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We report results of variational calculations of liquid He with wave functions containing

optimized two-body and three-body correlations. The hypernetted-chain (HNC) summa-

tion method is used, and the elementary and Abe diagrams are calculated with the scaling
approximation. Comparisons with the existing Monte Carlo calculations suggest that this
HNC-scaling method is almost exact. The logarithm of the three-body correlation of frk
contains terms having PI(r J"r;I,), l =0, 1, and 2. As expected on theoretical grounds, the
1=1 term of 1nf Jk dominates, while the l =0 and 2 terms give rather small changes in the
binding energy. The flak makes up -85% of the difference between the Jastrow and

presumably exact Green's-function Monte Carlo (GFMC) energies. The best variational

energies obtained with the HFDHE2 potential of Aziz et al. are within (2+1)%%uo of the
GFMC and experimental results. The liquid structure function S(k) is also well explained

by the variational wave function.

I. INTRODUCTION

The ground state of liquid He has been the ob-

ject of many calculations during the past two de-
cades. These calculations start from a microscopic
model of the interaction between two helium atoms,
and attempt to explain the known zero-temperature
equation of state E(p), and the liquid structure
function S(k) at equilibrium density po
=0.3648o . The numerical problem of solving
the many-body Schrodinger equation for the ground
state has been resolved, to a large extent, by the
Green's-function Monte Carlo method' (GFMC).
One of the results provided by GFMC calculations
is that the commonly used Lennard-Jones (6-12) po-
tential does not give a realistic description of the
He-He interaction in the liquid phase. A better can-
didate seems to be the HFDHE2 potential suggested
by Aziz et al.

A quantitative understanding of the structure of
the ground-state wave function still remains an

open and interesting problem. An analytic ground-
state wave function would be particularly useful to
extend the microscopic theory to treat the elementa-

ry excitations and finite-temperature properties of
helium liquids. A successful approach in this direc-
tion has been provided by the variational theory.

The ground-state energies obtained with the sim-

ple Jastrow wave function '

+.= IIf;

are too high, and the peak of S(k) is too broad, as
compared to experiment or the GFMC results.
Thus this wave function does not provide an ade-

quate description of the ground state. Calculations
performed with Feenberg's correlated-basis pertur-
bation theory as well as variational calculations '

indicate that three-body correlations account for
much of the difference between the Jastrow and
GFMC ground-state E (p).

The most reliable Monte Carlo calculations use a
three-body correlation:

f-k =exP( ——,tI.lk» (1.2)

qtlk
—g gt(rtj)g&(r;k)P&(rtj r;k),

cyc

in the variational wave function

~=IIf, II ~;,'
i&j i&j&k

(1.3)

(1.4)

Here g,„, represents a sum of the three terms ob-

tained by replacing ijk with jki and kij, and r;1 are
unit vectors. The form of this three-body correla-
tion, suggested in Ref. 8, takes into account the
Feynman-Cohen' backflow in the ground state.
The equilibrium density obtained with this wave
function, with the Lennard-Jones (LJ) potential, is
the experimental (and GFMC) equilibrium density

po. The calculated E(pu) is —6.55 K against the
Jastrow, GFMC, and experimental values of —5.94,
—6.85, and —7.14 K, respectively. Thus the fJk of
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2
Ref. 9 appears to make up ——, of the difference be-

tween the Jastrow and presumably exact GFMC re-
sults.

The object of this work is to make a systematic
search for three-body correlations, and examine the
extent to which the wave function (1.4) can explain
the GFMC and experimental results. To minimize
the uncertainties due to a poor two-body correlation
we use optimized fj. The GFMC E(po) with the
HFDHE2 potential is —7.12+0.02 K, while the en-

ergy obtained with the optimized Jastrow wave
function is —5.94 K. It is found that the qijk given

by Eq. (1.3) can lower it down to —6.81 K. It is
possible to lower it further to —6.96+0.05 K by
generalizing the qiJk to

liquid- He ground state.
The hypernetted-chain-summation (HNC/S) me-

thod is used to calculate expectation values with the
wave function (1.4). The contribution of elementary

'
diagrams formed with g —1 links, where g (r) is the
pair distribution function, is summed to all orders
in the expansion with the scaling approximation. "
The four-body elementary diagrams having fjk —1

links are also calculated. The Monte Carlo results
of Ref. 9 are reproduced within 0.05 K to ascertain
the accuracy of this method. Formal expressions
for the energy and distribution functions are given
in Sec. II, while the HNC/S calculation is outlined
in Sec. III. The results are given in Sec. IV.

qj'k= g Q kl(r jul(rk')~l(r', r'k) .
cyc l=0, 2

(1.5)

II. FORMALISM
The I =0 term of q;jk lowers E (po) by 0 12 K. , while
the l =2 term lowers it by only 0.03 K. The S(k)
obtained with the "best" fjk is in excellent agree-
ment with the experimental and GFMC results. We
thus find that wave functions of type (1.4) give a
very accurate, though not exact, description of the

Two (or more) formally equivalent expressions
can be obtained for the expectation value of the en-

ergy with wave function (1.4), by integrating the ki-
netic energy terms by parts. The so-called Jackson-
Feenberg' energy EJF is given by

V'fij
JF p p ijgij ij 2m JJ

2
vf;, 2

2

+
6 p f d r"d r g3, jV qjk''''

16m
(2.1)

r

W' V'fi,
PB 2 p d EJglJ EJ Pl f,~

r

2Vf, Vfk 1 V fjk Vfij Vfijk+— +2---
fij fik 2 fij k fij fij k

2
2

p f d rjd r kg3,jk'''
2m

and the "Pandharipande-Bethe" energy' Ep& is

T4 Ts (2.2)

2

T4 ——— p d r,Jd rkd r;lg4, ,Jkl2m

Vifij 'Vifikl Vifijk 'Vifikl
+

fijfikl fjikfikl
(2.3)

f1 4 3 3 3 3 Vifijk 'Vifilm
T5 p d "ijd "ikd "ild rim g5, ijklm8m ijk ilm

(2.4)

2
g j ——fjexp(Nij+Cj+ej), (2.5)

The g;J, g3,;Jk, g4;Jkl, and gs;)kl~ are two-, three-,
four-, and five-body distribution functions. The
two-body g; is given by

3. 2
;j =P d r k(f jk

—1)g;kgjk, (2.7)

and eij is the sum of all elementary diagrams. The
three-body distribution function is given by

where X,z is the contribution of nodal diagrams,
2

g3, jk gjgjkgk fj'ke'xp(~'jk )'' (2.8)

Nj=p d rj(gk —1)(gjk —1 Njk), —3

(2.6)

CJ is the dressed three-body link,

where A,jk is the sum of the Abe diagrams. '" It is
simple to write expressions for four- and five-body
distribution functions, but they are hard to calcu-
late.

The main problem in the application of this
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chain-summation method has always been the cal-
culation of e;j and A;lb. In the HNC approximation
both A 'jk and 6j'are neglected. We may order the
elementary and Abe diagrams according to the
number of points n & 4:

b a

J
1.2

b 0

b o

&tj =&4,~g+&S,sg+ ' '

Aijk A4, ijk+As, ijk+

(2.9)

(2.10) l.5
J

In an HNC/n calculation the sums (2.9) and (2.10}
are truncated at the nth term. Unfortunately it is
known' that (2.9) is not a rapidly converging series.
In the absence of a three-body correlation the ea)4'
(A»4) are approximately proportional to e4 (A4),
and in the HNC/S method this property is used to
sum the series (2.9) and (2.10) to all orders.

III. THE CALCULATION

yg
I J

t.7

K
l,9

FIG. l. n =4 elementary diagrams. The sf;i is given
by diagram 1.1, while 1.2 —1.9 contribute to e4;~. The
dashed lines represent g —1 links, while the triangles
denote three-body correlations as discussed in the text.

The elementary and Abe diagrams are separated
into two parts:

~ij ~ij +~ij ~ ~n, ij +~ij y

np4

t g t
Aijk =Afjk +Aijk g An, ijk +Aijk

n&4

(3.1}

(3.2}

The eg and A„contain all the diagrams that have
only (g —1} links, while e' and A' diagrams must
have at least one explicit three-body correlation. In
the absence of three-body correlations (i.e., when

fjk =1) the e' and A' are zero, and e and A are
given by e and A . The fjk has an implicit effect
on the es and As via its influence on the pair distri-
bution function g.

The four-body elementary and Abe diagrams are
shown in Figs. 1 and 2, where the following nota-
tion is used. The solid dots and open circles
represent the positions of internal and external

I

points, respectively. The e„,j (A„;jk) diagrams have
two (three) external points i,j (i,j,k) and n —2
(n —3) internal points. The dashed lines joining
points a and b represent g,~

—1, while a triangle
joining a, b, and c represents

2
gab gbcgaa (fabc

A cross on the ab side of the triangle indicates that
the factor g,b should be omitted. Thus the triangle
ij,b of diagram 1.3 represents

gibgjb(fiJb'2

The crosses are needed to ascertain that the dia-
grams do not contain squares or higher powers of
g,~, and the g's between external points. The contri-
bution of the diagram is obtained by integrating
over all internal points with appropriate symmetry
and density factors. Thus, for example, we have

e'j (diagram 1.6)=p f (fJb —1)(fb, —1}gbgjbg;,gb, (gj, —1)d r, d rb,

Aijk (diagram 2.4}=p f (fjkb 1 )gjbgkb(gib

(3.3)

(3.4)

The HNC/S method is ideally suited for calculat-
ing the expectation values with wave functions (1.1).
In this case the f,ik =1 and the terms T& and T5 of
Epn [Eq. (2.2)] are zero. Thus the Epn depends
only upon gij and g3 'jk while EJF depends only on
gij. Both these energies can be calculated when eij
and A;jk are known. However, in general Eps+EJp
if the series (2.9) and (2.10) for e and A are truncat-
ed. The HNC/S method makes an apparently "ac-
curate" assumption:

k
9
I

&b
/

e' b
i j

2.l

k

I J

2.2
k

I

2.3
k

b
I

cf

i j
2.4

k

I J I

2.5 2.6 27
I J

2.8

FIG. 2. n =4 Abe diagrams. The A(;ik is given by
diagram 2.1, while 2.2—2.8 contribute to A4;~I, .
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0.365
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2.72
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E (MC) E (HNC/S)
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TABLE II. The properties of g(r) with the LJ model at p=po. The r,„~, r;„)„,and r,„&

give the locations of the first maximum, minimum, and second maximum of g (r) in units of
0 =2.556 A; the values of g (r) at these points are given by g,„&, g;„~, and g,x2.

HNC/S

~max1

1.35

gmax1

1.302

mini

2.01

gmin1

0.915

fmax2

2.68

gmax2

1.027

MC 1.35
+0.02

1.300
+0.005

2.03
+0.02

0.915
+0.003

2.68
+0.02

1.030
+0.005

In Fig. 4 we have plotted the important contribu-
tions to e4. %e note that diagrams having two ex-
plicit three-body correlations, such as 1.4, 1.5, and
1.6, have contributions comparable to those of 1.2
and 1.3 which have only one explicit three-body
correlation. Thus it appears that expanding the e'
and A' in the number of explicit (f&k

—1) factors
may not be useful.

It should be pointed out here that, because of the
box cutoff, the g, (r) used in the Monte Carlo calcu-
lations is very sharp. In this work we do not need

to impose this cutoff. The g, (r) obtained in limit

r~~ ao is weaker and more smooth. The A & and e4
obtained with the present ftjk are smaller, and so
are their contributions to the energy (Table III}.

IV. RESULTS AND DISCUSSION

In this section we present the results obtained for
the ground state of liquid He with the HFDHE2
potential suggested by Alrichs et al. ,

' with the
parameters determined by Aziz et al. by fitting the
result of Hartree-Pock calculations of McLaughlin
and Schoefer, ' the second virial coefficient and the
thermal conductivity data. Extensive calculations
show that this potential is the most realistic in
predicting several experimental two-body measure-
ments, and the energy of liquid He.

The two-body correlation function f(r) used in
the calculations are obtained following the optimi-
zation procedure described in Ref. 11. The three-
body correlation function fjk has been taken of the
form given in Eq. (1.5). Since the l =1 term is ex-

pected to be the main term of the q;~t„a detailed
variational calculation has been carried out keeping
only the l =1 component in q Jk. The g, (r) is taken
to be of the form

'2

g, (r}=~A,ir exp

The dependence of the variational parameters A, i,
r, j, and co& on the density is very weak and is
neglected in this work. Letting A, ~, r, &, and co ~

de-

pend on p leads to changes in the energy that are
within the accuracy of the calculation. The op-
timum values of the parameters are given in Table
IV. It should be noted that the trial function (4.1) is
variationally preferred over that of Eq. (3.10); the
rs term raises the energy. The calculated energies
are listed in Table V, where the Jastrow energy is
also reported. For sake of comparison we have
computed the energy at density po by using the trial
function f(r) and gi(r) as given by Eqs. (3.9) and
(3.10), with the following values of the parameters:
b =1.21o, A,

&

———14, r, &
——0.82, co ~

——0.50, rz,
=3.00o. Our result of —6.65 K compares very

TABLE III. The E(po) of liquid He with LJ potential. The columns MC and Present,
respectively, give energies obtained with the g~(r) used in Monte Carlo (Ref. 9) and the
present work.

No
Yes
Yes
Yes

Approximations
scaling

No
No
Yes
Yes

Monte Carlo result

No
No
No
Yes

MC fijk

—4.13
—4.61
—5.82
—6.49
—6.53

Present fJk

—4.60
—5.02
—6.21
—6.49
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0.5 TABLE IV. The variational parameters of q;Jk.

0,2

O. I

—0.044
—1.08

0.05

1.1
0.80
0.85

0.65
0.41
0.45

0,0

-O. I

I ( I

0.0 0.6 I.O I.8

FIG. 4. Contributions of the important e4;J diagrams

plotted as a function of r.

well with the —6.72 K obtained' with the MC
method, but it is above the —6.81 K obtained with

optimized f1 and g, (r) given by Eq. (4.1}.
The energy has been further minimized including

the l =0 and 2 components in q,zk. The trial func-

tions go(r) and gz(r) have been taken of the form

r —r,o
go(r }=~Ao(r —r~o)exp

Q)p

(4.2)
'2

(2(r}=~Agr exp

The velocity of sound c(p) obtained from the
l =0, 1 variational energies are reported in Table VI
along with the experimental and GFMC
values. ' ' These results have been obtained by
fitting the calculated E(p) with a third-degree poly-
nomial,

3

E(p) =Eo+B +C
po Po

(4 4)

TABLE V. The calculated energies [E (var)] of liquid He in K compared with the GFMC and experimental ener

gies. The second column gives the wave function used in the calculation. In this column J indicates Jastrow, 1 indi-

cates q,jk with P~ term only, 0, 1 indicates q;,k with Po and P& terms, etc.

(» «) E (var) E (OFMC) E (Expt. )

0.328

0, 1

2.18 12.64
12.38

12.26

—18.76
—19.13

—19.06

—6.12
—6.75

—6.80

—7.03
+0.04

0.347 J
1

0,1

2.23 13.96
13.66
13.40

—20.00
—20.43
—20.23

—6.04
—6.77
—6.83

0.365 J
1

0, 1

0,1,2

2.44 15.25
14.91
14.72

14.77

—21.29
—21.72
—21.65
—21.73

—5.94
—6.81
—6.93
—6.96

—7.12
+0.02

—7.14

0.401 J
1

0,1

0,1,2

2.78 18.12
17.53
17.45
17.50

—23.58
—24.18
—24.17
—24.26

—5.46
—6.65
—6.72
—6.76

—6.89
+0.05

—7.00

0.438

0, 1

3.12 21.35
20.53

20.34

—26.07
—26.76

—26.77

—4.72
—6.23

—6.43

—6.56
+0.06

—6.53
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TABLE VI. Sound velocities in m/sec. The GFMC
sound velocities are calculated with the parameters

Eo———7.110 K, po
——0.3600o ', B=10.08 K, and

C=12.59 K of Ref. 2.

l.5

p(o ')

0.365
0.401
0.438

HNC/S

235
314
396

215
294
377

Expt.

238.2
306.2
375.2 0.5

The values obtained with this fit are

Eo ———6.892, 8=12.72 K,

po
——0.3624, C =12.16 K .

(4.5)

The experimental Eo and po are —7.14 K and
0.36480. , respectively. The variational and
GFMC E(p) are compared in Fig. 5, while the stat-
ic structure functions

S(k) = I+p I d r [g (r) 1 te' "—' (4.6)

—-6—

are compared in Fig. 6.
The wave function (1.4) does very well in repro-

ducing the GFMC energies and distribution func-
tion. The fJk makes up -85% of the difference
between the Jastrow and GFMC E (p). The
HNC/S calculation generally underestimates the
variational energies (Table I) by -0.05 K, and so a
more accurate calculation of the energy expectation
value would presumably reduce the difference be-

tween the variational and GFMC results.

0.0
1.0 2.0 3.0

k(A ')
4.0

FIG. 6. Static structure function S(k) obtained at
p=0. 365cr 3 in Jastrow (dashed line), l =0, 1 (solid line),
and GFMC (solid squares) is compared with the experi-
mental data from Refs. 19 (squares), 20 (circles), and 21
(triangles).

The I =1 term dominates the q;Jk as could be ex-
pected on theoretical grounds. ' The l =0 correla-
tion appears to have a longer range; coo g co ~, but it
is very weak. The 1=2 correlation is very small,
and has small effects on both E(p) and S(k). The
calculations were done by successively switching on
the l = 1, 0, and 2 in q;Jk. The energy at
p=0. 365o is first minimized with respect to
variations in A, &, r, ~, and co&, then with respect to A,o,
r, o, and coo without varying A, &, r, &, and co&, etc.
Thus we did not search for correlations between
l =1, 0, and 2 components of q,jk. A more detailed
search of the variational parameters will need a
computational effort that is probably not justified
due to the smallness of l =0 and 2 correlation.
Another improvement in the present variational
wave function, over that of Refs. 8 or 9, is in the
pair correlation fJ. The optimized fJ used here
has the correct long-range behavior needed to obtain
the phonon spectrum. Thus it should be useful to
study the elementary excitations of liquid "He with
the bare Hamiltonian.
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