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We present a detailed theoretical and experimental investigation of a spatial variation

in the electron-hole —pair density in the strain-confined electron-hole liquid in Ge. The

density variation can be dramatic: We observed a compression of the central density by a

factor of 3 for our largest drop radius, R =0.7 mm. Our experimental density profiles,

obtained using Abel transforms of spatial luminescence profiles, are in good agreement

with the theoretical predictions of approximately parabolic profiles with densities larger

than the equilibrium value at the center of the drop. Our previous first-order theory has

been extended to include the full density dependence of the pair free energy at finite stress

and temperature. We discuss the shape and power dependence of spatial luminescence

profiles and luminescence spectra, since the spatial density variation increases with drop

size. We use the central densities for drop sizes ranging over an order of magnitude to

measure the density dependence of the electron-hole —liquid chemical potential, providing

a sensitive test of many-body theories for the correlation energy. We obtain an improved

value for the isothermal compressibility of the strain-confined liquid: Kz ——0.067+0.017

cm /dyn for n =0.47&10' cm, T=1.9 K, and —o =5.5 kgf/mm, where kgf repre-

sents kilogram force.

I. INTRODUCTION

Since the discovery of electron-hole drops over

ten years ago, an enormous variety of experimental
and theoretical studies have been performed to elu-

cidate the properties of electron-hole liquids (EHL)
in semiconductors. ' Several years ago, microwave
experiments ' in Ge indicated the formation of a
new type of EHL having a drop size of hundreds

of Itm and a lifetime of hundreds of IMsec. The ex-

periments were performed using a so-called Hertzi-

an stressing geometry, in which the shear strain
maximum and its associated electron-hole —pair
energy minimum occur in the interior of the crys-
tal, well separated from the surfaces. Pairs collect

in the strain well and coalesce to form a single

drop of liquid, which we denote the strain-confined
electron-hole liquid (SCEHL).

Many experiments have been performed to learn

the properties of the SCEHL. Among them are
luminescence, ' microwave resonance, ' ' ' mi-

crowave conductivity, ' ' far-infrared absorp-

tion, ' ' ' and ultrasonic attenuation studies.

The electron-hole —pair density has been measured

using several techniques"' ' and is -0.5

X10' cm for stresses -5 kgflmm (where kgf

stands for kilogram force), considerably reduced

from the value for unstressed Ge due to the

changes in the band structure. ' The lifetime is

longer, as a result of the reduced density; several

experiments ' ""' ' give results of -500 p,sec.

The binding energy with respect to free excitons,

&p, is approximately 1 meV (Refs. 11 and 23) and

the critical temperature T, -5—6 K.' ' 3 The for-

mation of the liquid, ' the kinetics of the sur-

rounding excitons' and free carriers, ' ' and eddy

currents within the liquid have also been studied.

The interpretation of our experimental results re-

lies on the formation of a single electron-hole drop

(EHD) in inhomogeneously strained Ge. There is

much evidence to support this. For example, in

light-scattering experiments ' the large-angle

scattering typical of Rayleigh-Gans scattering by

small drops ' vanished. In addition, Alfven reso-

nances ' ' ' occur when the drop diameter is

matched to a multiple of the microwave wave-

length inside the drop. The Alfven waves require

a continuous medium in which to propagate. Fur-

ther evidence for a single drop is its distortion in

an external magnetic field. ' This magnetostric-
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FIG. 1. Photographs of luminescence images from a Ge crystal inhomogeneously stressed in the (111)direction.

The images are displayed using an infrared vidicon and standard television monitor (Ref. 6). The excitation levels are
given by the absorbed laser power, P,b, . T =1.8 K.

tion arises from the recombination currents set up
by decaying pairs in a single macroscopic drop.
The observations of much brighter luminescence
intensity as compared to unstressed crystals" and
the decay of the spatial extent after excitation cut-
off "also indicate the formation of a single drop
in the strain well.

The drop size depends on the excitation level.
Figure 1 shows a series of photographs of the
luminescence emitted at A, =1.75 pm by the
SCEHL in a (111)-stressed sample. The excita-

tion levels are denoted by the absorbed laser power
I',b, . At low excitation, an approximately spheri-
cal drop forms at the bottom of the potential well.
At higher excitation levels, the drop becomes non-
spherical as its shape conforms to a surface of con-
stant strain energy. The largest drop in the figure
has a diameter of —1.4 mm and a volume of
—1.5 mm, making it the largest EHD studied to
date.

In a previous paper, "properties of the SCEHL
such as its size, spectral linewidth, and lifetime
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were studied as a function of excitation level. For
small drop sizes the stress is nearly uniform, and
the equilibrium EHL properties for uniaxial stress
may be studied. As the drop grows larger, the
strain gradient becomes more important. The ob-
served increase in the linewidth and decrease in the
lifetime indicate that the liquid becomes com-
pressed. A simple theory was developed ' which
predicted a variation in the electron-hole —pair
density with position within the drop, and in pre-
liminary experiments' density profiles of the
predicted form were measured. The density varia-
tions were exploited to give a preliminary measure-
ment of the compressibility of the SCEHL (Ref.
13) and to study the density dependence and rela-
tive importance of different recombination mechan-
isms. ' Later, luminescence and microwave con-
ductivity measurements showed an increase in the
average density with drop size. '

In this paper we investigate in detail the
compression of the SCEHL, both theoretically and
experimentally. We present additional qualitative
evidence for compression from luminescence imag-

ing experiments. The density variation can be ex-

plained theoretically in a straightforward manner

by assuming that the SCEHL is in diffusive equili-
brium, i.e., that the chemical potential is a con-
stant throughout the drop volume. We extend our
previous theory, ' which is valid for a restricted
range of conditions around the ground state, to in-

clude the full density dependence of the electron-
hole —pair free energy at finite stress and tempera-
ture. We find, as previously, that the density is
larger at the center of the drop than at the surface,
with an approximately parabolic variation with po-
sition. The density at the surface should remain
approximately the equilibrium density no for the
stress at the bottom of the well, due to the slow
variation in no with uniaxial stress, while increases
in the central density of a factor of 3 should be
readily attainable in experiments. Thus, a unique
feature of the SCEHL in Ge (Ref. 26) is that the
density changes as the liquid is squeezed by the
strain well at a fixed temperature.

We also discuss the effects of the spatial density
variation on the shape of spatial luminescence pro-
files as a function of drop size. We show that den-

sity profiles can be obtained from Abel transforms
of luminescence profiles obtained by scanning the
crystal image across a small aperture. The density
variations we measure for drop sizes ranging over
an order of magnitude are in good agreement with
the predictions, both in form and in magnitude.

We use the central densities to determine experi-
mentally the density dependence of the EHL chem-
ical potential. This provides a sensitive test of the
many-body theories used to describe correlations in
electron-hole liquids. While the measurements
differ from the particular theory we consider, we
believe the discrepancy may lie within the uncer-
tainty in the mathematical representation of that
theory. We use the density-dependent chemical po-
tential to obtain a refined value for the isothermal
compressibility E~ of the SCEHL: Kq ——0.067
+0.017 cm /dyn for n =0.47 &(10' cm, T =1.9
K, and —o.=5.5 kgf/mm . This value is nearly
30 times greater than in unstressed Ge. Equipped
with an accurate description of the density varia-
tion for different drop sizes, we discuss the spec-
tral line shape expected from a drop having such a
density profile. Several features of our calculated
composite spectra are in good agreement with ex-

periment.
This paper is divided into a number of sections.

In Sec. II we discuss some experimental details.
The strain well is characterized in Sec. III. Quali-
tative evidence for the compression of the SCEHL
is presented in Sec. IV. In Sec. V, we review the
first-order theory of the density variation and

present an exact theory. The manifestation of the
density variation in spatial luminescence profiles is
discussed in Sec. VI. We present experimental
density profiles in Sec. VII. The density depen-

dence of the chemical potential and the compressi-
bility are considered in Sec. VIII. Finally, in Sec.
IX we discuss composite luminescence spectra.

II. EXPERIMENTAL DETAILS

The sample used in the experiments was cut
from a large single crystal of ultrapure disloca-
tion-free Ge grown by Hansen and Hailer. The
material is uncompensated, i.e., (Nq +ND ) /

~
Nq —N~

~

& 10, with a net impurity concentra-
tion

~

N„—ND
~

&10" cm . The primary electri-
cally active impurity is an acceptor level at -80
meV with a concentration -2&10" cm which
is believed to be due to hydrogen-divacancy com-
plexes. The sample was cut along crystal sym-

metry axes, lapped, etched in a 3HNO3. HF solu-

tion, and rinsed with methanol. Its final dimen-

sions were 3.85&(3.95)&2.80 mm measured paral-
lel to the (111),(112),and (110) directions,
respectively.

The sample was mounted in the holder shown in
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FIG. 2. Diagram of sample holder, showing the ar-
rangement for stressing a Ge sample and for viewing it
from three mutually perpendicular directions. The dia-
gram is to the scale shown.

Fig. 2, sitting on a flat quartz plate, and was

stressed along the (111)direction by a nylon rod
with a rounded tip. This geometry results in the
formation of a single strain well in the interior of
the sample. The force on the nylon plunger was
transmitted by a stainless-steel tube from a cali-
brated spring arrangement outside the cryostat.
The sample was stressed at room temperature be-
fore cooling to liquid-helium temperatures. We
selected a carefully machined plunger with a large
radius of curvature to obtain a contact area )2
mm . Because of the large contact area and sam-
ple thickness, the strain well was unusually large
and well separated from all surfaces of the crystal.
The holder in Fig. 2 was equipped with front-
surface mirrors oriented at 45' located below and
next to the sample to permit viewing from three
mutually perpendicular directions.

The setup was similar to that used previously, "
with a few additions and modifications. To ensure
that the laser output remained stable throughout a
series of scans, up to a few hours in duration, we
used a stabilizer circuit added to the power sup-
ply. Using this circuit and neutral density filters,
the laser excitation was varied by nearly 5 orders
of magnitude. The laser output was square-wave
modulated at -85 Hz. The relatively long pulse
length (-5.9 msec} reduced the effect of phase
shifts due to different luminescence decay times
from different regions of the drop. Signal averag-

ing was provided by a PAR model 186A syncro-
het lock-in amplifier, whose output was fed into an
8-bit analog-to-digital converter and punched onto
paper tape. The tapes were later processed by
computer.

The luminescence was detected by a cooled
reverse-biased PIN photodiode fabricated from ul-

trapure single-crystal Ge by Hailer using a pro-
cedure outlined in Ref. 32. A bias voltage of
—180 V depleted the entire device. The detector
was continuously maintained in vacuum at its
operating temperature (T-160 K) to reduce hy-
drocarbon and water contamination of the surfaces
and to minimize thermal cycling. The operating
temperature was chosen to maximize the signal-
to-noise ratio by nearly matching the indirect band

gap while reducing the total noise from the ther-
mally generated dark current and the first amplifi-
cation stage. We estimate a quantum efficiency of
-37%%uo under operating conditions. The change in
detector response with wavelength was included in
the fits of the spectra in Figs. 6 and 23.

The detector was connected to a current ampli-
fier with a response time of 10 @sec. The lumines-
cence intensity is conveniently expressed as the am-
plifier output in mV, where 1 mV corresponds to
3.0)&10 ' % incident on the detector or 2.5
)&10 W radiated by the EHL. The detector
output was quite reproducible: The daily normali-
zation factor varied by only -25% over several
weeks of experiments.

Our imaging technique was crucial in obtaining
detailed information about the spatial distribution
of the luminescence. We used a Zeiss Tessar 105
mm focal length f/3. 5 camera lens to obtain high-

quality images, with the f-stop fully open for max-
imum sensitivity. A 2.9X magnified image of the
crystal was translated in the image plane using a
90 deflection mirror precisely controlled by
stepper motors. A luminescence profile obtained

by scanning the image across a slit mounted either
vertically or horizontally is called a slit scan. A
corresponding profile obtained with both horizon-
tal and vertical slits in place is called a box scan.

Slit and box scans were measured for three
orthogonal spatial directions, using the mirrors in
Fig. 2 to obtain different views of the sample. The
views and the conventions for labeling crystal coor-
dinates are shown in Fig. 3. The image was
translated by one step of the stepper motor by a
distance corresponding to -8 or —12 pm in the
crystal for a vertical or horizontal scan, respective-
ly.
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FIG. 3. Definition of the coordinate system used in
t is paper. orh' . For a z scan, either the face or the side view
is scanned vertically across a slit or box aperture. For a
y scan, either the face or the end view is scanned hor-
izontally across the aperture. For an x scan, the end
view is scanned vertically or the side view is scanned
horizontally. Zero points for x, y, and z are as shown.
The face view is obtained directly while the end and side
views use the 45' mirrors shown in Fig. 2.

The spatial resolution depended on several fac-
tors, including the resolution of the lens, the focus-
ing accuracy, the aperture size, the sweep speed
and time constant, and the optical quality of the

t l surface. We estimated the overall resolu-
edtion empirically from a series of slit scans recorde

for the x, y, and z directions. The drop volume

may be computed from the radii R„,R~, and R„
11which are given for constant density by

R = Wg/W2,

where W, is the full width at half-maximum
(FWHM) of a slit scan. The volume is shown later
in the paper as a function of excitation level (see

Fig. 8). The break in the slope for small drop sizes
indicates some loss of spatial resolution. We con-
clude that W, is a good indicator of drop size for
8', & 100 pm or R & 70 pm.

We note that the excitation level is given, as pre-
viously, "by the actual laser power P,» absorbed
into the sample. At the highest excitation levels

(P,b, -0.85 W) sample heating must be considered.
A crude estimate of the EHL temperature can be
made from the high-energy tail of a luminescence
spectrum. We estimate that the EHL tempera-
ture may be slightly higher than that of the
liquid-helium bath ( —1.9 K) but is certainly less
than 4 K.

&III& Stress
(IIO) Face

~ill (kg f/mm~)

&III& Stress

(a)

i ns of o, the (111)component of stress, with parameters chosen to reproduceFIG. 4. Two-dimensional calculations o 0.&i~, t e
of sam le. {b) Corresponds to side view of sam-experimental conditions in a e cd' ' ' 6 crystal. {a) Corresponds to face view o samp e.

pie.
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III. CHARACTERIZATION OF THE
STRAIN WELL

In order to quantitatively understand the varia-
tion of the electron-hole —pair density with posi-
tion in the SCEHL, it is necessary to characterize
the strain well. In this section we discuss the de-

gree to which the stress is uniaxial, the maximum
stress cr at the center of the well, the equilibrium
density no, and the shape of the strain well, for
both excitons and the EHL.

Our stressing geometry results in a highly non-
uniform distribution of stress. The shear strain
components and other quantities can be calculated
for such a geometry. ' Information about the
three-dimensional distribution is inferred from a
pair of two-dimensional plots passing through the
center of the crystal for perpendicular orientations.
Figure 4 shows the results of such a calculation of
0111, the component of stress along the (111)
direction, in a Ge crystal. Part (a) represents a
slice parallel to a 4&(4 mm (110) face, while part
(b) represents a slice parallel to a 4X 3 mm2 (112)
face. Parameters were chosen to approximately
reproduce two experimental features: the max-
imum stress —0 =5 kgf/mm (see below) and the
position zo ——0.8 mm of the well relative to the
face touched by the plunger. Note that compres-
sional stresses are negative and that 1 kgf=1 kg
force= 9.80665 newtons.

The computer program also evaluates other
stress components. A measure of the deviation

from uniaxial stress is given approximately by
the ratio

~/ 2 2
+non-Ill/ITIII = & tryy+2tryz/+zz ~

where z is along (111)and yj.z. This quantity is
shown in Fig. 5 for the geometry and parameters
of Fig. 4. Even for the largest drops studied,

o„,„
III/o111&0.3. Thus we shall assume uniaxial

(111)stress throughout the region of the crystal
occupied by the SCEHL.

The maximum stress o~ at the center of the
well cannot be obtained directly from the applied

x(+m)
1.76 1,75

T=19K ~Er EAK

I—

Z'
s

LLJ

UNSTRESSED Ge
I I I II

765
hv(me V)

1.74
I I I

I

710

FIG. 6. Luminescence spectra from stressed and un-
stressed Ge samples for T =1.9 K. The open circles

give the theoretical line shapes for the best fit. The
shifts of the peak energy EE~k and of the spectroscopic
energy AE,~, are indicated, along with the spectral reso-
lution.
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force and the plunger-sample contact area. We
used two methods to estimate o.~. Figure 6 shows
a luminescence spectrum from the stressed sample
for low excitation (P», ——0.8 mW) and one from
unstressed Ge for P», 25——mW. In the first
method, the stress is obtained from the shift of the
peak energy by comparison with the uniaxial stress
data of' Benoit a la Guillaume et al. , which are
fitted by the following expression:

AE,k
——1.62+0.680, 2.5 & —o. & 13, (3)

where o is in kgf/mm and b,E~,& is in meV.
From our observed value bE~,q ———1.93 meV, we
find —o~ =5.2 kgf/mm .

In the second method the stress is obtained from
the shift of the Fermi energy, in turn obtained
from a line-shape fit. The data of Ref. 39 were
not analyzed in sufficient detail to yield these spec-
troscopic energies, E,„„.However,

~+spec =~+gap ~fo (4)

where EEgzp is the change in the minimum band

gap and fo is the ground-state pair energy with
respect to the lowest conduction-band minimum.
Using experimental deformation potentials and
our calculations ' of fo, we find

hE,~, ——1.81+0.77cr, 2.5 & —0 & 9 (5)

—o.~ =5 kgf/mm, T = 1.9 K .

(6)

with the same units as for Eq. (3). We obtained
the spectroscopic energies shown in Fig. 6 from
line-shape fits and found AE,p„=—2.67 meV,
yielding —o =5.8 kgf/mm . The good agree-
ment between the two methods indicates that the
change in fo with stress is described well by the
calculations. ' We show in Sec. VB that the
theory of the present paper is not sensitive to small

changes in 0.~, so we will present theoretical re-
sults for —o~ =5 kgf/mm .

The line-shape fits also yielded electron-hole—
pair densities. For unstressed Ge we used the
standard line-shape formula ~ and found n =2.20
+0.05)& 10' cm, in good agreement with other
published values. For the stressed sample, we
used an appropriate modification of the standard
formula, including the stress-induced conduction-
and valence-band splittings and energy-dependent
hole density-of-states masses. The best fit was
obtained for

n =0.47+0.03)&10' crn

Since the spectrum was measured at low excitation,
the deduced density is the equilibrium density for
this stress. In the figure the open circles give the
theoretical line shapes, in which both the spectro-
meter resolution (0.66 meV FWHM) and the
wavelength-dependent detector response are includ-
ed.

The shape of the strain well can be characterized
by the shape of a spatial slit scan of the lumines-

cence emitted by excitons at high temperature in
the absence of liquid. If the exciton energy is a
parabolic function of the distance r from the center
of the well and if the excitons behave like an ideal

gas, then the intensity in a slit scan is given by"

I(x)=I(xo) exp[ —a,„(x—xo) /kT], (7)

a,p„=1.7+0.2 meV/mm (8)

for the x and y directions.
Finally, it is useful to estimate the variation in

stress over the volume of the largest drop obtained,
R =700 pm. Using Eqs. (5) and (8) we find that
the maximum variation in stress is —1.1 kgf/mm .

IV. QUALITATIVE EVIDENCE FOR
COMPRESSION OF THE SCEHL

In a previous study" of the properties of the
SCEHL, we found that the luminescence spectral
linewidth depended on the excitation level. In par-
ticular, the linewidth was constant at low excita-

where x =xo is the center of the well. This form
has been observed for strain wells both in (111)-
stressed Ge (Ref. 11) and in (100)-stressed Si.
For the present sample, we find that the strain well

is accurately parabolic with well parameters u,
„

= 1.9+0.1 meV/mm and e",„=2.0+0.2
meV/mm for the x and y directions. While the
upper half of the z scan (above the center of the
well) is reasonably parabolic, with a',„=5.5+0.5

meV/mm, the lower half is less so, but with an
average -2 meV/mm . The latter deviation
from parabolicity, as well as the good agreement
for the other directions, may be anticipated from
the calculations of Fig. 4. A good starting point
for the description of the strain well in this sample

is a hemisphere plus a hemi-ellipse.
In the stress range of interest (2.5 —6 kgf/mm ),

we showed above that E p
and Eg p have slightly

different stress dependences. The ratio of these

stress dependences gives the EHL spectroscopic
well parameter, a,p 0 89a,„,so that
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tion but increased substantially at higher excitation
levels. In contrast, for unstressed Ge the linewidth
is always found to be independent of the excitation
level: Indeed, the constant linewidth provides
strong support for the identification of a liquid
phase. The increase in the luminescence linewidth
of the strain-confined EHL at high excitation can
have two contributions. " ' One is due to the vari-
ation of the stress with position in the well: The
luminescence is shifted to higher energies near the
surface of the drop, where the magnitude of the
stress is lower. In addition, an increase in line-
width could indicate an increase in the average
electron-hole —pair density.

In the earlier study" the initial luminescence de-
cay time r; was also studied as a function of exci-
tation level. We found that r; was constant at low
excitation but decreased, again substantially, at
higher excitation levels. Since the recombination
processes are generally assumed to depend on stress
only through the electron-hole —pair density, and
since the contributions to the lifetime depend in-
versely on the density, the observed decrease in ~;
indicates an increase in the density at high excita-
tion.

Additional qualitative information can be ob-
tained from the excitation dependence of spatial
luminescence profiles. Figure 7 shows the peak

FIG. 7. Total luminescence intensity I„„peakinten-
sity in a slit scan I,~;„andpeak intensity in a box scan

Ib,„,as a function of absorbed laser power P,b, . The in-
set shows the schematic arrangement for slit and box
scans. Slopes are indicated for the same range of excita-
tion levels. The experiment was performed at T =1.9
K.
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FIG. 8. Drop size and volume vs absorbed power.
The slopes are indicated for the same range of excitation
levels as for Fig. 7. T=1.9 K.

luminescence intensity for box and slit apertures,
Ib„and I,~;„and the total luminescence intensity
without spatial selection, I„„asa function of ab-
sorbed laser power, P,b, . Figure 8 shows the drop
size and volume as a function of P,b„where the
drop size is given by 8', and the volume is ob-
tained from the radii and Eq. (1). To aid in the in-
terpretation of these data, straight lines indicate
the trends for 0. 1 &P,b, & 5 mW.

We shall attempt to interpret the data using
geometrical arguments for spherical constant-
density drops. The total luminescence intensity is
a measure of the amount of liquid present. The
slope found for I„,in Fig. 7, 1.44, indicates that
the production efficiency falls off at low excitation
levels, due to the relatively large distance to the
strain well from the excited face of the crystal.
Geometrically, I«, is a measure of the drop
volume and thus should vary with power as R,
where R is the drop radius. I,&;, represents a slice
through the center of the sphere and should vary
as R . Similarly, Ib,„represents a core section
through the center of the sphere and should vary
as R.

It is clear from the slopes given in the figures
that these simple relationships are not true. First,
the two measures of the drop size, Ib,„and8'„
have very different power dependences, with slopes
0.67 and 0.41, respectively. Second, the two mea-
sures of the drop volume, I„,and V, also have dif-
ferent power dependences, with slopes 1.44 and
1.24, respectively. Third, the slopes for Ib „,I,~;„
and I„,have the relation 0.67:1.12:1.44, which
does not correspond to the expected relation
a:2a:3a (a@1 indicates varying production effi-



STRAIN-CONFINED ELECTRON-HOLE LIQUID IN Ge: 599

ciency). All these deviations from the simple
geometrical model can be understood qualitatively
if the density varies with position within the drop,
if the density is higher at the center of the drop,
and if the density at the center of the drop in-
creases with drop size.

V. THEORY OF THE DENSITY VARIATION

E =Ep+. —,Ep'(n —np) +E,(r), (10a)

where no and Eo are the ground-state density and
energy, Ep' dE——/dn

~ „,and the strain energy is

assumed to be parabolic in the distance r from the
center of the well:

stant chemical potential is certainly justified.
We review the first-order theory which has been

outlined previously ' for T =0. The pair free ener-

gy is expanded about the minimum:

In this section we show theoretically how a den-
sity variation such as the one described qualitative-
ly in the preceding section can occur. We describe
a first-order theory in order to gain some physical
insight. Then we present a more exact theory.

2Es («) aspecr

The pressure is given by

P =n =n Ep(n np) —.2dE
dn

(10b)

A. First-order theory

The basis for a variation of density with position
in the SCEHL consists of two facts: (1) the pair
energy varies with density in the EHL, and (2) the
SCEHL sits in a potential energy well, so that the
energy varies with position in the drop. In the ab-
sence of a strain well, the equilibrium density
np(T) (for low I) is that for which the pair energy
is a minimum. The liquid can have a density other
than np(T) only at the cost of an increase in ener-

gy. In the strain well, for small drop sizes the
change in energy across the drop is small, and the
density is nearly uniform with the equilibrium
value. As the drop grows larger it occupies regions
of higher strain energy and the average pair energy
is forced to increase. However, the total drop ener-

gy can be reduced if the liquid becomes more dense
at the center, where the strain energy is lower.
Thus, the density will vary with position with den-
sities higher than np(T) in the interior of the drop.

The condition which determines the form of the
density distribution is that the chemical potential is
a constant throughout the drop volume. This
means that the liquid is in diffusive equilibrium:
The time required for particles to travel across the
drop is much less than the drop lifetime. We veri-

fy this condition by estimating a carrier Fermi
velocity

v~ +2EF/m =4X1——0 cm/sec,

where we have used EF-2 meV and m =0.4mo to
underestimate vF. The greatest distance to be trav-
eled is the diameter of the largest drop studied,
—1.4 mm, so that the maximum transit time is
less than -0.035 psec, much less than the drop
lifetime ~=500 psec. Thus the assumption of con-

=Ep+npEp'(n —np)+as~, r =const . (12)

An expression for the density as a function of posi-
tion, n (r), can be obtained using Eq. (12) for arbi-
trary r and for r =R:

n(r)=n(R)[1+p(R)(1 r2/R )], —

where

(13a)

P(R)=a,„,g /[n(R)npEp'] . (13b)

Thus the density profile is parabolic, increasing
from n (R) at the surface to

n (0)=n (R)[1+p(R)]

at the center of the drop.
The density at the surface of the drop is ob-

tained as follows. We note that the change in

pressure across the drop surface is given by

(13c)

(14)Piiquid Pgas =$/R

where $= 1 X 10 " erg/cm is the surface ten-

sion. Even for the smallest drops studied here,
R =50 pm, the pressure difference -0.02 dyn/cm
corresponds to a negligible correction to the liquid
density. Thus

n(R)=np . (15)

Actually, since the equilibrium density varies with

stress, ' ' n (R) depends on the drop size. How-

ever, this change is relatively small: Our calculat-
ed equilibrium density changes by only about 10%

To first order in n np t—he chemical potential can
be written

dEp=E+n
dpi
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over the included stress range for our largest drops
( —1.1 kgf/mm ). This small change in np with

drop size will be neglected, since it is much smaller
than the density variation implied by Eq. (13).
The central density can be estimated using no Eo'
=0.42 meV (Ref. 47) and a,~„=1.7 meV/mm .
The density variation is less than 10% if R & 160
pm, while for R =700 pm we predict
n (0)=3.0np.

The magnitude of the density variation for large
drop sizes may at first be surprising, since most
liquids are not very compressible. If a hard-sphere
model is used to describe the liquid atoms or mole-
cules, the interparticle spacing in most liquids is
close to the size of the sphere. However, in the
electron-hole liquid the wave functions of the con-
stituent particles can have considerable overlap.
The equilibrium interparticle spacing is approxi-
mately the exciton Bohr radius, but the hard-
sphere radius would be much smaller. Thus the
compressibility of the EHI. can be much greater
than that of ordinary liquids.

It is clear that Eq. (13) is no longer valid for
large drop sizes, since the deviations from np are
no longer small. Hence a more exact theoretical
treatment is necessary. Before turning to that,
however, it is useful to estimate within the first-
order theory the effect of temperature on the densi-

ty profile. For example, in studying the electron-
hole liquid-gas phase diagram in a strain well, we
shall see that for elevated temperature it is neces-

sary to account for the compression of the liquid
even for relatively small drop sizes. For finite T
the pair energy of Eq. (10a) becomes:

E =Ep(T)+ , Ep(T)[n —np—(T)] +a,~r (16)

and assume that y(n)-n ~. Then we find

P(R, T)=P(R,O)[1+.—,5„(kT)],
where 5„is defined by

np(T)=np[1 —5„(kT)] .

(18a)

(18b)

We can use Eq. (18a) to estimate the largest drop
size for which the density is uniform to within
10% at T=4.2 K. Using 5„=3.8 meV (Ref.

In Eq. (13), n(R)=np(T) and P(R, T) now depend
on T. For simplicity we consider a low-T expan-
sion

E =Ep+ —,Ep'(n —np) ——,y(n)T +a,~,ri,
(17)

n =—I n (r)d V =n (1p+2P/5) .1

V
(20)

For finite temperature an expression analogous to
Eq. (18b) may be obtained:

n(T) =n(0)[1—5'„(kT)],
where

(21a)

5,rr 1 —16P(R,O)/15
51+2P(R, O) /5

Using n pEp' 0 42 m——eV,.R = 150 gm, and
a,~,=1.7 meV/mm, we find 5'„/5„=0.87.
However, for a,~,=8 meV/mm the ratio becomes
0.46. If the density variation is not taken into ac-
count, substantial errors can occur in the measure-
ment of quantities such as 5, and the compressibil-
ity (see Sec. VIII).

B. Exact theory

The preceding section was intended to give some
physical insight into the variation of the density
with position in the SCEHL. The numerical ex-
amples must in some cases be taken only as guide-
lines, however, since the first-order theory is not
valid for large deviations from no. For quantita-
tive analysis a more exact theory must be used:

47) and the values given above, we find R =95 pm.
For a steeper strain well, the requirement is more
stringent: Using a typical value" a,~=8
meV/mm we find R =45 pm. At high tempera-
tures, then, the liquid may already be appreciably
compressed at the smallest drop sizes for which
enough luminescence can be collected for an accu-
rate line-shape fit.

It is interesting to consider the temperature
dependence of the central density:

n (0, T) = np[1+P(R, O) ]

+np[8p(R 0)/3 —1]5 (kT) . (19}

The sign of the temperature coefficient depends on
the drop size through P(R,O). For small radii, the
coefficient is negative and the liquid expands as
the temperature rises. For larger drops, however,
the compression is more important and n (0, T) ac-
tually increases with T. For a,~,——1.7 meV/mm
the temperature coefficient changes sign at R =300
pm.

Since many experiments measure an average
density, it is useful to have an expression for it.
Using the form of Eq. (13a) we have
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Equation (10a) must be replaced by a full calcula-
tion of the pair free energy as a function of densi-

ty. Such a calculation has been described for finite
stress and temperature '. Here we will use our re-
sults for model 1. Figure 9 illustrates the differ-
ences between the full model-1 calculation (solid
curves) and the first-order calculation (dashed
curves) of the free energy (curves a and b) and the
chemical potential (curves c and d) for —o =5
kgf/mm and T =1.9 K, omitting the strain ener-

gy term. It is clear that the full calculation must
be used when the density deviates significantly
from no.

FIG. 9. Electron-hole —pair free energy and chemical
potential vs density for —can=5 kgf/mm and T =1.9 K.
a, Free energy, model 1. b, Free energy, first-order
theory. c, Chemical potential, model 1. d, Chemical
potential, first-order theory.

f*(n, T,o~, r) = Es,„(o~)+f(n, T,o )

++spec~ (22a)

2 Bf*(n,T,o,r)P(n, T,om, r) =n'
Bn

2'(n, To )=n
Bn

(22b)

We assumed implicitly in the discussion of the
first-order theory that the effect of the strain well

is contained entirely in the term E,(r), i.e., that the
density dependence of the free energy is indepen-
dent of drop size and hence of stress. This is veri-
fied explicitly in Fig. 10, where we show curves for
p(n) for —o =3 and 5 kgf/mm, shifted vertically
to coincide at approximately the equilibrium densi-
ty. The difference between these two stresses is
nearly twice the range included in the largest drops
studied. Except for an additive constant, the
curves are very similar over a wide range of densi-
ties. With the information given previously, we
conclude that the strain well may be adequately
described by a uniaxial stress 0. and a strain ener-

gy term E,(r) =a»„r
It will be convenient to express some energies

relative to the valence-band maximum; such ener-

gies will be labeled with an asterisk. Thus

.9
S
lL

CP
~~
E

o

«4

0
I

0.5
I

l.O
I

l.s
n(10 cm )

l

2.0

FIG. 10. Chemical potential vs density for two values of stress. .The curve for —o =3 kgf/mm has been shifted
vertically to coincide with the curve for —o =5 kgf/mm at approximately the equilibrium density.
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TABLE I. Coefficients for density power series.

Coefficient Value Unit

no{T)
Ai
A2

A3

A4

A5

A6

A7

s

A9

Alp

0.493
1.391

—1.703
3.413

—4.524
3.651

—1.725
0.491

—0.125
0.0401

—0.0070

10' cm
10' cm meV
10' cm me V
10' cm 'meV
10' cm meV
10' cm meV
10' cm me V
10' cm me V
10' cm me V
10' cm me V
10' cm me V

C g

p ~(n, T,o,r) = Es,p(o )+p(n, T,o )

2
+O'sp c~

where Es,z(o~ ) is the minimum valence-conduc-
tion band gap for the stress o, and f and p are
the model-1 calculations measured as usual with

respect to the conduction band. The chemical po-
tential for a drop with radius R is given by

p~ =Es,p(o )+p(no(T), T,a )+a,p,Q'
(23)

FIG. 12. Calculated normalized central density vs

a,~R, for —o.=5 kgf/mm and T =1.9 K. The solid
curve is the exact theory and the dashed line is the
first-order calculation.

where po is the chemical potential in the limit of
zero drop size. This quadratic dependence of po
on drop size holds as long as the strain well is par-
abolic.

As for the first-order theory, Eqs. (22c) and (23)
may be combined for arbitrary r and for r =R:

p(n(r, R, T), T,o)—p(n (oT), T. o )

=a,~,(R —r ) . (24)

2.0—

-g = 5, Q kgf/mm

T = (9K

Imm

This implicit equation must be solved for the den-
sity profile n (r,R, T). It is convenient to express
the density difference n (r,R, T)—no(T) as a power
series in the chemical potential difference
p(n) —p(no) (Ref. 49) so that

tO
I

O

00 pm

O
4l

f Q

5QQ p, m

0.5—

FIG. 11. Theoretical density profiles for different
drop sizes calculated using Eq. (25) for —0.=5
kgf/mm, T =1.9 K, and a,~=2 meV/mm . The posi-
tion variable x is normalized to the drop radius A.

(25)

n(r, R, T)=no(T)[1+P(R, T)(1 r /R )], (26a)—
where

10

n (r,R, T)=no(T)+ g 2;[a,~,(R —r )]' .
i=1

We included chemical potential differences up to 2
meV and used ten terms in our fit. Values for
no(T) and the A; are listed in Table I for cr=5-
kgf/mm and T=1.9 K.

Several density profiles calculated according to
Eq. (25) are shown in Fig. 11 for a,~,=2
meV/mm, where the position variable x is nor-
malized to the drop radius. These profiles appear
qualitatively to be parabolic. %e have shown
that they are indeed very nearly parabolic, with
parameters determined by the central densities of
Eq. (25) and by Eq. (15). Thus we may write
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10

13(R,T)=g A;(a,p,Q )'/n p( T) . (26b)
range increases with 0, with a maximum density
of -4.5&&10' cm for —cr =10 kgf/mm .

The calculation of luminescence profiles (see Sec.
VI) is simplified by using this formula.

We note that P(R, T) is not simply proportional
to R, as it was in Eq. (13). We illustrate the
difference in Fig. 12, where we show the normal-
ized central density n (0)/np ——1+P as a function
of a,~Q . The solid curve is the exact theory of
Eq. (26b), while the dashed line is the correspond-
ing first-order theory using np(T)Eo'(T) =0.34
meV. For a,p„=1.7 meV/mm we find, as previ-
ously, that the density variation will be less than
10% if R & 160 ium. For R =700 ium, the exact
theory yields n (0)=2.6np while the first-order re-

sult has increased to n (0)=3.4np because of the
decrease in nQo' at finite T. The first-order
theory overestimates the density increase for large
drop sizes, but the variation is still quite substan-
tial.

The results of Fig. 12 can easily be used for oth-
er strain well conditions. For example, as~,R =1
meV corresponds to a,p«

——2 meV/mm and
R =707 pm or to us~, ——8 meV/mm and R =354
pm. In addition, since the chemical potential
versus density does not change too rapidly with
stress (see Fig. 10), the calculation will be fairly ac-
curate for a range of stresses, at comparable tem-
peratures.

We conclude this section with a determination of
the maximum drop size and central density for a
given stress o. . We note that for stresses smaller
(in magnitude) than cr;„=—2.6 kgf/mm, the
ground-state energy po, measured from the valence
band, does not decrease with stress. Therefore, it
is not energetically favorable for the EHL to be in
a region of the crystal where

~

o
~

&
~

o
Hence the chemical potential p~(om ) for a drop of
radius R and stress o. cannot exceed the value

pp(o;„).The maximum drop radius R,
„

is given

by

2
aspec max —iMO(+min) po(am ) ~

For —om =5 kgf/mm, we find a,p„R,„=1.8
meV. In the experiment, our maximum value of
a,~Q was -0.85 meV, so the well was only
about halfway full. Because the drop radius is
limited, the density n (O,Rm,„,T) is also limited.
For the same conditions as above, the maximum
density is -2.2X 10' cm . Thus a range of den-
sities is accessible simply by changing the excita-
tion level to change the drop size. The available

VI. MANIFESTATION OF THE DENSITY
VARIATION IN SPATIAL LUMINESCENCE

PROFILES

Because the density variations predicted in the
last section can be so large, many types of lumines-
cence experiments are affected. In this section we
shall investigate the effects on spatial luminescence
profiles and describe a method to measure the den-
sity variations directly. The radiative decay rate
for pairs in a small volume d V located at a posi-
tion r is

dI(r)= dV,r„,d(n)
(28)

which may be integrated over V to give the radiat-
ed power. The radiative lifetime is given by

r,, (dn)=Biip(n)n . (29)

Here 80 is a constant which is proportional to
~D

~
~H

~
/~5E ~, where D is the optical matrix

element, H is the electron-phonon matrix element,
and 5E is an energy difference. ' ' For simplicity

Bp is assumed to be independent of parameters
such as stress and magnetic field; its stress and
field dependences are unknown but hopefully
small. The enhancement factor p(n) is the ratio
of the probability of finding an electron and a hole
at zero separation in the EHL to the same proba-
bility for uncorrelated carriers. At high densities p
approaches 1 as screening causes the carriers to
lose their correlation. At low densities the carriers
can become more highly correlated and p increases,
eventually becoming proportional to n ' so that
r„,q becomes independent of n The lo.w-density
limit for ~„dshould be close to the free-exciton
radiative lifetime, which is at least —1.5 msec in
stressed Ge.

We use the results of Vashishta's fully self-
consistent (FSC) calculation of the enhancement
factor corresponding to the model-1 correlation en-

ergy. 5~ Over a limited density range p(n) may be
represented by

p(n)=2. 86ni7, 0.4&ni7 &2.5 (30)

where n17 is the density expressed in units of 10'
cm . The FSC calculation yields a steeper den-

sity dependence for p than less sophisticated
models. "
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Ib,„(x;z=0)
x +s/2 R s/2

=Bo f dx f dy f dzn (r)p(n),

I

-1.0

xlR

I

1.0

A slit scan along the x direction in the crystal is

given by

FIG. 13. Theoretical luminescence slit scans from
Eq. (31). Outer curve: uniform density. Inner curves:
the density distribution of Eq. (26) with n(0) =2.8no.
Dashed curve: includes p(n) from Eq. (30). Solid curve:
omits p(n). The slit width s =0.05R.

(32)
where the two crossed slits have the same width, s.
Figure 14 shows the effect on a box scan of the
same density distribution as for Fig. 13. For con-

stant density and a small slit width Ib,„(x)
-(R —x )'~, so that the edge of the drop is very
well defined. The effect of the density variation is

larger on a box scan than on a slit scan. The full
width at half-maximum, 8'b, of the inner curves
has become almost as narrow as O', . These quali-

tative features should be readily observable experi-

mentally, as long as s «R.
The primary factor which determines the shape

of a slit or box scan is the density distribution.
But this also has a strong effect on the peak inten-

sity of the scan. A drop with, e.g. , n (0)=2.8no
contains more electron-hole pairs than a drop with

a constant density no and it luminesces more in-

tensely. Ib„emphasizes the higher-density central

region of the drop as compared to I i;, or I„,. For
this example, the ratio of values for I,i;, with and
without the density distribution is 2.9, while the
corresponding ratio for Ib,„

is 3.7.
Several features of Figs. 7 and 8 are now clear.

x +s/2 R R
I,i;,(x)=BO f dx f dy f dznz(r)p(n),

(31)

where z +y +z =p', R is the drop radius, and z

is the effective slit width on the sample. Figure 13
shows the effect on a slit scan of the density dis-
tribution given in the preceding section. The outer
curve shows a slit scan for constant density, for
which I,~;,(x)-R —x for small slit widths. The
inner curves use the density profile of Eq. (26)
with n (0)=2.8no. The dashed curve includes p(n)
from Eq. (30), while the inner solid curve omits
p(n). For all three curves s =0.05R, so the effect
of the finite slit width is small. The effect of p(n)
on the shape of the profile is negligible. The effect
of the density distribution, however, is substantial:
The profile is more peaked in the center, and the
full width at half-maximum of the profile, 8'„is
reduced.

A similar calculation may be performed for a
box scan. In this case

I

-10
l

1,0

FIG. 14. As Fig. 13, but box scans from Eq. (32).
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In the presence of drop-size —dependent density

profiles, W, should increase with excitation more
slowly than R, while Ib,„should increase more
rapidly than R. Similarly, I,~;, should increase
more rapidly than R or 8', but less rapidly than

Ib,„.In addition, I«, should increase more rapidly
than R or 8', but less rapidly than I,&;t or Ib,„.
These relationships indeed are observed in the data.

A more quantitative comparison of peak intensi-
ties is obtained by plotting them as a function of

@(x)=IIoI dy n (r)p(n), (33a)

drop size 8', rather than excitation level. In Fig.
15 we show I„„I,~;„andIb,„asa function of W,
for constant density (n =no) and for the density
distribution of Eq. (26) with a,z„——2 and 8

meV/mm . The calculations were performed using
an effective slit width s =35 pm. For constant
density, we find the expected slopes of 1, 2, and 3
forI„„I,j;„andIb,„,respectively, with small de-

viations at small drop sizes due to the finite slit
width. The deviations from the constant-density
case become more pronounced as the strain well

becomes steeper and as the drop size increases;
they are more pronounced for Ib„than for I,);,
and in turn for I,~;, than for I„,.

The density profiles discussed above can be mea-

sured directly from luminescence spatial profiles,
using Abel transforms. This technique is used in

plasma physics and astrophysics to analyze the ra-
dial distribution of plasma radiation. The plasma
is assumed to be optically thin (no reabsorption of
the radiation by the plasma) and to have cylindri-

cal or spherical symmetry. These conditions are

applicable for the EHL; we show below that the

circular symmetry condition is easily relaxed to el-

liptical symmetry. This technique has been used to
study via the absorption of 3.39-pm light the
electron-hole pair density distribution both in the
EHD cloud in unstressed Ge and in a relatively

small drop of SCEHL in inhomogeneously stressed

Ge. ' Many numerical methods are in the litera-

ture.
The density distribution is obtained from a

luminescence box scan. For the mathematical for-

malism, we consider infinitely narrow slits. The
box scan intensity corresponding to Eq. (32) is

where we note that n (r) =0 for r &R. If the densi-

ty distribution is circularly symmetric in the x and

y dimensions, then

'SUT

~ n (w)p(n)w dw
4(x) =28p

vw —x (33b)

i i ~ i ill
0.1

I I I I I I III

WI (mm)

FIG. 15. Calculation of several luminescence intensi-

ties as a function of W„for constant density and for the

density distribution of Eq. (26) with two values for the

well parameter a. The slit width was 35 pm.

where w =x +y and we assume z =0. If the

coordinates x and y are related by elliptical sym-

metry, then w =x +ay with a =a~/a„, and the

right-hand side of Eq. (33b) would be multiplied by

a ' Now 4(x) is simply the Abel transform of
the quantity n (w)p(n). The inverse transform to

obtain the density distribution can be written in

two ways
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n (ie)p(n)= — J dx
1 " 4'(x}

0 x —w

1 d " 4(x} x Qx
1TBot8 dl8

(34a)

(34b)

An experiment which clearly shows that density
variations occur in the SCEHL is the dependence
of the peak intensities of slit and box scans on the
drop size. Figures 16 and 17 show side and face
view data forI„„I,&;„Ib,„,and the peak intensity

I~ in a luminescence spectrum obtained from a
slice at the center of the drop. The slit and box
scans were both x scans (Fig. 16) and y scans (Fig
17). The theoretical curves are for a,~,=2
meV/mm and a slit resolution of 35 pm. The
relative intensities of the curves are kept intact.
The agreement between experiment and theory is
excellent over nearly an order of magnitude varia-
tion in drop size. The deviations for small drop
size are due to a loss of resolution on a scale larger
than the slit width.

The box scans were further analyzed to obtain
density profiles. The choice of views and scan
directions was deliberate: In a side-view x scan the
luminescence is integrated through the y direction,
while in a face-view y scan the luminescence is in-

where 4'(x) =d4(x)/dx. The difference is wheth-
er the derivative is taken before or after perform-
ing the integration. Although the first method ap-
pears to be more common ' ' ' we use the
second here. %'e did not compare their treat-
ments of experimental noise. A mathematical rear-
rangement of Eq. (34b) removed apparent singular-
ities in the transform.

Density profiles obtained using Eq. (34) can be
directly compared for different experimental condi-
tions. The absolute density scale is determined
from a spectral line-shape fit for a small drop,
where the density is very nearly uniform. Thus the
density scale is as accurate as the line-shape fits,
typically plus or minus a few percent. In contrast,
we note that density determinations using the ab-

sorption of 3.39-pm radiation have a large uncer-

tainty because they rely on an absolute measure-

ment of the hole absorption cross section, which is
not accurately known. ' ' ' The absolute accu-
racy of the density calibration is crucial in obtain-

ing a reasonable value for the compressibility (see
Sec. VIII).

VII. EXPERIMENTAL DENSITY PROFILES

tegrated through the x direction. These coordi-
nates are accurately related by elliptical symmetry,
so that the Abel transform is mathematically
correct. Scans involving z are not analyzed here.

An example of a box scan obtained for
P,b,

——400 m% is shown in Fig. 18, while the cor-
responding density profile is shown in Fig. 19.
The extra luminescence at the left side of Fig. 18
comes from small droplets flowing into the strain
well from the excitation point at x —xo- —1.5
mm. A constant baseline correction and a simple
smoothing procedure were applied to the raw data
before the transform of Eq. (34). The left and
right halves of the box scan were processed sep-
arately. The raw data in Fig. 18 show several wig-
gles, apparently due to small imperfections on the
crystal face through which the luminescence image
was obtained. These relatively small anomalies are
magnified by the transform: Because the box scan
is a superposition of luminescence through the
depth of the well, a dip (for example) in the box
scan intensity corresponds to a much larger dip in
the density. The density appears to go smoothly to
zero in Fig. 19 because the finite slit width smears
out the abrupt change at the surface of the drop
(x —xe-+0.7 mm}. This means that n (R) cannot
be measured from such a density profile.

The most important feature of Fig. 19 is that
the electron-hole —pair density has large variations
with position. The form of the spatial density pro-
file agrees well with our theoretical prediction:
The solid curve shows the transform of a theoreti-
cal box scan computed using a,~,——2 meV/mm,
R =0.7 mm, and s =35 pm. For comparison,
the figure also shows the expected form of the
transform if the density were uniform but still

compressed from the equilibrium value. The
dashed curve represents a "best fit" for a constant
density. The essential validity of the theory of Sec.
V is thus confirmed.

Figure 20 shows a series of density profiles ob-
tained for P,b, ——400, 7.4, and 0.22 m%. This il-
lustrates the feasibility of measuring density pro-
files for widely varying excitations and drop sizes.
%e find that the central density increases by a fac-
tor of approximately 3.5 for this range of condi-
tions. For small drop sizes, because of the finite
slit width, it is difficult to tell from the transform
of a single scan whether or not the density varies
significantly with position. This may possibly ex-

plain the null result of Mattos et a/. ' Thus, it
is important to study density profiles as a function
of drop size.
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FIG. 18. Box scan obtained by translating the luminescence image of the Ge crystal across a small aperture.
P,b,——400 mW, T =1.85 K, slit width =35 pm.
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for two sets of data. The theoretical curve is for
a,~=2 meV/mm .

FIG. 19. Electron-hole (e-h) pair density profile ob-

tained by performing an Abel transform of Fig. 18.
Solid curve: transform of a theoretical box scan includ-

ing a slit width s =35 pm. Dashed curve: "best fit"
for a constant density.

what less variation in n (0). Overall, the agreement
between experiment and theory is quite satisfacto-
ry. Deviations can result from nonparabolicity of
the strain well for large drop sizes.
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FIG. 20. Density profiles obtained from box scans
for a series of excitation levels.

The central densities n (0) for 24 profiles includ-

ing both x scans and y scans are shown in Fig. 21
as a function of O', . The theoretical curve was ob-

tained using our measured a»„and normalized to
the equilibrium density obtained from the line-

shape analysis. The absolute density scale for the
data was determined by requiring agreement with
the spectral line shape for small drop size. %e
used the form of p(n) given in Eq. (30) in our
analysis; we note that using p= const gives some-

VIII. CHEMICAL POTENTIAL AND
COMPRESSIBILITY OF THE SCEHL

The central densities for different drop sizes can
be used to determine the compressibility of the
SCEHL. The isothermal compressibility ET is
given by

'

ET ' 2n f'+n f"——=n p',
where the pair free energy f and the chemical po-
tential p =f+nf' are measured with respect to the
conduction band, and the prime indicates differen-
tiation with respect to density. Thus, the compres-
sibility is obtained from the density dependence of
the chemical potential. The chemical potential is
in turn obtained from n (O,R) using Eq. (24):

p(n(0, R, T),T,o )=p(no(T), T,o~)

+u,p,Q

We used two methods to obtain drop radii R from
the data. For large drops, the diameter was ob-
tained from the coordinates of the points where the
density profiles went to zero, with an appropriate
correction for the finite slit width. For smaller
drops, R was obtained from 8', using the relation-
ship expected for the actual cz,„„andslit width.
Our experimental results, then, provide a measure-
ment of p(n) which can be compared directly with
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theory. Dashed line: used to obtain the compressibility,

as discussed in the text.

the many-body theories used for the correlation en-

ergy of electron-hole pairs.
The chemical potential difference obtained from

the data is shown along with theory (the solid
curve) as a function of density in Fig. 22. While
the general trends are similar, the discrepancy is
greater than the experimental uncertainty and ap-
pears rather serious: Over the density range
n =0.5 to 1.5&10' cm the measured chemical
potential changes by -0.4 meV less than the cal-
culated chemical potential (-0.7 meV compared
to —1.1 meV). Let us suppose, however, that the
discrepancy occurs entirely in the exchange-
correlation energy. The change in p,„„,in the
above density range is -2.85 meV, so the relative
error is reduced. A theoretical exchange-correla-
tion energy with a slightly steeper density depen-
dence would agree more closely with the data. The
change that would be required is approximately the
difference between the zero- and infinite-stress
exchange-correlation energies of Vashishta
et al. ' considered in Ref. 41. We note further
that these three exchange-correlation energies can
all be considered representations of a universal
form independent of band-structure details. Thus,
our measurement of p(n) lies essentially within the
uncertainty in the mathematical representation of
the detailed calculations of Vashishta et al.

The compressibility of the SCEHL is obtained
from Fig. 22 and Eq. (35). Although ET can be
determined for any density in the range for which
there are data, we restrict our analysis here to the
equilibrium density at the experimental tempera-
ture. We note that the measurement is accurately
isothermal. We determined the derivative
dp(n)/dn

~
„byfitting a straight line to the data

points corresponding to n & 1.0)& 10' cm, avoid-

ing the curvature at higher densities. The best fit
is indicated by a dashed line. We found

ET" '=0.067+0.017 cm /dyn (37)

(with n =0.47&& 10' cm, T =1.9 K, and
—o =5.5 kgf/mm ). The quoted uncertainty in-
cludes +5% for the density and + 15% for the
slope dp/dn, which includes some uncertainty in

the density dependence of p. Other calculations of
p yield a shallower density dependence than that
given in Eq. (30). On the other hand, Chou and
Wong estimated from their uniaxial stress mea-
surements a steeper density dependence, since their
lifetimes increased more slowly than expected with
decreasing density. However, in their analysis they
neglected the possibility of a density-independent
recombination mechanism, ' which could also ex-
plain their data adequately with a slower density
dependence for p(n) We h. ave used Eq. (30) in or-
der to be specific. The effect of neglecting this
density dependence entirely is to reduce ET by
-15%.

Our theoretical value for the compressibility for
the same density, temperature, and stress as in the
experiment is

ET' '=0.041 cm /dyn. (38)

In view of the above comments concerning the cal-
culation of the exchange-correlation energy and be-

cause the measurement of any quantity depending
on the curvature of the free energy is very diffi-
cult, we feel that the agreement between theory
and experiment is satisfactory. We note that Eq.
(37) represents a significant modification of our
preliminary value. ' Each factor entering the re-

sult has been carefully evaluated in the present
measurement, and more data are included. Thus
the present measurement should be more accurate.

Another estimate of the compressibility of the
SCEHL has recently been made by Ohyama
et al. ' from the temperature dependence of Alfven
wave resonances. Their value, ET——0.023+0.002
cm /dyn, is considerably smaller than ours. How-
ever, they did not take into account the compres-
sion of the liquid, and as a result their measure-
ment could be substantially in error. To see how
this could occur, we use their numerical example'
of & =300 pm and a = 11 meV/mm, since the
drop size was not measured directly. The measure-
ments were obtained 1140 psec after cutoff of the
light, and they measured a radius decay time of
1500 psec. At the instant of the measurement,



610 S. M. KELSO 26

then, we estimate R =140 pm independent of tem-
perature. From Fig. 12 we obtain n(0)/no-1. 5,
which corresponds to P=0.5 and n/n0-1. 2. Al-
though this increase in the average density is mod-
est, its effect on the deduced value for ET is
greater. The quantity measured directly' was
5„=0.014 deg =1.89 meV, independent of the
absolute density calibration. Now 5„is related to
the ground-state compressibility by

'

Kr(no)= —2k 5„/[&o(y'(+p)) ]
I

706 710

X l]u, m)
1.78 1.75

I & ] I I 1 I t l l I

Peba = 4Mm%

where y(n) is related to the heat capacity and the
prime indicates differentiation with respect to den-

sity. If compression is neglected, the quantity
measured, 6'„,is related to the actual 6„byEq.
(21b). Using the value P=0.5 above, we conclude
that Qhyama et a/. ' have underestimated 5„bya
factor of -2.6 and overestimated no by a factor of
—1.4. These errors combine, giving a deduced
compressibility which is too low by a factor of
-3.6. ' A more detailed comparison is not possi-
ble since the stress was not specified.

Finally, we note that the values for ET measured
for the SCEHL are considerably larger than that
measured in unstressed Ge. For the latter case,
Thomas et a/. measured E&-2.3)& 10
cm /dyn, well over an order of magnitude lower
than Eqs. (37) and (38). Thus, the electron-hole
liquid in stressed Ge may be nature's most corn-
pressible liquid.

IX. COMPOSITE LUMINESCENCE SPECTRA

In this section we consider the description of a
luminescence spectrum from a drop containing the
density distribution of Eq. (26). As discussed in
Sec. V, the chemical potential p* measured with
respect to the valence band is constant throughout
the drop volume. This condition determines the
form of the density distribution. Now the defini-
tion of the chemical potential is the energy re-
quired to add an electron-hole pair to the system.
Spectroscopically, this corresponds to the high-
energy edge of the luminescence spectrum, i.e., the
Fermi level. Thus E,p is also constant through-
out the drop volume. A composite spectrum is a
superposition of spectra for the densities contained
in the drop, with the constituents having the same
E,~,. The Fermi level shifts with drop size ac-
cording to Eq. (23).

The relative intensity of the luminescence corre-
sponding to a given density is obtained by integrat-
ing Eq. (28) over a shell with radius r and thick-

FIG. 23. Luminescence spectrum for a large drop
containing a density distribution. Open circles give the
theoretical composite line shape for a,~=1.6
meV/mm and 8 =800 pm.
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FIG. 24. Full width at half-maximum linewidth of
luminescence spectra as a function of drop size. The
theoretical curve is for a,~=1.6 meV/mm .

ness dr. To describe experimental spectra, it is
necessary to take into account the geometry of the
experiment. In the present case luminescence was
collected from a slice of width -85 pm, located at
the center of the drop. The constant-density spec-
tra used to form the composites were computed
using density-of-states masses appropriate for
—o =5 kgf/mm . In addition, the stress varia-
tion in the well was described by a uniform stress
0. and a parabolic variation in strain energy.

Figure 23 shows a luminescence spectrum mea-
sured for an excitation level of I',b, ——400 mW.
The open circles are a composite spectrum comput-
ed as described above for a,~,=1.6 meV/mm and
8 =800 p,m. The effects of the finite spectral
resolution and the wavelength-dependent detector
sensitivity were included in the calculation. The
theoretical composite spectrum reproduces the ex-
perimental line shape very well.

~ith a satisfactory description of the lineshape
for a drop containing a distribution of densities, we
can quantitatively study the previously observed"
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gradually to higher energy, and the high-energy
half-maximum point shifts more rapidly. Because
the absolute energy of the theoretical equilibrium-
density spectrum was not specified, all three
theoretical curves were shifted together to give the
best agreement with the data. This agreement is
again excellent.

We note finally that the peak intensities of the
luminescence spectra were shown as a function of
drop size in Fig. 16 and also exhibit good agree-
ment with theory. %e conclude that all of the
features of our measured spectra —line shapes,
linewidths, relative spectral positions, and peak
intensities —are described very mell by composite
spectra for drops having the expected and mea-
sured density distributions.

FIG. 25. Energies of peaks and low- and high-energy
half-maxima of luminescence spectra as a function of
drop size. The theoretical curves are for a,~=1.6
meV/mm . ACKNOWLEDGMENTS

increase in the luminescence linewidth with excita-
tion level. In Fig. 24 we show the full width at
half-maximum linewidth &R as a function of W, .
The spectra and slit scans were obtained using the
same (side) view of the crystal. As in the previous
figure, the theoretical curve is for a,~,=1.6
meV/mm . The agreement between theory and ex-

periment is excellent.
In Fig. 25 we consider the variation of the ener-

gy of the peaks and half-maximum points of the
luminescence spectra. These features describe in
more detail how the spectra broaden with increas-
ing drop size. A striking feature of the experimen-
tal points is the quasi-invariant low-energy half-
maximum point. The peak of the spectrum shifts
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