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Analytic representation of a zero-frequency transport coefficient.
General theory and application to ultrasonic attenuation in CsNiC13
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Starting from Mori s continued-fraction representation of spectral functions, we derive

an analytical formula for a transport coefficient in the static limit. The formula then is ap-

plied to the phonon dynamics of a model Hamiltonian for a compressible one-dimensional

magnetic system. The resulting expression for the ultrasonic attenuation coefficient is com-

pared with an experiment for CsNiC13. Good qualitative agreement is obtained.

I. INTRODUCTION

The interaction of spin and phonon degrees of
freedom in magnetic systems is a topic of much in-

terest, both theoretical and experimental. ' Such an
interaction can be due to the dependence of the ex-

change on the magnetic ion-ion distance. Most
studies of the subject have been devoted to three-
dimensional (3D) systems.

In this paper we will !nvestigate the effect of
spin-phonon interaction on acoustic properties.
More specifically, we will investigate the ultrasonic
attenuation, which is interesting because it is direct-
ly accessible to experiment. As in Refs. 2—6, we
consider one-dimensional (1D) magnets with isotro-
pic exchange. This is not irrelevant since Almond
and Rayne obtained ultrasonic attenuation data in
a large temperature range at a number of frequen-
cies for CsNiCli, which is a 1D Heisenberg chain.
An anomaly at the onset of 3D magnetic ordering
indicated that the attenuation indeed is of magnetic
origin.

Other authors have studied theoretically the in-

fluence of magnetic interactions on ultrasonic at-

tenuation. Tani and Mori studied the effect in 3D
substances near the magnetic critical point. Bennett
and Pytte' and Laramore and Kadanoff" also
studied 3D systems above and near the critical
point. Leung and Huber' studied the 1D planar

magnet CsNiF3 at low temperature. Only Nagano
and Okamoto' considered 1D isotropic magnetic
interactions, but they found an incorrect frequency
dependence for the attenuation.

We will study the attenuation starting from a
simple model Hamiltonian for a compressible
Heisenberg chain. We use Mori's continued-

fraction expansion'" for the dynamic-displacement
correlation function, which describes the phonon

dynamics. The sound damping is then given by the
transport coefficient, for which we derive a general
analytic expression in the static limit. Next a
reasonable approximation is made and we compare
the result with experiment.

II. GENERAL THEORY

A. The spectral function

11„„(co)=—2 lim Imp„„(co+is},
m~0+

0~(» =4~~(~+i&)

i I e' (A—~(t)A)dt .

(2.2a)

(2.2b)

According to Mori's theory, P~(z} can be
represented rigorously by a continued fraction'

P~(z) =

z+X(z)

(2.3)

where the transport coefficient X(z) is given by the
infinite continued fraction

2

Q2

Q2

(2.4}

The coefficients b,„are static quantities and they

The dynamic behavior of a variable A can be
described in frequency space by the spectral func-
tion

/gal(co)= J e' '(A~(t)A)dt . (2.1)

This is equivalent to the imaginary part of the La-
place transformed correlation function as follows:
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g= (co'),

bi —,———(co &,
(~'& z

(~'&

(2.5a)

(2.5b)

can be expressed entirely in terms of the frequency
moments of gq~(co). " For example, the first three
read

( 4)2

( 2)2

2

&-*"&=( ',""„) &(~~~ &.

Combining Eqs. (2.2)—(2.4), we find

(2.5c)

(2.5d)

( )=2(iA~ )
[co'—(co ) +coX'(co )]'+[coX "(co)]' (2.6)

B. The transport coefficient

The problem now is to calculate X(z). Let us
write X(z) as

X(z)=
2

Q2
(2.7)

Q2

z+X„(z)

Assuming that 6„+ ——A„(m )0), we find

—z+ (z' —4a„')'i'

2

where a single and a double prime, respectively,
denote the real and imaginary part.

I

Mori's long-time approximation' for the continued
fraction.

In obtaining (2.10), we changed the order of lim-
its n —+00 and z =i@—+0+. I.et us show by means
of an example that (2.10) nevertheless represents the
correct result. Suppose X is Gaussian:

X(t)=i)&exp( —hit /2),

X(z =0)=id' f exp( bqt /2)dt—
'1/2 ~2

7r 2=l
2

(2.12a)

(2.12b)

42+„——nh3, n P02 = 2

and (2.10) yields

(2.13)

With the use of the well-known expansion coeffi-
cients of the continued fraction of the Gaussian, '

one has

whence

X„(0)=ih„.

(2 g)

(2.9)

X(0)=i lim ', (2n +2)'
hs s~~ (2n+1}!

' 1/2 ~2m' 2
l

2
(2.14)

Letting n ~ &N, (2.7) then yields

2 2

X(0}=lim i
64 ( &)tg

Q2 J2
(2.10)

in agreement with (2.12b). Of course, the limit
(2.10) can only be calculated in very few cases. In
order to be useful, an approximation is necessary.

This is only convergent if
2

lim 2
——1,

n~~
(2.11) III. THE ULTRASONIC ATTENUATION

IN THE COMPRESSIBLE HEISENBERG CHAIN

which is likely to be generally true. ' Then (2.10) is
an exact analytic formula. Although (2.7) has only
real coefficients, we correctly obtained a purely im-

aginary value at zero frequency. Therefore, no
phenomenological damping has to be introduced.
The same result (2.10) can also be obtained using
the same assumption (2.11), but starting from

~=&~+as+as~
N p. ~X—1

Hp —g + g (xc i x')
)2m 2

(3.la)

(3.1b)

As in Refs. 2 —6, let us take the following Hamil-
tonian as a starting point for the calculations
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N —1

Hs= —J g S, 'S+, ,

N —1

+sp E g (xi+1 xi)Si S;+i .

(3.1c)

(3.1d)

static limit (2.10) of (2.7) in (2.6) for the investiga-

tion of the ultrasound.
Because we only know the expressions of b, i, b,i,

and b 3, we write (2.10) as

X(0)=Cih2/b, 3, (3.Sa)

5&—b, iyu (1—3yi+2y&)/3,
*

g= 32Q 5' y+
u (1—3y i+2y, )

(3.2b)

1

X [ —,(1—cosq)y, (1—yi)

+7'[ —,(1—y»(-, +y2)

The spin-phonon interaction Hqp has been restrict-
ed to terms linear in the ionic displacements. In the
model, the ultrasonic attenuation is merely due to
the spin-phonon interaction, which is also true in
the experiments of Ref. 7, at least at temperatures
below 70 K. In spite of the quantum-mechanical
character of CsNiC13 (S =1), we use classical
mechanics for practical reasons.

For the phonon dynamics the relevant dynamic
variable A in Sec. II is the Fourier transformed dis-

placement xs. Then Ref. 2 gives

. 6Q (1—cosq)
1 a

3+yu (1—3y i+2y2)

2 2
~{j

~ 1)nC= 1&m 2 2
' '~n

n
(3.5b)

It is impossible to calculate C, but let us assume

that it depends on T much less than hi/b~. This

assumption is justified by the exact results

lim h2 ——0,
T~O

(3.6a)

lim b,„+0, n &2
T—+0

(3.6b)

and the condition (2.11). Furthermore, calculations

for the rigid Heisenberg chain revealed a moderate

temperature dependence for 63 and b,4.
' By (3.4)

and (3.5), and under the condition that C is not too
large,

(3.7)

Therefore, to a very good approximation (2.6}
represents a pair of Lorentzian lines centered at

+co& with a halfwidth at half maximum given by
Xz"/2. Then the time correlation function behaves

where

1——,yi(yi —y&)cosq] J, (3.2c)
exp(inst) exp( tXq'/2) . — (3.8)

The damping or ultrasonic attenuation in dB per
unit length is therefore

u =PJ, P=l/ktiT

y=e /aJ,
5 =J/2W2Q,

Q=1 a/m,
y„=A,„/A,p,

P~(x)exp ux 1+ x dx .—1 2

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e}

Q2
D =4.34Xq"/c-

63c
' (3.9)

where c is the speed of sound. From (3.2) one then

obtains

[u (I —3yi+2y»]'"
D (cd' ) cps 1/2[(1—yi )(1+2y2)/9 —y i (y i —yi )/5]

(3.10)

In the limit of very long wavelengths (q « 1)

62 (Q)q ((k32 2 2

(3.3f)

(3.4)

(y not too large), where co& is the frequency of a
phonon of wave vector q. By using this together
with the fact that the coefficients b,„ tend to in-

crease if n increases, ' ' it seems justified to use the

IV. RESULTS AND DISCUSSION

Equation (3.10) shows that the ultrasonic attenua-

tion depends quadratically on frequency. This is in

agreement with the experimental results of Almond

and Rayne for the attenuation of longitudinal waves

in CsNiC13. Nagano and Okamoto erroneously ob-

tained an co dependence. ' In order to find m
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they had to introduce 3D anisotropic interactions
and a cutoff, and in our opinion this is somewhat
artificial. In Fig. 1 we compare the results of Ref. 7
with the theoretical prediction (3.10) at the frequen-

cy v=to/2n =150 MHz. We chose J=—27 K
(Ref. 8) and we assumed that the coupling strength

y is very small. Then, to a very good approxima-
tion, we can set y =0 in (3.10), because the main y
dependence is absorbed in the proportionality fac-
tor. Since we are not able to determine the absolute
height of the attenuation, we fitted the height so
that the experiment and theory coincide at 50 K.
Remark the broad maximum near 30 K, which is
related to the 1D chainlike properties. The qualita-
tive agreement is generally good. At temperatures
below 25 K the disagreement can be ascribed to
quantum-mechanical effects that are necessarily
present in spin-one magnets like CsNiC13. For tem-
peratures above 25 K the agreement is remarkably
good.

We have used a model with one unit per cell. Al-
though CsNiC13 has a more complicated structure,
in the long-wavelength limit the simplified model is
appropriate.

In summary, in contrast to earlier theory, ' our
theory gives both the correct frequency dependence
and the correct qualitative temperature dependence
in agreement with experiment. It would be interest-
ing to have experimental results for other 1D mag-
nets, for example (CH3)4NMnC13 [tetramethyl am-

monium manganese chloride (TMMC)], which
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FIG. 1. Ultrasonic attenuation due to the spin order-
ing as a function of temperature. The solid line depicts
the theoretical attenuation. The dots are experimental
points for CsNiC13 taken from Almond and Rayne
(Ref. 13). Phonon-phonon interactions become important
at 70 K.
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behaves much more classically and is a better 1D
magnet than CsNiC13. '
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