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Momentum-dependent annihilation rate for positrons in metals
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Results are presented of a calculation for the partial annihilation rate of a thermalized positron

with electrons in a metal as a function of the initial electron momentum. The method used has

previously been successfully applied to the calculation of total annihilation rates. Recent work

has shown that the agreement with experimental total rates is even better than was originally

claimed. In this method the positron-electron wave function ls calculated self-consistently using

an effective interaction which includes strong interaction effects from no more than one highly

correlated screening electron at any instant of time. Within the formalism self-energy insertions

must be retained. The partial rates are more sensitive to these insertions than are the total

rates, The calculated partial annihilation rates in the electron gas at metallic densities are all

monotonically increasing functions of the initial electron momentum up to the Fermi surface.

For lithium the partial rate is in good agreement with experimental data.

I. INTRODUCTION

In a previous paper' a scheme was developed for
calculating the correlated electron wave function at a
positron site in metals. The annihilation rate of posi-
trons in metals is directly related to this quantity.
Another quantity which can be measured is the par-
tial annihilation rate for positrons. This is defined as
the annihilation rate with electrons of one particular
specified momentum. The momentum of a thermal-
ized positron at room temperature is negligible com-
pared with the Fermi momentum of conduction elec-
trons at metallic densities, so the partial rates can be
obtained by combining positron lifetime data with an-
gular correlation data of the emitted y rays.
Although in practice experimental difficulties mean
that the available data remains somewhat imprecise,
the functional dependence of the partial rate on
momentum is still a stringent test of any many-body
theory of positron annihilation. In particular, the
measured partial rates are all increasing functions of
momentum up to the Fermi surface. In Ref. 1 the
total rates were calculated directly without reference
to the partial rates. We report here the result for the
momentum-dependent partial annihilation rates using
the same method. In particular, using this method
we are able to obtain for the first time accurate par-
tial rates for densities below r, =4.

The partial annihilation rate can be formally related
to the correlated-positron —many-electron wave func-
tion. In our approach this wave function is calculated
using an effective interaction which includes in a
self-consistent manner the strong nonlinear screening
effects from no more than one highly correlated
screening electron at any instant of time. Since this
one additional electron could equally well interact

strongly with only the positron or only the electron,
thus giving significant self-energy contributions, self-
energy insertions on the intermediate propagators
between interactions must be included,

The electron wave functions are approximately an-
tisymmetrized using the analogy of a recoilless im-
purity. We emphasize that recoil is only neglected in
so far as antisymmetrization is concerned and is not
equivalent, as has been claimed, to a total neglect of
the antisymmetrizing Pauli projection operator. We
further emphasize that in constructing the effective
electron-positron interaction prior to antisymmetriz-
ing, the recoil of the positron is included in the ener-

gy denominators. In Ref. 1 we selected this approxi-
mate antisymmetrization procedure for the electrons,
only because we had already shown that the conven-
tionally used Bethe-Goldstone equation' is not appli-
cable to this problem. Briefly, the positron is an im-

purity which destroys the homogeneity of the elec-
tron gas, so that even at great distances from the pos-
itron, where its potential is completely screened out,
the exact single electron wave functions will be phase
shifted away from the unperturbed plane-wave states.
In any practical calculation, the Bethe-Goldstone
equation must use an unperturbed plane-wave basis,
and so incorrectly predicts a zero scattering phase
shift for positive momentum states lying below the
Fermi level. This particularly leads to problems in
the density range below r, =4 where the total annihi-
lation rates calculated using the Bethe-Goldstone
equation are known to diverge. The cause of this
divergence was shown in Ref. 1 to be directly attri-
butable to the Bethe-Goldstone equation's neglect of
scattering into the Fermi sea of plane waves. The
ladder approach when carried through correctly con-
tinues to yield reliable results in this low-density re-
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gion for both the total rates and also the partial rates.
In Ref. 1 the calculational scheme was successfully

used to predict the annihilation rate for simple metals
spanning the entire range of conduction-electron den-
sities. We should make two comments concerning
the comparison in Ref. 1 of the calculated rates and
the experimentally measured rates. Firstly, it has
been subsequently pointed out4 that a quoted experi-
mental point at 5.0 nsec ' for Al was measured using
an incorrectly annealed sample, and should therefore
be disregarded. Secondly, it was stated that in com-
paring the two results, a 20% core electron contribu-
tion should be subtracted from the experimental
points. This was based on Carbotte and Salvadori's'
estimates of the annihilation rate with core electrons
for aluminium and sodium. However, a recent calcu-
lation has shown that the figure of 20% is a gross
overestimate, and that a more correct value for the
core contributions is more than an order of magni-
tude smaller. We conclude from this that the
theoretical curve and the experimental points in Ref.
1 should be compared directly. The parameter-free
agreement between theory and experiment over a
wide range of densities is remarkable. We also note
that this theory alone predicts the correct low-density
limit for the rate. The claim by Bhattacharyya and
Singwi' to have overcome the divergence problem
around r, =6 was premature since their calculated
rate for r, )4 depends strongly on an undetermined

parameter which is adjusted until the calculated rate
at r, =6 agrees with experiment. This is questionable
on two grounds, (i) because the term with the
parameter in it contains other factors which only be-
come appreciable at densities below r, =4 so that the
rates for r, (4 are insensitive to the parameter any-
way, and (ii) because the rate calculated in this way
drops to zero for r, «7 instead of approaching the
positronium limit.

In Sec. II we recall the definition of the momen-
tum dependent partial annihilation rate and outline
our formalism for calculating it. In Sec. III we dis-
cuss our theory's self-energy insertions more fully,
and in Sec. IV we present and discuss the results.

II. FORMALISM

The total annihilation rate for positrons in a uni-
form electron gas is given by

R =h.g+ (r =0)

where g+ (r) is the positron-electron correlation
function and X =12/r, ' nsec '. The quantity r, is the
usual density parameter of the unperturbed electron
gas. g+ (r =0) can be formally expressed in terms
of the full antisymmetric wave function of the
many-particle system, consisting of N electrons at po-
sitions r ~, r 2, . . . , r ~ and the positron at r ~:

(2)

where 0 is the integration volume. With the approx-
imations used in Ref. 1, Eq. (2) simplifies to

g+ (r =0) = X [(P OJ
~
r =0)(

I p~l &kF

where kF is the Fermi momentum, and Q 'J'(q) is
the solution of a Lippmann-Schwinger integral equa-
tion for the correlated electron-positron pair. The in-
itial momentum of the thermalized positron is zero
and the initial momentum of the electron is p~.
After multiple scatterings with the positron, the final
momentum of the correlated electron is q. Within
the same approximations, the wave function QtoJ~(q)
also gives us the partial annihilation rate R ( q ), for-
mally defined as

lE ]Ii

xP(rp rp r2, . . . , r~)

(4)
The total rate can be obtained from Eq. (4) after an
integration over q, but it can be more easily deter-
mined directly from Eq. (2) without first calculating
the partial rates.

FIG. 1. Schematic representation of the contributions to
the momentum-dependent partial annihilation rate from any
infinite ladder series of terms. In each term the left most
propagator with the solid arrow is the positron. The dotted
horizontal lines represent the interaction which builds up the
ladder sum. The solid horizontal line represents the ap-
propriate density-density operator.
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The wave function p(p J) (q) is the solution of an infinite ladder sum. The four contributions to R (q) for such
a wave function are schematically shown in Fig. 1. The horizontal dotted lines represent the effective interaction
building up the ladder terms, while the solid horizontal line represents the appropriate density-density operator.
The total contribution to R (q) is then

I q l&k~ I p&I &k+ I p J-q I&o

1+y(o J'(q)
a(P)(q) ye(P)(p q) a(h)(p ) a(h)(0)

e ~' are particle energies, ~'" are hole energies and
their subscripts e and p refer to electron or positron.
It is necessary to distinguish between particle and
hole energies, since the self-energy insertions are dif-
ferent for the two cases.

One task then is to determine the wave function
p(o ~) ( q ), which we carry out using the same calcula-

I

tional scheme as in Ref. 1. We recall this wave func-
tion is related in a simple way to the effective two-
particle interaction between the positron and electron.
Retaining only terms in which no more than one ad-
ditional electron is excited at any instant, we may car-
ry out the infinite sum obtaining a Lippmann-
Schwinger integral equation for the effective interaction

(qKl t,~(E) l kpK& = &mql V.(t(E) I koK&

te 3

+ ",&qKI V.ff(E) I pK&(I/~E —~.' '(
2
K+ p) —

&~ '( —'K —p) ~ ) (pKI t,~(E) I koK&

(6)

Here l qK& is a positron-electron plane-wave state with relative momentum q and center-of-mass momentum
K. In the initial state the positron momentum is zero so that K = (2kp) = p, , the initial momentum of the elec-
tron. E is the initial energy of the pair, equal to a,(")(K), since the zero momentum positron self-energy is van-
ishingly small on account of the low density of positrons. On the first iteration V,ff is simply the linear screened
interaction from no more than one screening electron at any instant,

(qEI V.„(E)IPE& = V(lq-pl) 1, 2n.-(lq-pl, E) v(lq-pl)
1 —II "(lq —pl, E') V(lq —pl)

(7)

where Vis the bare Coulomb interaction and II%o"

is the forward part of the Lindhard function IIO

without the sum over spins. Since particle self-
energy insertions cannot overlap with V,ff,

E=—p+ —q —EI 1 2 1

2 2

On subsequent iterations V,ff includes the effect on
screening of the nonlinear buildup of screening elec-
tron density around the positron. Each bare
Coulomb interaction in Eq. (7) is replaced with the
appropriate ladder sum of interactions. The
positron-screening electron bare interaction Vis re-
placed by t,~ as calculated in the previous iteration.
Each electron-electron interaction should also be re-
placed by a ladder sum of unscreened Coulomb in-
teractions, but in practice this modification only mar-
ginally affects the final results. The full expression
for V,ff is given in Ref. 1.

When the iteration procedure gas converged, the
resultant self-consistent interaction t,~ leads directly
to the correlated electron-positron wave function

I

through the relation

)i)
o (q) = (I/(E —q')] (qKlt p(E) lKkp& . (9)

III. SELF-ENERGIES

In our calculational scheme we must include self-
energy insertions on the intermediate particle propa-
gators between interactions, since the one screening
electron could have equally well interacted strongly
with only the positron or only the electron thereby
leading to self-energy contributions. Terms with two
self-energy insertions overlapping in time are exclud-
ed since they involve the strong excitation of more
than one additional electron at some instant of time.
Similarly, vertex corrections in which the retarded in-
teraction overlaps with self-energy insertions must be
excluded. The permitted self-energy insertions on
the intermediate particle propagators are all a well-
defined distance off the energy shell, Thus in Fig. 2
the second-order self-energy insertion in the inter-
mediate electron line is
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'I r

X(p&l2& K +- =,
&

d'k'J do&'e ' " l'(lk l)Ho(k ~
co') &(Ik l)G+' —+q+k, co —ro'

2
(lo)

where G, is the free-electron Green's function and
1

~=e'&' —+q +—'q' —e'"'(K) .
2 2

Here the term —,q2 appears rather than e~t~l(q),

since the self-energy insertions in the intermediate
positron propagator cannot overlap with X,~.

Strictly, each self-energy insertion in the intermedi-
ate particle lines should be calculated using the same
infinite ladder sums as for the other correlated terms.
In practice, we argue' that for small k, the random-
phase approximation should provide a good approxi-
mation for each self-energy insertion. For large k
self-energy effects should be small, because the un-
certainty principle restricts the time available for the
original virtual excitation of momentum k to produce
additional virtual excitations in self-energy-type
processes. ' Since the random-phase approximation
insertion itself goes quite rapidly to zero for
l k l )1.5k', we use it to approximate self-energy ef-
fects for all k, regarding it as an interpolating func-

I

tion between the high- and low-l k l limits.
Self-energy insertions on hole lines do not enter in

the. calculation in the same way as insertions on parti-
cle lines. Firstly, there is no restriction on them
overlapping in time with additional electron excita-
tions. Secondly, since only particle-particle scattering
is to be included, a hole self-energy insertion corre-
sponds to a quite different looking term from the
corresponding particle insertion (see Fig. 3). This
implies that an insertion on a hole line must be taken
on the energy shell, even though it occurs on an
internal line. Referring to Fig. 3, the reason is that
the lifetime of the insertion, t„—t&, is not dependent

on the other times in the main part of the diagram.
In contrast, the lifetime of the particle insertion in
Fig. 2, t„—t&, is necessarily less than the duration of
the main positron-electron excitation t2 —t~.

It is straightforward to perform the integrations
over the time variables in Fig. 3. Retaining only the
kinetic energies on the propagators sho~n, the resul-
tant energy denominators for Fig. 3 are

1 1

T(a)+T(b) —T(K) —T(c) KT —+q +T(q) —T(k)
2

1

T(d) + T —+ q —T( f ) —T(K)
,

2

f2—

K
2

'
t2—

b /I, lt'c

K

it/ K

q 3k K—+q2

FIG. 2. Second-order self-energy insertion in the
correlated-electron propagator. This term is permitted since
the additional excited electron does not overlap in time with
the excited screening electron. Relevant time labels are
shown. Since the insertion is necessarily restricted to lie
between the times t~ and t „it must be evaluated off the

2
energy shell.

(+)
FIG. 3. Second-order self-energy insertion in the internal

electron-hole propagator, This is to be compared with the
corresponding particle insertion in Fig. 2. Because the inser-
tion is not restricted to lie between the time t& and t2, it
"decouples" from the main part of the diagram and it must
be evaluated on the energy shell.



D. N. LOWY

where the kinetic energy T(k) =
2 ~

k
~

. But this is

the same result as we would have obtained by direct1y
evaluating the self-energy insertion on the energy
shell. This simple argument can be generalized in a
straightforward manner to all orders in the perturba-
tion series.

Inclusion of self-energy insertions lowers the total
annihilation rates by about 10%.' They affect the
shape of the partial annihilation rate curves R ( q )
even more significantly, lowering the rates for small

q and pushing up the rates as q increases towards
the Fermi momentum.

IV. RESULTS AND CONCLUSION

A calculation was carried out for the momentum-
dependent partial annihilation rate for a positron in
an electron gas at metallic densities. The procedure
for calculating the nonlinear screening of the
positron-electron interaction self-consistently, satis-
factorily converged after one iteration, and the resul-
tant self-consistent interaction t,~ led directly to
y"J'(q) through Eq. (9).

We then used Eq. (5) to compute the partial rate
R (q). In Fig. 4 the solid lines show our calculated
R (q) for three electron gas densities. The partial
annihilation rates at metallic densities are all mono-
tonically increasing functions of the initial electron
momentum q up to the Fermi surface. r, =3 corre-
sponds to the conduction electron density in lithium.

ra kF
P(q, ) = dq'q'R (q')

If R(q') is roughly constant over the sea, Eq. (12)
will give the familiar inverted parabola distribution
observed for many metals.

Kim and Stewart" have managed to differentiate
their coincident photon counting rate numerically to
obtain a plot of qR (q). This experimental quantity
provides a much more sensitive test of any theory
than the integrated result of Eq. (12). In Fig. 5 we
show their reported data for lithium at 80 K together
with our calculated qR (q) curve for r, =3. Kim and

(12)

The dotted line shows R (q) calculated by Kahana3
for r, =3. The shape of this curve is somewhat
steeper and lies significantly below our corresponding
solid curve, this being a reflection of the fact that our
calculated total rate for lithium lies about 10% above
Kahana's value. '

Assuming the positron is at rest we can calculate
the number of y rays possessing a total momentum
q„ in some fixed direction, by numerically integrating
our R (q) over an appropriate plane intersection of
the Fermi sea. %e obtain the distribution function

cf
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FIG. 4. Partial annihilation rates as a function of momen-
tum. The three solid curves are, from the top, for electron
gas densities of r, =3, 4, and 6, respectively. The dashed
curve is the corresponding result for r, =3 taken from Ref.
3. (The rates in Ref, 3 cannot be accurately computed for
densities below r, =4.) Note the monotonic increase of the
partial rates as a function of q.

FIG. 5. Experimental data points, taken from Ref. 11, of
thc slope of the coincident photon counting rate for posi-
trons in lithium at 80 K. The optical resolution of the
measuring instrument has a full width at half maximum of
0.32 mrad. The angle 8~ corresponds to an election with

momentum k~. This slope is directly related to the
momentum-dependent partial rate and provides a more
stringent test of any theoretical prediction than the integrat-
ed distribution function. The solid curve shows the corre-
sponding qR (q) from the present calculation. The vertical
scale for the experimental data has been interpreted such
that the data is consistent with the experimentally observed
total rate for lithium.
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Stewart's scale on the derivative axis is not reported
and we have chosen the scale so their partial rate
when integrated over q, gives the observed total rate
for lithium, 3.4 nsec '. The data points are not con-
sistent with any single fitted curve, and our curve
shows satisfactory agreement with their points up to
an angle corresponding to about 0.9k'. Our calcula-
tion does not predict the apparent rapid falloff in

qR (q) as q approaches the Fermi surface, but the op-
tical resolution of the instrument used in this experi-
ment had a full width at half maximum of 0.32 mrad
and this causes a smearing of the data. Thus a size-
able part of the falloff in this region arises from con-
tributions to qR(q) outside the Fermi surface, where

qR (q) is known to be small. Our curve also shows
the steepening that is characteristic of a partial rate

which is increasing across the Fermi sea.
Our conclusion is that the present calculation,

which avoids the serious objections associated with

using the Bethe-Goldstone equation for this prob-
lem, ' not only gives remarkable agreement with the
observed total rates —much better agreement than
was claimed in Ref. 1 —but it also leads to partial
rates which show the well-known increase with
momentum across the Fermi sea and which are con-
sistent with the best available experimental data for
lithium.
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