PHYSICAL REVIEW B

VOLUME 26, NUMBER 10

15 NOVEMBER 1982

Self-consistent calculation of the internal strain parameter of silicon
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We have extended our total-energy computation method, based on the density-functional for-
malism in the local-density approximation and written in terms of the Wannier functions of the
semiconductor, to include distorted crystals. In this way the internal strain parameter ¢ of sil-
icon can be calculated in a self-consistent fashion. The result £ =0.86 is consistent with the re-

cently reported experimental value (0.73 £0.03).

The knowledge of the elastic constants of a crystal
is not enough to infer the positions of the atoms in a
crystal submitted to stress if the crystal has a basis
formed by more than one atom. These additional de-
grees of freedom are characterized by internal-strain
parameters. Anastassakis and Cardona! have studied
the number of independent internal-strain parameters
and its relation with the k =0 optical phonons. Sil-
icon has only one internal-strain parameter which was
introduced and defined for the first time by Klein-
man.? It has been directly measured by means of x-
ray diffraction in crystals submitted to an uniaxial
stress in the [111] direction.>* Even though the
analysis of the data is difficult, it seems now that the
value of the internal-strain parameter ¢ is 0.73 £0.03
for silicon, somewhat larger than earlier reports
(0.62 £0.04).> On the theoretical side it is interest-
ing to calculate ¢ because the state of the art in
total-energy calculations based on the density-
functional formalism in the local-density approxima-
tion allows the obtainment of the ground-state prop-
erties of semiconductors with a high degree of pre-
cision. In this way the equilibrium lattice constant,
the cohesive energy, and the bulk modulus have
been computed for silicon by several authors.® All
the results that can be found in the literature agree
with each other.

We report here on a self-consistent calculation of
the internal-strain parameter ¢ for silicon. The com-
putation is a slight extension of our previous work.
Specifically, we have adapted the computer program
which was used for the calculation of the cohesive
energy of different kinds of stacking faults in silicon.®
A supercell containing six silicon atoms and with the
shape of a right hexagonal prism was chosen. The
total energy for this supercell was minimized as a

function of the lattice constant. We found the
minimum energy —3.81011 hartree for a lattice con-
stant @ =10.37 bohr. To study the deformed crystal
we only need to strain the supercell in a homogene-
ous way. The strain tensor for a uniaxial stress in
the [111] direction has the form

€ € €

where €, defines a pure hydrostatic volume change
and e, defines a pure trigonal deformation. The dis-
tances along the [111] direction are modified by a
factor 1 +€; +2e¢,, whereas the distances in the (111)
plane are modified by a factor 1 +¢€, —e€,. The posi-
tions of the ions in the strained supercell are given by

ﬁi =(1 +§)E1 ,
1

R =(I+9R, - jatell] ,
1

where fil and l—iz give the positions of the ions in the
unstrained supercell, a is the fcc lattice constant, and
£ is the internal-strain parameter. The indexes 1 and
2 label the two interpenetrated fcc sublattices which
form the diamond lattice. The resulting bond lengths
are

1111=%/_§-[1 +e+2(1-8)e] ,

a3 2
kn=hr=hi="7-ll+ta-30-9al ,
where the direction of the bond is explicitly given.
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We have done three sets of calculations for the deter-
mination of the internal-strain parameter.

(i) €, =0 and e,=—0.02. In this case the volume
change vanishes as a result of a 4% compression in
the [111] direction and a 2% expansion in the (111)
planes.

(ii) ¢ = ez=—%(0.04). In this case the volume is
diminished 4% as a result of a 4% contraction in the
[111] direction, whereas the distances in the (111)
planes remain unchanged.

(i) €, =€;= %(0.04). In this case the volume is
increased 4% as a result of a 4% stretching in the
[111] direction, whereas the distances in the (111)
planes do not change.

Once the strained supercell (or, equivalently, crys-
tal) is defined we proceed to a minimization of the
total energy as a function of £&. For each value of ¢ a
fully self-consistent computation is done. All the de-
tails are as in our previous work.® (This means ionic
pseudopotential, actual local-density approximation
for the exchange-correlation potential, use of the
Wannier functions to achieve self-consistency
between electronic charge and total potential and
convergence criteria). It is worthwhile to mention
only that with the deformation a change of the re-
ciprocal superlattice vectors takes place. In particular,
this fact modifies the Brillouin zone (BZ). Neverthe-
less, in the selected supercell geometry, the shape of
the BZ remains unchanged allowing the usual integra-
tion over it. In other words, only the height-width
ratio of the right hexagonal prism changes and the
new set of special points needed for the BZ integra-
tion can easily be recalculated.

The results of the first calculation are shown in
Table I and Fig. 1. In Table I the total energy per
atom as a function of ¢ is compiled. The minimum
of the energy curve occurs for £;=0.816. This
minimum is obtained after a fit of the tabulated
values by a parabola. The same procedure is used to
determine ¢&; and &;; from Table II (see below). The

TABLE 1. Total energy per atom for a silicon crystal
compressed 4% in the [111] direction and expanded 2% in
the (111) plane in order to keep the volume constant. The
total energy per atom is shown as a function of the internal-
strain parameter £&. The value of £ that minimizes the ener-
gy is 0.816.

¢ Ey (au)
0 —3.80624
0.48 —3.80735
0.79 —3.80757

1.00 —3.80751

FIG. 1. Self-consistent electronic charge density for a sil-
icon crystal compressed 4% in the [111] direction and ex-
panded 2% in the (111) plane in order to keep the volume
constant. The electronic charge is shown for £=0.816 (the
value of the internal-strain parameter that minimizes the to-
tal energy). The unit is the number of electrons per ion .
(the average value of the electronic charge is 4 in this unit)
and the [111] direction coincides with the y-axis direction.

fit by a polynomial of higher degree modifies slightly
(<5%) the previous values. Figure 1 shows the
valence electronic charge for the ionic configuration
which minimizes the energy, i.e., for £=0.816. The
lengths of the bonds are /;;; =0.9924 /; and

Ity =I5,7=1;77=1.0025 Iy, being [y the equilibrium
bond length. The [111] direction coincides with the y
axis of the figure. The most striking feature is that
in spite of the minor contraction of the (111) bond,
the charge has been removed from the three other
bonds and accumulated on the (111) bond in order to
reduce the energetic cost of the deformation. We re-

TABLE II. Total energy per atom for a silicon crystal ex-
panded 4% in the [111] direction [¢, =€, =+(0.04)], or
compressed 4% in the [111] direction [¢; =¢, =—%(0.04)].
The total energy per atom is shown as a function of the
internal-strain partameter £. The values of ¢ that minimize
the energy are &; =0.99 for the expanded crystal and
£,;=0.785 for the compressed crystal.

£ E (au)

6 =6 =7(0.04) 0.006 ~3.80767
0.797 —3.80834

1.191 —3.80836

1.585 ~3.80814

6 =6 =—7(0.04) 0.348 ~3.80776
0.704 —3.80792

1.060 —3.80786
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mark that the sign of this charge transfer from the
stretched bonds region into the compressed bond re-
gion coincides with the result found by Maschke and
Baldereschi’ for a different ion configuration (the dis-
tortion produced by a I'ys optical phonon).

The internal-strain parameter which minimizes the
energy in the compressed crystal is &; =0.785, where-
as in the expanded crystal the lowest energy is ob-
tained for £;;=0.99 (see Table II). These values
show a pronounced dependence of the internal-strain
parameter on the crystal volume. Assuming a linear
dependence of ¢ on the volume variation, a least-
squares fit to the three results yields

£=0.86+2.56(AV/V) .

The dimensionless parameter that gives the depen-
dence of ¢ on the volume variation is

1 _dé _
£dnV 297 .

This result indicates that the angular forces lose
importance with respect to the central forces as the
volume increases. In this manner ¢ approaches 1
(only central forces) as the volume increases.®
Nevertheless, the numerical value for (1/¢)(d¢/
dInV) has to be taken carefully since it is strongly
influenced by the value &;=0.99 obtained for an ex-
tremely flat parabola (see Table II).

Our final result for the internal-strain parameter is
£=0.86 (in absence of pressure). It supports the re-
cently reported experimental value 0.73 +£0.03 (Ref.
4) as opposed to earlier experimental determinations
(0.62 £0.04).> A quite recently reported calculation
by Harmon, Weber, and Hamann’ gives for the same
parameter a value 0.61. It may be concluded that, in
spite of the overall agreement between theory and
experiment, a definite theoretical value of ¢ is hard
to obtain because of the very slight dependence of
the total energy on the internal strain parameter.

As a by-product of the present effort we obtain a
value for the elastic stiffness constant C4. Paradoxi-
cally, the authors that have done self-consistent com-
putation of the total energy have paid little attention
to the elastic constants of semiconductors. They can
be only indirectly inferred from the phonon dispersion
relations published very recently by Kunc and Martin’
for Ge and GaAs and by Yin and Cohen® for Si.

The change in energy density corresponding to a
uniaxial deformation in the [111] direction with €; =0
is

AU=6Cyuél .

Substituting the values corresponding to e, =—0.02
we get Ca=1.21 x 102 dyncm ™2, which is 50% in
error with respect to the experimental value Cyy
=0.796 x 1012 dyncm 2.1 The origin of our difficul-
ties is the poor convergence of the ion-electron con-
tribution to the total energy as a function of the
number of g vectors, if a hard-core ion potential is
used. This point was extensively discussed in Ref. 6.
This difficulty arises in the evaluation of Cy4 but not
in the evaluation of £ because of the need in the first
case of an accurate energy difference between the
strained and the unstrained crystals. The converged
value for this difference is beyond our present com-
putational facilities and therefore a converged esti-
mate for C4. Nevertheless, only the position of the
minimum in the energy curve is needed for the ob-
tainment of £ and this position is supposed to depend
weakly on the number of g vectors taken into account.
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