result of
Fermi-surface nesting and indicates an incipient in-

stability to antiferromagnetic order, as found in the
Hartree-Fock calculations of the q-dependent sus-

ceptibility. '
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pare 6~&& «z for N =2 with antiperiodic boundary
conditions (q&=n) with the same gap for N =4 with
regular periodic boundary conditions (y =0). By as-

suming a form 6 =G +A/N leads definitively to
6"+0. However, it would be necessary to reach
larger cells to trust such a fit. In particular, much
larger cells are required to approach the correct ex-
ponential form of the gap in the Kondo regime.
The conclusions are more firm for the mixed-
valence case. The fact that the gap is increased by
the presence of U indicates that the gap remains in
the limit N-+00 for this particular example of
mixed valence.

There is another aspect that is extremely impor-
tant in the extrapolation to X= oo—the symmetry
of the lowest excitations. In our calculations the

gap is always indirect, with the lowest excitation for
electrons e+(k} at k=0 and for holes e (k} at
k=+m. . By extrapolating this result to large X
leads to two possibilities. If the gap 60 indeed
remains positive as N is increased, then the true
solution is an insulator. However, because e+(0)
and e (n ) are at different points in the zone, i.e.,
they are excitations with different symmetry, it is
allowed for the gap to go to zero and become nega-
tive. This would lead as N~ oo to a semimetallic
solution with an electron Fermi surface around

k =0 and a hole surface around k =~. Both possi-
bilities are entirely consistent with the Luttinger
conditions on the Fermi surface described for this
case in Ref. 10. The important point is that the
finding of the minimum energy excitations e+(0)
and e (n }at different points in k space is the prop-
er expression of the I.uttinger sum rule in the finite
cell.

The parallel with the impurity case is very infor-
mative and is seen most clearly in the Kondo re-

gime. As was discussed in Sec. III, for V =0 there
is a simple d Fermi surface and a degenerate f state.
However, for infinitesimal V, the degeneracy is lift-
ed and there is a phase shift of m. /2 of the states at
the Fermi surface. This is caused by the well-

known Kondo resonance and is fixed by the Friedel
sum rule. In the lattice, for V=O there is the
same d Fermi surface and degeneracy of each f
state. For any V+0, there is also a Kondo-type res-
onance' so that the Fermi surface is modified
coherently at every site in accordance with the Lut-
tinger sum rule. ' The present results show the
consequences of the Kondo resonance in finite
periodic cells in agreement with the sum rule, even

though the magnitude of the gap is not representa-
tive of the N ~ oo limit.

Some points are needed concerning the definition
of the excitation energies and their physical mean-

ing when N~ 00. In particular, in a metallic situa-
tion, the lowest energies always vanish as %~00
for all k. Thus the value for any given finite cell is
not very useful. To give an example, let us consider
a given band with an absolute minium at @ =0
which is partially filled by 2N+1 electrons. Then
the absolute ground state for Nz 2N——+1 corre- '

sponds to %=0. Consider a shift of the momen-
tum of each electron by k/(2N +1); then we obtain
the ground state in the subspace corresponding to
2%+1 electrons subject to the condition that the
total momentum is k. In the large-system limit the
shift becomes infinitesimal and the change in ener-

gy vanishes, so that there is no dispersion of
Ei~+ i(k). Thus, e +-(k), as defined in (24), becomes
meaningless in that case. However, there is one im-
portant case where this reasoning does not hold, and
this is precisely the case that we consider here. This
can be shown, for example, by the U-0 case, where
the band shape is given by Fig. 2. The ground state
with 2N electrons corresponds to a completely filled
subband. The extra electron is then added in anoth-
er band and the extra momentum cannot be shared

by the 2N other electrons because any shift of their
momentum does not produce any resulting effect.
In fact, e-+(k) as defined above represent the true
dispersion curves for electron and hole excitations
as long as the gap remains for Nz ——2N even in the
presence of electron-electron interactions.

It is also essential to consider extension to higher
dimensions and to higher degeneracies in order to
compare with experiments on anomalous rare-earth
compounds. Such extensions would increase
dramatically the present calculations. For example,
exact solutions for small cells -N =4 would be
very much more complex if we considered real d
and f bands with as much as 10- and 14-fold degen-

eracies, crystal-field splittings, etc. These cases may
potentially be treated by considering impurity prob-
lems and extending the results to periodic lattices
using sum rules and symmetry requirements. ' For
the present simple case with d and f bands having
the same symmetry, all arguments suggest that the

gap remains for all U. However, if there are bands
of different symmetries at p, , or if the f state has
internal structure, the gap in general disappears. In
appropriate cases, the Luttinger conditions show
that there must be a metallic Fermi surface and
that, futhermore, in the Kondo and mixed-valence
regimes, the quasiparticles at the Fermi surface
must have interesting many-body enhancements. '
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The tendency toward long-range magnetic order, of
course, is an intrinsic property of an extended sys-
tem. It remains a challenging problem to describe
magnetic energies and excitations in more complex
cases.

In conclusion, we have presented a method capa-
ble of giving exact results for a class of homogene-
ous mixed-valence and Kondo problems restricted
to finite cells. Because of the difficulty of these
problems there are many conflicting ideas in the
literature, ' and it is very important to establish ex-
act results to which approximate solutions are to be
compared. The difficulty of the problem (even in
the simplest Anderson Hamiltonian) forced us to
consider at most cells with N =4 sites. In order to
draw conclusions relevant to larger N, approaching
N +ee, —we have introduced modified boundary
conditions (described in Sec. III) to allow better
comparison of calculations with different N.
Furthermore, we could use the symmetry of the
periodic finite system to identify the important
low-energy excitations, to follow them as N is
changed, and to relate our results to general sum
rules' that fix the properties of the states near the
Fermi energy for N~ oo. In all cases where com-
parisons were possible, our X=4 results agreed well
with N= Do calculations. Our concrete results are
the electronic and magnetic gaps for the simplest
Anderson-lattice Hamiltonian, Eq. (2) with two
electrons per site, in all regimes (including small-U,
Kondo, and mixed-valence). The important con-

clusions are the following: (1) There is a complete
continuity among all regimes, each of which is
found to have a nonmagnetic ground state. (2) The
insulating gap is found in all regimes for this sim-
plest Anderson-lattice Hamiltonian with two elec-
trons per cell. In the mixed-valence regime the gap
is increased by U giving strong support to the con-
jecture that the infinite system is indeed a nonmag-
netic insulator for the Anderson lattice. (3) There
is a tendency toward antiferromagnetic order that is
very pronounced in our one-dimensional calcula-
tions, and which we believe is a result of the nesting
of the Fermi surface. (4) There is a feature fixed at
the Fermi surface which we termed the Kondo reso-
nance, the width of which decreases with U in the
Kondo regime. The exponential dependence typical
of the Kondo problem is not found because it can-
not be given by finite cells; however, the existence
of the feature is established. (5) The results are in
accordance with the sum-rule arguments ' on the
nature of the Fermi surface in all regimes.
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