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Activation enthalpy, Gibbs free energy, and entropy for conduction in Na P "-alumina
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The temperature-dependent activation enthalpy hH, Gibbs free energy EG, and eritropy

hS for the vacancy conduction in Na p"-alumina were extracted from the conductivity

data. The value of hH calculated from the equation AH = —din(o. T)/d(1/kT) decreases

from -0.3 eV at low T to -0.03 eV at high T in a form that can be correlated to the de-

crease of vacancy ordering on a superlattice reported from diffuse x-ray scattering studies.

This T variation in hH requires a T variation in AS according to the thermodynamic rela-

tion dhS/dT=(1/T)de/dT. By setting the integration constant to be zero, the value of
hS was found to decrease from -7k (10 ' J/K) at low T to -0 at high T. As a result,

the activation free energy hG =AH —TAS is much smaller than hH at low T. The results

are consistent with the calculated small activation energy for diffusion of a single vacancy
(-0.02 eV) and the assignment of a low-frequency (-30 cm ') Raman peak to the at-

tempt mode for diffusion.

I. INTRODUCTION

The P"-aluminas, like P-aluminas, constitute a
family of solid electrolytes in which the ionic con-
duction is two dimensional within the conduction
layers which are separated by closely packed spinel
blocks. ' However, unlike p-aluminas, the log(oT)
vs 1/T plots for the P"-aluminas show an unusual
non-Arrhenius behavior: The absolute values of
their slopes are high at low temperatures and de-
crease gradually with increasing temperature (Fig.
I). It has been suggested that this non-

Arrhenius behavior may originate from the change
with temperature of conducting-cation ordering on
a superlattice. A comparison of conductivity
and diffuse x-ray scattering measurements indicates
that higher activation energies are associated with
greater ordering of conducting cations on the super-

lattice. ' In this work, we present a theoretical
model which connects the temperature dependence
of the activation energy with the change in superlat-
tice ordering.

Sato and Kikuchi" ' have treated the p"-
alumina problem with the cluster variation and the

path probability methods using a two-dimensional

honeycomb network. Their results show that the
conductivity is non-Arrhenius for some
conducting-cation concentrations. However, be-

cause they used only a nearest-neighbor interaction
potential between the cations, their results are not
suitable to describe the long-range ordering of the
cation on the superlattice. An actual application'
to Na P"-alumina using the experimentally deter-

mined Na+ concentration indicates that these
methods cannot explain the non-Arrhenius behavior
of the material with the present interaction poten-
tial.

Usually results of conductivity measurements for
ionic crystals are presented as graphs of log(crT) vs

1/T. For a crystal having a linear Arrhenius plot
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FIG. 1. Conductivity Arrhenius plots for Na p- and
p"-alumina taken from Refs. 14 and 6, respectively. The
Na p" sample was grown at 1700'C and stabilized with
magnesium. The solid lines are smooth curves used in
this work to represent the experimental data.
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such as that of Na 13-alumina taken from Ref. 14
and shown in Fig. 1, the slope of the graph deter-
mines the activation enthalpy for conduction.
However, for a crystal with a nonlinear Arrhenius
plot such as that of Na P"-alumina (Fig. 1), the
slope of the curve is temperature dependent, and its
meaning is unclear. For example, if the curvature
of an Arrhenius plot is caused by the presence of
two simultaneous conduction processes with dif-
ferent constant activation enthalpies:

—ddI) /kT —~2/kT
o T=ooi e ' +cro2e

then the slope of the log(OT) vs 1/T curve deter-
mines neither of the activation enthalpies. It is in-

teresting to note that the curvature caused by the
presence of two simultaneous conduction processes,
Eq. (1), is always of the opposite sense to that
shown in Fig. 1 and can never account for the ex-
perimentally observed curvature.

In this work, we first extract the activation
enthalpy, entropy, and Gibbs free energy for con-
duction in Na P"-alumina from the conductivity
data. Then, by interpreting the results, we discuss
the conduction mechanism for the material.

conducting-cation concentration and the geometry
of the crystal, and b, G( T) is the temperature-

dependent activation Gibbs free energy for the
mechanism and is related to the activation enthalpy

ddE(T) and entropy AS(T) by the thermodynamic
relation

EG(T) =AH(T) Tb—S(T) . (5)

—d[ln(0 T)]
d(1/kT)

(6)

By differentiating Eq. (2) and using Eq. (3), it fol-
lows that

By making this assumption, situations such as that
described by Eq. (1) are excluded from our con-
sideration. It is this assumption that enables us to
identify the functions ~(T) and hS(T) in Eqs. (2)
and (3) with the activation enthalpy and entropy, '

respectively, which appear in Eq. (5). Notice that
the relation between the functions ~(T) and
b,S(T), Eq. (3), is consistent with the thermodynam-
ic relation between the enthalpy and entropy under
constant pressure.

The experimental heat of activation (or apparent
activation energy) is defined from the slope of a
log(O. T) vs 1/T plot as

II. CALCULATION METHOD Q(T)=EH(T), (7)

dhH(T) TdhS(T)
dT dT

(3)

It should be emphasized here that Eqs. (2) and (3)
are obtained from geometric consideration alone
(see the Appendix); so far no physical meaning has
been associated with the functions b H( T) and
b,S(T).

In this work we assume that the conductivity of
Na P"-alumina arises from a single mechanism (va-

cancy mechanism) in the thermally activated form:

0 z —/ C e
—~G[ r]/k&0' =vo (4)

where vo is the attempt frequency along a given
direction, C is a constant determined by the

I

As shown in Ref. 15 and also in the Appendix, if
a log(o T) vs 1/T plot is continuous and smooth, it
is always possible to express o.T as

OT =vpCexpt —[~(T)—ThS(T)] lkT]

where the product vo C is a constant and where the
functions b,H( T) and b,S(T) satisfy the relation

i.e., the experimental heat of activation obtained
from the slope of the Arrhenius plot is identical to
the activation enthalpy under our single-mechanism
assumption.

The procedure for calculating ~, b,S, and AG
for conduction is summarized as follows:

(i) Calculate ~(T) from the slope of the experi-
mental log(o T) vs 1/T plot with Eqs. (6) and (7).

(ii) Calculate the b,S(T) by integrating Eq. (3)
and using the result of (i).

(iii) Calculate AG(T) with Eq. (5).

III. RESULTS

To extract the activation enthalpy from the ex-
perimental conductivity data for Na I3"-alumina
with Eqs. (6) and (7), we need first to find a smooth
curve to represent the data so that we can calculate
the slope of the Arrhenius plot. There is no unique
way to accomplish this. In our case, we tried vari-
ous functions which give constant ddt(T) at small
T and give decreasing hH(T) with increasing T. A
good fit was obtained by using the function

vpCexpI —[Ep —E~tanh(T/Tp —T~/Tp)]/kT)I, T) T~

vpCexpI —[Ep —E~(T/Tp —T~/Tp)]/kT] T(T[
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where voC, Eo E~ To and T] are fitting parame-
ters. The result for the conductivity data taken
from Ref. 6 is shown in Fig. 1. Notice that here we
are only interested in finding a smooth curve to
represent the data; the arbitrariness in the procedure
used should not change the main results of our
analysis. By differentiating the curve with respect
to (l/kT), one gets the activation enthalpy of con-
duction, ~(T). The result is shown by the solid
line in Fig. 2.

To calculate the activation entropy from ~(T),
we integrate Eq. (3) to get

b,S(T)=~(T)/T
+ J dx bH(x)/x +ISO,
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where Mo is an integration constant. We set
ESO ——0 [i.e., bS(T)=0 at T= oo] because, as
shown later, this leads to a reasonable value of the
attempt frequency vo. The calculated activation en-

tropy for the conductivity curve of Na P"-alumina
in Fig. 1 is shown by the dashed line in Fig. 2. The
corresponding activation Gibbs free energy calculat-
ed with Eq. (5) is also shown in the same figure.

IV. DISCUSSION
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FIG. 2. Activation enthalpy (AH), entropy (AS), and
Gibbs free energy (AG) for conduction calculated from
the conductivity data of Na P" in Fig. 1. The dots
shown the two-parameter least-squares fit of the activa-
tion enthalpy with AH(T)=a b/g(T), w—here g(T) is

the experimental coherence length of the superlattice
determined by diffuse x-ray scattering and taken from
Ref. 8.

A. Temperature dependence of hH

As shown in Fig. 2, the activation enthalpy
~(T) has a constant value of about 0.33 eV below
350 K and decreases with increasing temperature to
about 0.03 eV at 750 K. An interesting question is
what is the origin of this drastic change in activa-
tion enthalpy with temperature. To answer this
question, we first review briefly the structure of
P"-alumina.

The conduction layer of Na P"-alumina consists
of bridging oxygen ions O(5), which separate the
closely packed spinel blocks, ' and conducting Na+
ions which occupy tetrahedral sites formed by the
oxygen ions [O(2) and O(4)] of the spinel blocks.
The Na+ sites are slightly shifted from the plane
formed by O(5) ions and are only partially occupied
( ——,). ' Figure 3 shows schematically the struc-

ture of this conduction layer. In the figure, —, of
the Na+ sites are vacant and are arranged on a su-

perlattice according to the results reported from dif-
fuse x-ray scattering studies. ' The projection of
the lines connecting neighboring Na+ sites on the
O(5) plane forms a two-dimensional honeycomb
conduction network. A possible model for analyz-
ing the conductivity of Na+ P"-alumina is to treat

0
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FIG. 3. Schematic diagram of a superlattice structure
of vacancies (squares) in the conduction layer of Na P"
with —of the Na+ sites vacant. The dashed circles

represent one-half of the Na+ sites which are about 0.16
0

A above the plane formed by the bridging oxygen ions

[O(5)]. The vacancies and other Na+ sites (solid circles)
are about 0.16 A below the plane. The planar lattice
parameter of the superlattice (a') is V 3 times that of the
regular lattice (a).



5914 J. C. WANG 26

the vacancies as quasiparticles jumping on the con-
duction network. The vacancies and the network

are shown in Fig. 4.
Potential-energy calculations' ' using Coulomb,

core-repulsive, and polarization terms have been

made for a single Na+ vacancy in the ideal struc-
ture of Na P"-alumina. All but one of the Na+
sites were assumed to be occupied [Fig. 4(b)]. The
potential barrier height for the vacancy to jump to a
neighboring site was found to be extremely low
(-0.02 eV), i,e., the vacancy is "nearly free" in this
case. This result can be understood by considering
the following: Let us assume that the host lattice
provides N potential wells with depth Vo, and that
there are E—1 Na+ ions, i.e., there is only one va-

cancy. If we first assume that the Na+ ions do not
interact with one another, then the barrier height
for a Na+ ion next to the vacancy to jump into it is
exactly Vo. If now the repulsive potential between
Na+ ions is turned on, the barrier height for the
Na+ ion to jump is reduced to a value smaller than

Vp because it receives no repulsion from the vacan-

cy. It was demonstrated in a one-dimensional
model study' that when the repulsive interaction is
strong enough, the activation energy for vacancy
conduction can become very small. A similar con-
clusion was also reached when the path probability
method of Sato and Kikuchi"' was applied to the
Na P"-alumina problem. '

The result that the calculated activation energy
for a single vacancy to jump is small (-0.02 eV) is
consistent with the low activation enthalpy hH at

FIG. 4. Schematic diagrams of vacancies (squares)
and the conduction network (lines) for Na P"-alumina.
(a) Perfect vacancy superlattice, (b) a single vacancy, (c)
superlattice with a vacancy-depleted region, and (d) su-

perlattice with a vacancy-excess region. The dashed lines
in (c) and (d) indicate the potential well each vacancy sits
in.

B. Vacancy ordering and LH(T)

To construct a conduction model for Na P"-
alumina and to understand the connection between
the temperature dependence of ddt shown in Fig. 2
and the ordering of vacancies, we first assume that
at T=0 the vacancies form a perfect superlattice as
shown in Fig. 4(a). Because of the ordering of other
vacancies, each vacancy is restrained to its regular
superlattice site. However, at finite temperatures,
because of thermal agitations, some of the vacancies
are excited out of their superlattice sites to form
"Frenkel defects. " This is demonstrated in Figs.
4(c) and 4(d): A vacancy at o in Fig. 4(c) is excited
to another region near o in Fig. 4(d). As a result,
regions of missing and extra vacancies are formed.

We can argue that the ionic conduction is mainly
due to these "Frenkel defects" and b,G(T) in Eq. (5)
consists of two parts: that due to the formation of
the Frenkel defects, AGF(T), and that due to the
motion of the defect (disordered vacancies),
b, GM(T), i.e.,

(10)DG(T)=AGF(T)I2+b, GM(T) .

The factor 2 in Eq. (10) originates from the config-
urational entropy and from the result that the con-
centration of Frenkel defects nF is related to the to-
tal concentration n of the superlattice sites [which is
equal to the total vacancy concentration in Fig.
4(a)] by

'

nF ——n exp[ —b,GF(T)/2kT] .

high temperatures (-0.03 eV at 750 K) determined
from the conductivity data (Fig. 2). Otherwise, if
the activation energy for a single vacancy to jump
were high, then it would be very difficult to explain

why the activation enthalpy can be so low at some
temperatures and is so sensitive to the temperature
change. For our present case, we can argue that be-

cause a single vacancy is nearly free, then when

many vacancies are present in the crystal, they can
rearrange their positions according to their mutual
interaction very easily. When the concentration is

right, a superlattice may even be formed. Figures 3
and 4(a) show schematically such a superlattice for
Na P"-alumina according to the diffuse x-ray
scattering result. It is conceivable that the order-

ing of vacancies around a given vacancy will add
extra restraint to its motion. The high value of hH
below 350 K in Fig. 2 may, therefore, be attributed

to such a vacancy ordering on the superlattice at
low temperatures.
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Similarly, ~(T) in Eqs. (2) and (5) also consists of
two parts:

~(T)=~p(T)/2+~M(T) . (12)

It is conceivable that the part of the activation
enthalpy due to defect motion, ~M(T}, is small
and comparable to that of a single vacancy [Fig.
4(b)]. This is because a vacancy excited out of its
superlattice site will no longer receive the extra res-
traint due to the ordering of other vacancies on the
superlattice. The formation enthalpy ~F(T) is ex-

pected to depend on the extent of the vacancy or-

dering on -the superlattice. When the vacancies are
completely disordered, ~F(T) is expected to be
zero.

The temperature dependence of ~ shown in

Fig. 2 can now be interpreted in the following way:
According to diffuse x-ray measurements for Na
P"-alumina, the extent of vacancy ordering on
the superlattice is temperature dependent; the
coherence length (the size of the ordered region),

g( T), is about 70 A below 300 K and decreases with
0

increasing temperature to about 20 A at 600 K. It
is likely that the decrease in LFI with increasing
temperature is mainly due to the reduction of the
formation enthalpy duFIF( T} which, in turn, is

mainly determined by g(T). At high temperatures,
when the ordering of vacancies is almost completely
destroyed, ~(T) is reduced to that for a nearly
free single vacancy (-0.02 eV).

To understand qualitatively the connection be-

tween ~ and g, we assume that the vacancies
within a circle of radius g about the superlattice site
o [Figs. 4(c) and 4(d}] are ordered and those outside
the circle are completely random. The Coulomb en-

ergy needed to create a vacancy-depleted region

[Fig. 4(c)] and a vacancy-excess region [Fig. 4(d)],
REF, due to the ordered vacancies is of the form

(13)

where e is the dielectric constant, r; is the distance
between site o and the vacancy i„and r is the dis-

]

FIG. 5.' Annular two-dimensional charge distribution
with charge density p used in the evaluation of the in-

tegral in Eq. (15). The line oz corresponds to the separa-
tion between the position 0 and one of the closest vacan-
cies in Pig. 4(d). Vacancies within r=( are assumed to
be completely ordered.

REF —const+ 2 e /er — g e /er;
rp &r &g "p & "g &4

(14)

where ro is some radius greater than the superlattice
parameter a'. By doing so, the contribution to REF
from the vacancies within radius rc in Eq. (13) is
absorbed into the constant in Eq. (14). We next ap-
proximate the ordered vacancies in the annular re-
gion rc &r &g with a uniform two-dimensional
charge distribution with charge density p (Fig. 5).
The summations in Eq. (14) can then be converted
to an integral:

tance between the vacancy i and one of the two va-
cancies surrounded by the dashed lines in Fig. 4(d).
The factor 2 in Eq. (13) comes from the fact that to
create a Frenkel defect shown in Figs. 4(c) and 4(d),
the two vacancies on positions o in the figures are
removed and the two vacancies next to position o in

Fig. 4(d) are added. To evaluate the summations in

Eq. (13), we first write

2~
h.hF —const+

Tp Q

1 1 rdrd0,
(r +z 2zr sin8)'~— (15)

where z is the distance between position o and one
of the two vacancies next to it in Fig. 4(d). By as-

suming that rc and g are much greater than z, the
integral in Eq. (15) can be evaluated. The result up
to the z term is given by

b,E =Fc nost nepz /Eg . — (16}

I

The main contributions to ~ and hHF are the
changes in potential energies; the contributions
from the volume changes PAV are negligibly small
(e.g., for P=1 atm and b, V=volume of an atom
=30 As, PhV =1.9)& 10 eV). If we assume that
the g dependence of ~ and AHF is mainly
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through AE+, then the activation enthalpy can be
written in the form

hH(T) =a bl—g(T), (17)

C. Temperature dependence of ES and hG

As can be seen from Eqs. (3) and (5), a
temperature-dependent ~ implies a temperature-
dependent bS and b,G. In calculating hS(T) with

Eq. (9), the integration constant Mo was set to be
zero, which is equivalent to setting AS =0 at
T=oo. Here we present some justifications. From
Eqs. (5), (10), and (12), one has

where a and b are constants.
A least-squares fit of the calculated hH(T) with

Eq. (17) using the experimental g(T) reported in
Ref. 8 is shown in Fig. 2. (For this fit the values of
a and b were found to be 0.454 eV and 7.17 eV/A,
respectively. ) It can be seen from the figure that the
fit is quite good, suggesting that there is a strong
correlation between the temperature dependence of
the activation enthalpy ~ and the ordering of the
vacancies on the superlattice. Notice that in deriv-

ing Eq. (17), the two-dimensional nature of the
problem was used in writing Eq. (13).

In Eq. (21), s is the number of equivalent paths of
diffusion from a given site, n/N is the fraction of
vacant sites, and vo is the attempt frequency for a
vacancy to jump to a given occupied neighboring
site. For Na P"-alumina" 1 n/—X= —, and at
high temperatures, s=3. Therefore, from Eqs. (4),
(19), (20), and (21) one has

C=n(1 n/—X)e a /4k . (22)

where oT is in units of (Qcm) K and vo is in
cm '. With the use of ~(T) and ES(T) in Fig. 2
and the conductivity data for Na P"-alumina in
Fig. 1, the value of vo was determined to be 32.2
cm ', which is consistent with the Raman band
near 30 cm ' assigned' ' as the attempt mode for
Na+ ion diffusion in P"-alumina.

The temperature dependence of AG is determined
by ddt and b,S through Eq. (5). Because of the
large value of AS, AG is much smaller than AH at
low temperatures (Fig. 2).

The vacancy density can be calculated from the lat-
tice parameters ' a =5.623 A and c =33.591 A for
Na Ii"-alumina to be n =1.09&(10 ' cm . Equa-
tion (4) can then be written as

o T=39.9voexp f f b H( T)—TES(T)—]lkT I,
(23)

b S(T) = b SF( T)/2+ ASM ( T), (18)

where ASF(T) is the formation entropy for a Frenk-
el defect and ASsr(T) is the activation entropy for
defect motion. At very high temperatures, all va-
cancies become random. This implies that
&G~ =~~—gS~ =0 and gS =ASM
%e next show that ASM ——0 at T=oo will yield a
reasonable value of vo which appears in Eqs. (2) and
(4). This is done by first finding the constant C in
these equations at high temperatures.

To find the constant C, we note that o. and the
diffusion coefficient Dy of the vacancies are related
by the Nernst-Einstein relation

0.T=ne D&/k, (19)

Dy vd /4, —— (20)

where d is the jump distance and is equal to a/v 3,
and v is the jump frequency which can be written
as

v =s(1 n /X)voexp—[ AG(T)/kT] . —(21)

where n, as defined in Eq. (11),is the vacancy densi-
ty and e is the electron charge. From the two-
dimensional random-walk theory one has

V. SUMMARY

As shown by Eq. (7), the experimental heat of ac-
tivation obtained from the slope of the Arrhenius
plot, log(oT) vs 1/T, is identical to the activation
enthalpy ~ if we assume that only one conduction
mechanism is involved. The activation enthalpy
calculated for the Na P"-alumina conductivity data
analyzed in this work has a high constant value of
about 0.33 eV below 350 K and decreases with in-
creasing temperature to about 0.03 eV at 750 K.
This temperature dependence can be understood by
analyzing the ordering of the Na+ ion vacancies on
a superlattice. As can be seen from Fig. 2, the ac-
tivation enthalpy and the extent of the vacancy or-
dering, described by the coherence length g, can be
correlated quite well with the form shown by Eq.
(17). In this respect, the small calculated activation
energy for a single vacancy in the ideal structure
shown in Fig. 4(b) is consistent with the fact that
AII can be very small at some temperatures and is
very sensitive to temperature changes.

The temperature dependence of b,S and b,G
shown in Fig. 2 is a natural result of the tempera-
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ture dependence of ~ through Eqs. (3) and (5).
The value of b,S decreases with increasing tempera-
ture from a high value of about 7k (10 J/K)
below 300 K to about 0 at 750 K. As a result, the
activation free energy in Eq. (4) determined from
bG(T) =~(T) Tb—,S(T) is much lower than the
apparent activation - energy, which is identical to
ddE(T), determined from Eq. (6) at low tempera-
tures.
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APPENDIX

It was shown' that if a log(o. T) vs 1/T plot is
continuous and smooth, then oT can always be
written as

o T=voC exp I [hH (T) —Tb S(T)]/—kT],
(A 1)

where the product voc is a constant and the func-

tions ~(T) and bS(T) satisfy the relation

dbH(T)
dT

TdbS(T)
dT

(A2)

Here we outline a similar but slightly different
derivation of the result. Let X denote 1/kT. From
the assumption we can write

ln(trT/voC) = Y(X), (A3)

P (X)
d Y(X)

dX
(A4)

and I (X) be the intercept of the tangent of Y(X) at
X with the Y'axis. From analytic geometry one has

Y(X)=XP(X)+I(X) .

From Eqs. (A3) and (A5) one gets

o T=voC exp[XP(X)+I(X)] .

(A5)

(A6)

By differentiating Eq. (A5) and using Eq. (A4) one
gets

dI(X) XdP(X)
dx dX

(A7)

If now we define P(X)=~—( T) and kI(X)
b,S(T), then E—qs. (A6) and (A7) become identical

to Eqs. (A 1) and (A2), respectively.

where Y(X) is a continuous and smooth function of
X. Let P (X) be the slope of Y(X) at X, i.e.,
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