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The effective-medium approximation is shown to give the correct frequency-dependent dif-

fusion coefficient for small frequencies in a one-dimensional disordered system with a nonsingu-

lar distribution of transfer rates. This confirms the scaling hypothesis which has been proposed

to study diffusion in such a system.

A wide class of dynamical processes in random sys-
tems can be described by a master equation for a lat-
tice characterized by random values of transfer rates

between pairs of nearest-neighbor sites, '
nn nn

P„(t)= X [W,P, (t) —W, P„(t)] .
t

n
NNofn

Here P„(t) is the probability for the excitation to be
on site n at time t given that it starts on n = 0 at time
t =0. The values of 8 assigned to the lattice bonds
are random variables distributed according to a prob-
ability density p( W).

Among the processes to which Eq. (1) (or a modi-
fied version of it) is related are dispersive hopping
transport in amorphous semiconductors, ' the mi-

gration of localized electronic excitation among im-

purities embedded in a host, and frequency-
dependent conductivity in superionic conductors. "

Recently, much attention has been given to the
solutions of Eq. (1) for one-dimensional systems. "'
In this case, exact results for asymptotically long
times were obtained for (P«(t) ), the probability of
the excitation to be at the origin at time t. Here

( . ) denotes an average over the ensemble of ran-
dom configurations. The results for (P„(t)) which
are required for the study of the excitation transport
were derived by invoking the following scaling hy-
pothesis'.

(P„(t«)) = (P«(t«) ) F(n/g(t«)); t«0, (2)

where (P„(o&)) is the Laplace transform of (P„(t)),
and F (Z) is an arbitrary scaling function which is
normalized to satisfy F(0) =1. The physical idea

leading to this scaling hypothesis is that for each cv

there is a length g(t«) such that the diffusion at
times t » 1/t«and over distances n & g is insensi-
tive to the details of the randomness in the system.
In Ref. 9 a renormalization-group calculation is
derived for the long-time diffusion coefficient.

Recently, one of us' proposed a self-consistent
effective-medium approximation (EMA) for solving
Eq. (1) in all dimensions. We apply this EMA for
one-dimensional systems and show that, for random-
ness characterized by a nonsingular p( W), ' the EMA
gives exact results for (P„(t«)) in the limit of small
co and consequently for the long-time diffusive
behavior. This result confirms that the scaling hy-
pothesis, Eq. (2), is exact for the p( W) we use here.

The Laplace transform of Eq. (1) is

or, in matrix representation,

2 (t«)P(«)) =1

where, using "bracket" notation,

P(t«) = XP„(tu) ~n)

(4)

(4a)

and

P„(t«) =
~

e "'P„(t)dt (4b)

~(~)= X Ik) m+ XW/k gkt Wt,t (l~ . (5)
k, I

(NN)

The information concerning the diffusion process

«)P„(t«) = X[W,iP (t«) —W P„(t«)]+5„p, (3)
I

n
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can be obtained from (P„(«))):
(P„(«)))= (A («)))p„.

A («)) in Eq. (5) can be represented as a sum of a
homogeneous term and a term which contains the
random fluctuations

A («1) =AM(«)) —SA («))

(6)

(7)

where

(W —WM) dW

W+ ( WM —W)«)GM(«))
p W (16)

and z is the lattice coordination number. For a one-
dimensional lattice z = 2 and Eq. (15) reduces to' '2

where

AM(~) = X Ik& {[~+2WM(~)]gkl WM(~)~kl) &II .
k, I

(NN)

and

GM(~) = 1

{«) [«) + 4 WM («) ) ]]
(17)

Here'0

X 2[ Wkl WM(«)) ]Qkl
k', I

(NN)

(9a)

From Eqs. (16) and (17) one obtains the following
result for WM(«)) up to order «):

WM(«)) = WM(0) + WM1 Ja) + WM2«)+ (18)

where

and

Qkl = —,
'

( I k ) —
I I & ) ( & k I

—
& I I ) (9b) —1

w (o)=-
W

1, if k, l are nearest neighbors
kI

0, otherwise.

A can now be expressed as""
A = GM+ GMTG

(9c)

(10)

W

=3 1
WM2

W

2

WM (0)
WM 0

) w„'&0)
M

1

(19)

where GM—=AM is the lattice Green's function for a
homogeneous medium with Wkl = WM(«)).

T= X tkl+ $ rklGMrmn+ g rklGMrmnGnrpq+'''
k Al kl Am, n k, l Am, n

m, n Wp, q

) 1 3

——,(
—

) wm(0)

We now examine the corrections to AM(«)) in Eq.
(13) by considering the nonvanishing terms in (T).
The magnitude of the first such term is of fourth or-
der in t can be written as

and the t matrix for the kl bond is

(Ik) —II))(w —w )(&kl —&Il)
tki =

1 —((k I
—&I I) GM(lk) —II &)(wM —wkl)

'
M kl (12)

X ( p p+1 ) ( q q+1 ) (1 p p+1;q, q+1)
p &q

where

(20)

From Eq. (12) we obtain

(T)
(A ) '=AM— (13)

1',,+1.,+1 =
&p IGMle) + 0 +ll GMlq +1)
—

&p I GM I e +1& —
&p +11GM I q &

(t) = „ t(W, WM)P( W) dW=0 (14)

The effective-medium condition for WM(«)) is'«'2
For small co, '

1 1

2Q W (0) 1+ [ /WM(0)]' '
' lp-ql

Due to the summation restrictions in Eq. (11) and
the random assignment of values of 8'to different
bonds, this condition leads to the vanishing of the
first three terms in (T) so that the first nonzero
term is of fourth order in t.

Using Eq. (12), Eq. (14) can be written explicitly
for any dimensionality:

(W —WM) dW

W[1 — G ( )]+W [z/2 —1+ G ( )]

=o, (»)

Hence

(22)

r„„.„„—— „,+o(~) .
2WM 0)

(23)

In the limit co 0, tki becomes co independent and
therefore the correction term in Eq. (20) is of order
co' . The rest of the series consists of terms of
higher order in ao. Therefore the lowest order of co in
the correction to the EMA result is eo . Successive3/2

terms in the series contain higher-order moments of
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1/W which we assumed to exist.
The diffusion coefficient D (cu) is given by'0

WM (~), and (8 ( t) ), the mean-squared displace-
ment is

(8'(t)) =z '
~2 (24)

2 ' is the inverse Laplace transform. From the
above arguments, it follows that the results derived
by Machta, Alexander and Orbach, ' and Van
Beijeren, ts are exact to order st«. The relation'

that the scaling hypothesis of Bernasconi et al. , Eq.
(2), is asymptotically exact with

F(n/g(s))) = exp[ —n/((ru) ]

g(~) = JWu/«
(28)

It is important to note that once the diffusion in a
random lattice can be represented by an effective
medium, a similar scaling relation for (P„(ro)) fol-
lows at all dimensionalities. ' Thus, in three dimen-
sions, '

D(o)) =
4«) (Pp(co) ) ' (25) (P„( )) —(P,(cu))F, (29)

So

(P„(ao)) = (OIGm(co) In) (26)

(P„(co))—(P«(co)) exp( —/co/W~~n ~) . (27)

Since we have shown that the diffusion can be exact-
ly described by W~(cu) given by Eq. (19), it follows

which follows from the effective-medium picture,
is also exact at least for the p( W) discussed here.
From Eq. (22) one can easily obtain the following ex-
pression for (P, (co)) in the limit co 0:

where

F3(y ) — for large y
3'

(30)

In conclusion, we have shown that the effective-
medium approximation for diffusion is a well con-
trolled approximation which can be systematically ex-
tended and the corrections to which can be obtained.
These corrections can be examined in a similar
manner for the interesting case where the distribution
of transfer rates p( W) is such that (1/ W) is infinite. '

The results of this study are planned to be published
elsewhere.
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