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We assess the importance of the impurity states of a doped trans-polyacetylene chain.
The impurity potential is modeled by a point charge that is located off the chain and is
screened phenomenologically. The common assumption that the dopant levels of a dimer-
ized chain closely approximate the hydrogenic levels of a point charge is invalid if the im-
purity is not on the chain, even if the dopant is screened by the bulk dielectric constant.
Additional nonhydrogenic states occur well into the gap. The formation energies for
charged kink and polaron lattice distortions are found by solving the Su-Schrieffer-Heeger
model for polyacetylene with an impurity added. The impurity states severely alter the
structure and states of kink and polaron distortions. Moreover, the modifications depend
sensitively on the form of the dopant potential. For the dopant screened isotropically by
the bulk dielectric constant, the kink distortion has gap states inconsistent with the ob-
served midgap optical absorption. In contrast, the polaron distortion is both stable and
predicts a consistent optical threshold. The nature of doping polyacetylene will remain un-
clear until a realistic model for the dopant and its interaction with polyacetylene has been
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developed.

I. INTRODUCTION

Considerable excitement has been stirred by the
suggestion of Su, Schrieffer, and Heeger"? (SSH)
and of Rice’ that kinklike (or equivalently, soliton-
like) lattice distortions exist in lightly doped trans-
polyacetylene, (CH),, and that these excitations
strongly affect the magnetic and optical properties
of the system. They argue that the charge transfer
from the dopant to the (CH), chain occurs via kink
formation because less energy is needed to create a
neutral kink on the polymer chain and occupy its
midgap state with the transferred charge than is re-
quired to transfer the charge to an impurity state of
the chain. Implicit in this argument is the assump-
tion that the dopant potential is weak, so that the
energy bands are nearly rigid, the impurity states
are near the band edges, and these states do not con-
tribute to the midgap optical absorption or modify
the kink distortions. The observation of midgap ab-
sorption in doped (CH), by Suzuki et al* and by
Kiess et al.® supports the kink mechanism for dop-
ing.

Unfortunately, the intuitively appealing argu-
ments® used to show that the dopant potential has
little effect on the chain or any kink distortions of
the chain are incorrect when applied to one-
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dimensional systems such as (CH),, as we have
pointed out in a recent paper.’” Even weak dopant
potentials can modify the energy bands. The shifts
induced by the dopant can be larger than those
shifts caused by lattice distortions. Consequently,
dopants also alter the states, shapes, and energies of
the lattice distortions. In this paper we elaborate on
Ref. 7, providing detailed results not originally dis-
cussed and extending our investigations to cover
model dopant potentials not considered before.

No accurate model has been developed for the
impurity potential in lightly doped (CH),. Instead,
the assumptions are usually made that complete
charge transfer occurs and that the dopant can be
considered as a point charge located off the
chain.>®®  Furthermore, the point charge is
screened phenomenologically with an isotropic bulk
dielectric constant (e~10). The actual screening
may not be complete near the impurity. If incom-
plete screening is included, then the potential is
stronger than the fully screened potential. In addi-
tion, (CH), is anisotropic. The dielectric response
parallel to the chains is much greater than the
response perpendicular to the chains. The resulting
anisotropic screening is ignored if an isotropic bulk
dielectric constant is used.

Because there are no good a priori models for the
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dopant and the screening, we limit our attention to
phenomenological models for the interaction.
These models are not meant to replace the more
complete treatments of the impurity potential and
screening that should be done. Rather, the models
are used to show that kinks and polarons can be
severely altered by the dopant, to illustrate the sen-
sitivity of the results to the form of the dopant po-
tential, to point out the wide range of results that
occur for different potentials, and to motivate the
need for fundamental treatments of the impurity
potential. We focus on three aspects of modeling
the interaction: (i) the position of the dopant rela-
tive to the chain—whether, for example, it is adja-
cent to a lattice site or to the middle of a bond, (ii)
the local screening correction, and (iii) the anisotro-
pic screening. We will consider the approximation
that the dopant is a point charge in a future paper.
Complex molecules such as I, AsFs5, and NH; are
used as dopants. Karasz et al.’ have suggested that
the linear molecule I;* lies parallel to the chain
with half of a charge at each end of the molecule.
Such “double-well” potentials should provide addi-
tional modifications to the electron states and the
energies of lattice distortions.

We investigate the effect of the dopant on fully
dimerized lattices, on lattices with kink distor-
tions,! 3 and on lattices with polaronlike distor-
tions.!® The kink is a domain wall which interpo-
lates between the two degenerate ground states of
(CH),. The polaron is a local relaxation of the fully
dimerized bond alternation along the chain. The
phase of bond alternation is the same on both sides
of the polaron. Both distortions are described by
specific functional forms for the shift of each lat-
tice site and are parametrized by the halfwidth, the
amplitude (for the polaron), and the position of the
center of the distortion. In a general lattice distor-
tion, the position of each site would be allowed to
vary independently. We limit our attention to the
polaron and kink distortions because they are the
ones normally considered and because they are
much simpler to study than those which are unre-
stricted. For a variety of model dopant potentials
we determine the energies of kink and polaron dis-
tortions, the energies of gap states and impurity
states associated with the distortions, and the densi-
ties of states.

Most significantly, we find that even a fully
screened dopant modifies the states and energies of
kinks and polarons. Both the charged pinned kink
and charged pinned polaron are stable distortions,
but only the charged polaron has gap states con-

sistent with the observed midgap absorption. More-
over, for strong potentials with incomplete local
screening the discrete nature of the (CH), lattice is
crucial. Pinned kinks with different bond configu-
rations near such an impurity (the weak and strong
kinks discussed later) are different. In addition, po-
larons centered on opposite sides of an impurity are
different. Continuum models!! for (CH), will not
be adequate in these situations.

In Sec. II we introduce the SSH Hamiltonian
used to describe the 7 electrons of trans-(CH),. We
also discuss the model dopant potentials and the
different forms chosen for the screening. We also
briefly discuss the intuitive arguments which assert-
ed that impurity states were unimportant and we
explain why they fail in one dimension. Finally we
describe how the calculations were performed. In
Sec. III we present the results obtained for kinks
and polarons on doped and undoped chains and in
Sec. IV we present our conclusions.

II. THE MODEL

We use the SSH model Hamiltonian to describe
the 7-electron system of (CH),,

t t
H= 2 Vn(cn+l,scn,s +Cn,scn+1,s)

n,s

+ 3K /2ty 4y —up)* . (1)

cl s creates a m electron with spin s at CH group
n, K is the spring constant for the o-electron bond
between adjacent CH groups, and u,, is the displace-
ment of the nth group from its equilibrium position
in a uniform lattice. The hopping integral that
transfers 7 electrons between sites n and n +1 is

Ve=to+aluy f1—uy,) .

A Peierls distortion occurs in the ground state. The
lattice dimerizes with u, =(—1)"uy where u is the
amplitude of bond alternation (see Fig. 1). There
are two degenerate ground-state configurations of
dimerization, one obtained from the other by inter-
changing all the double and single bonds. In the
dimerized lattice, two m-electron bands result with a
gap between the conduction and valence bands. The
density of states has square root singularities at the
band edges.

We include the impurity potential by assum-
ing®!? that the impurity produces an on-site energy
shift at each site

Uimp = 2 Unclscn,s - 2 Un » (2)
n

n,s
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FIG. 1. Bond alternation patterns for a dimer lattice,
a strong kink, and a weak kink. x; denotes the kink
center. C represents a CH group.

where U, is the potential energy of an electron at
site # due to the impurity. The interaction between
the impurity and the charged (CH)* molecule at
site n is assumed to be the same as that between an
electron at site n and the impurity. It is the second
term in Eq. (2). Including the lattice-impurity in-
teraction does not qualitatively change the results.

We assume that the dopant is a point charge lo-
cated a distance d from the chain®>%!2 and that the
screening of the dopant is described with a
phenomenological dielectric function. The potential
has the form (we assume that the impurity is a
donor)

—¢’ , (3)
€(n) | (xy —Ximp)2+d? |12

n=

where x, =na +u, is the position of group n, a is
the uniform bond length, and the impurity is a dis-
tance d from the chain, adjacent to the position x;p,
on the chain. We assume that xjp, is either a lat-
tice site or the middle of a particular bond (see Fig.
2). Normally the bulk static dielectric constant
(e~10) is used®®!? to screen the dopant. However,

?

d
(a)=C——C—C——C=C— C=—C—C=
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FIG. 2. Impurity configurations for (a) an impurity
adjacent to a site and (b) impurities adjacent to weak and
strong bonds. x is the distance along the chain relative to
the impurity position.

this approximation ignores local corrections that
should occur at sites near the impurity where the
screening will be incomplete. We include these
corrections by assuming that

e(n)=¢€,+(e;—¢€;)
Xgl_exp[_(A/a)lxn_ximp | ]} .
(4)

€, is the bulk dielectric constant and €, is the con-
stant near the impurity. A is the inverse decay
length. The potential is a screened Coulomb poten-
tial at long range in this model.'

The screening in Eq. (3) is isotropic. However,
(CH), is anisotropic. Parallel to the chains €~10
while perpendicular to the chains €, ~1—3. If a
point charge is screened by such an anisotropic
dielectric constant, as recently suggested by S.
Kivelson (private communication), then

2
—e
U,= . (5)
n €, | (X" _ximp)2+€|ld2/€l | 1/2

Effectively, anisotropic screening moves the impuri-
ty farther from the chain by a factor (6||/El)1/ 2,
However, the impurity is no longer screened by €,
at large distances. Instead, the effective charge at
long range is e/€,. Both Egs. (3) and (5) assume
screening that is appropriate for a homogeneous
system. This need not be the case on a microscopic
scale for doped (CH),. However, as we have em-
phasized, these phenomenological models are used
because they provide insight to the importance of
the dopants and motivate the need for better
models.

To explain why the dopant potential cannot be ig-
nored, we consider a fully screened dopant (e =10
at each site). The potential is weak and the impuri-
ty states should be near the band edges. The (CH),
chain can be approximated by a one-dimensional
linear chain and the effective-mass equation used to
find the envelope function for the Wannier states.
In the continuum limit,

—# d? e?
2m, dx? - e[x2+d2[ 1/2

P(x)=Ep(x) .

(6)

1 is the envelope function, E the impurity level, m,
the effective mass, d the distance between the im-
purity and the chain, and x the distance along the
chain (see Fig. 2). We use d=2 A (Refs. 2 and 8)
and m, =0.146m,. This effective mass can be ob-
tained from the energy dispersion relations for the
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conduction and valence bands as determined with
the SSH model.

Fincher et al® also assumed that d was small
compared to the extent of the wavefunction and
that |x2+4d?|!/% could be replaced by |x | in Eq.
(6). This approximation reduces Eq. (6) to the one-
dimensional Coulomb problem with the same ener-
gy levels as the three-dimensional problem. Howev-
er, the approximation d =0 is invalid for any finite
value of d and the lowest-energy levei is much more
bound than the hydrogenic level

Eo=—(e?/2ay)(my /m,€?) .

The approximation fails because there is a real,
nonperturbative  difference between the one-
dimensional Coulomb problem and Eq. (6). The
solutions to the one-dimensional Coulomb problem
have the form'* 1

xR(x), x>0
Yix)= +|x |R(|x]), x<O0.

The R(x) are the radial wave functions of the
three-dimensional problem. Even- and odd-parity
wave functions both vanish linearly at the origin.
The derivative of the even state is discontinuous at
x =0 but this does not violate the wave equation be-
cause the potential is infinite at that point. Both
the even and odd solutions have the same energy.

If the impurity is away from the chain, then the
potential is finite everywhere. The odd-parity states
still vanish at x =0 and their eigenvalues do not
change much. However, the even solutions are fin-
ite at x =0. These states are less bound because the
potential is weaker near x =0. The degenerate lev-
els are split with even and odd states alternating in
energy. For example, the lowest hydrogenic level,
with degenerate even and odd states when d =0,
splits into two states, an odd state with one node
and an even state at higher energy with two nodes
(see Fig. 3). In a similar manner, all bound states
with a finite number of nodes are generated from
the bound states obtained for d =0. However, the
lowest eigenstate must be an even state with no
nodes. This state cannot be obtained from the
states found when d =0. To understand this, con-
sider the argument in reverse. As d decreases, the
potential becomes more attractive and the lowest
state, with no nodes, becomes narrower. When d
vanishes, this state approaches a § function with an
eigenvalue of — . Such a state is unphysical and
is not allowed when d =0. Physically, this extra
even state does not occur if d =0 because the poten-
tial and, consequently, the kinetic energies are

Impurity Levels
Doped Dimer Lattice

d=0 d+£0

____ 0 R

——~ Eold ¥

Y(x)
Eo I L\ - ~ Eq x

o

FIG. 3. Impurity levels and wave functions found
with the effective-mass equation when the impurity is on
the chain (d =0) and off the chain (d540). Even and odd
states are degenerate when d =0. E, is the lowest hydro-
genic level; E,, the lowest even state when d=40.

singular near the impurity and the state cannot be
localized at the impurity.

The splitting between the lowest even and odd
states can be large. For values of €, m,, and d ap-
propriate for (CH),, we solve Eq. (6) numerically.
The lowest two eigenvalues for even states are
—0.2229 and —0.0111 eV and for odd states are
—0.0195 and —0.0049 eV. The energies of the odd
states are very close to those (—0.0200 and
—0.0050 eV) for the Coulomb problem. However,
the lowest even impurity level is 0.223 eV below the
band edge at 0.7 eV even though the “hydrogenic”
level is very close to the edge. An energy of 0.44 eV
is needed to form a charged kink on an undoped
chain.? Thus the charged kink is only slightly more
stable than the impurity state. A comparison using
the results and parameters of Rice and Mele? leads
to the same conclusion. In view of the simplicity of
the SSH model and the dopant model, the differ-
ence in energy is not significant. Thus the effect of
the impurity on the kink and polaron lattice distor-
tions must be considered carefully.

A kink distortion of the lattice centered at x;
with a halfwidth /; has the form

(Xp —xg)

(Upa) @]

up=—(—1)"ugtanh

The kink switches the phase of bond alternation at
the center of the distortion. This distortion is an
excited state of the chain with a midgap electronic
state localized to the transition region. We distin-
guish two different kinks, strong and weak, which
are useful for describing the results when kinks are
centered at lattice sites. A strong (weak) kink has
strong (weak) bonds on each side of the kink center
(see Fig. 1).

A polaron distortion centered at x, with half-
width /, and amplitude 4, has the form
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—(x,—x, )2

un=(——l)"u0 (la)2
P

1—4, exp

(8)

The phase of bond alternation is the same on both
sides of the polaron but differs by 7 for the kink.
Moreover, the amplitude of bond alternation van-
ishes at the center of a kink but can be finite at the
center of a polaron. Campbell and Bishop!® ob-
tained solutions for the polaron using the continu-
um limit of Eq. (1). Their form for u, is the sum of
two tanh’s similar to Eq. (7). We have chosen the
Gaussian form because it has only three variational
parameters while Campbell’s polaron has an addi-
tional parameter.

We find the electron eigenstates by numerical di-
agonalization of the tridiagonal matrix H + Ujy,
for chains with up to 700 sites. The energy of the
system is found by summing the energies of the oc-
cupied states and finding the lattice energy in Eq.
(1) for the appropriate distortion. End effects are
eliminated by placing the distortion close to the im-
purity which is near the middle of the chain. When
kinks are considered, an antikink is added at one
end of the chain to further minimize end effects.
We mimic the infinite chain of SSH by not allowing
any relaxation of the bond alternation that would
occur for a finite chain.!® The energies of kinks and
polarons on undoped (doped) chains are calculated
relative to the ground-state energy of the neutral
undoped (doped, but without the transferred elec-
tron) dimerized chain. A charged distortion on the
doped chain is stable if the distortion has a lower
energy than the dopant level of the doped dimerized
chain. For fully screened dopants, the energies of
kinks, polarons, and impurity states are insensitive
to the length of the chain except for small differ-
ences (~0.001 eV between 300 and 500 site chains)
due to the long range of the Coulomb potential.
When the Kivelson potential is used, the energies
are more sensitive to chain length.

We use the parameters of SSH: #,=2.5 eV,
ty=2au,=0.35 eV, and K =21 eV/A2. We use the
value!” @ =4.16 eV/A rather than 4.1 eV/A of SSH
because we get better agreement with the kink ener-
gies found by SSH using the first value. For the
distance d between the impurity and the chain, we
assume>® that d =2 A. We have also done calcula-
tions using d =2.4 A. In the latter case, the poten-
tial is weaker. The impurity is slightly less impor-
tant but the results are qualitatively the same. The
values of d were chosen because they were used by
SSH (Ref. 2) and because they are appropriate
values for impurities sitting between chains.

All the calculations were performed for chains
with an even number of sites. Chains with an odd
number of sites have midgap states even when fully
dimerized. When a simple lattice distortion is ad-
ded, the number of midgap states changes by an
even number. By considering only paired kink-
antikink distortions, each kink or antikink has the
appropriate odd number of gap states. All calcula-
tions for doped chains were performed with a single
impurity present. When a kink-antikink distortion
was considered, we could also have considered
chains with two impurities to preserve the symme-
try between kinks and antikinks. That procedure is
unnecessary because the kink near an impurity is in-
sensitive to an antikink located far from the impuri-
ty and the kink. Because we need not consider pairs
of impurities, we truly model the effects of a single
isolated dopant.

A proper inclusion of correlation is also a necessi-
ty, especially for the most attractive potentials that
we consider. Correlation destabilizes the charged
kink®!” and increases its width. Rice® estimated the
correlation energy to be U,~2.65 eV/[, for a
charged kink. We use this estimate to evaluate the
effect of correlation on our results. However, expli-
cit calculations using the unrestricted Hartree-Fock
scheme!” would be more appropriate and would
provide a more reliable estimate of the correlation.
We have not attempted such calculations yet. They
require a self-consistent determination of eigenfunc-
tions, in addition to the eigenvalues, using more
time consuming numerical procedures.

III. RESULTS

Our results for free kinks and polarons agree ex-
cellently with other calculations. For a pure (CH),
chain, the most stable kink has a halfwidth [, =7
and an energy of 0.440 eV, almost exactly the re-
sults of SSH. The singly charged polaron on an un-
doped chain has an energy of 0.625 eV, a halfwidth
I,=12, an amplitude 4,=0.6, and gap states at
+0.484 eV. These results are very close to those of
Campbell'® even though we use a different form for
the u,. The impurity states found by diagonaliza-
tion of the Hamiltonian also agree surprisingly well
with those determined with the effective-mass equa-
tion. Gap states occur 0.2216, 0.0230, and 0.0122
eV below the conduction-band edge for a fully
screened dopant adjacent to a site (denoted FSS,
€=10 at each site). This agreement confirms that
the correct choice for the effective mass m, is
0.146m, rather than the value m, ~m, used origi-
nally %18
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The densities of states (DOS) for the dimerized
chain (300 CH groups), the chain with a kink-
antikink distortion, the chain with a polaron and
the dimerized chain with a single FSS impurity are
shown in Figs. 4 and 5. Even when the DOS of a
dimerized lattice is plotted as a histogram, the
square-root singularities at the band edges are obvi-
ous. When a kink-antikink or a polaron is added,
states shift toward the gap. The changes in the
DOS are similar in each case except near the gap.
Two midgap states occur in the first case and a pair
of states at +0.47 eV occur for the polaron. The
square-root singularities remain for both. In con-
trast, the modification of the DOS is much greater
when a dopant is added, even for the FSS dopant
used for Fig. 5. States are shifted to lower energy
by the attractive dopant potential. The band edge
at —5.0 eV is broadened to energies below the band
and the edge at 0.7 eV is broadened into the gap.
The singularities at the other edges are also substan-
tially broadened to lower energies. Obviously, the
bands are not rigid, but can be modified greatly by
an impurity.

Large shifts occur in the gap states of a kink-
antikink pair when an impurity is present. We in-
vestigate these modifications by performing a series
of calculations with an impurity near the center of a
long chain, an antikink fixed at one end of the
chain, and a kink on the chain but far from the an-
tikink. The position of the kink is varied. When it
is far from the impurity, states occur at the dopant
levels of an impurity near a dimerized chain and at
midgap for free kink-antikink states. If the kink is
near the impurity, then the states localized to the
kink and to the impurity can overlap. When they
overlap the associated energy levels repel each oth-
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FIG. 4. Density of states of (a) a pure dimerized chain
with 300 CH groups. Change in the density of states
when (b) a kink-antikink distortion, [z =5, or (c) a po-
laron, /, =8 and 4, =0.8, is present.
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FIG. 5. Density of states of (a) a doped dimerized
chain, one FSS impurity for 300 sites. Change in the
density of states when (b) a kink-antikink, [ =5, or (c) a
polaron, [, =8 and 4,=0.8, is pinned to the impurity.

er. The results for a fully screened dopant are
shown first in Fig. 6 for a kink-antikink with [ =5
(the most stable charged kink near the FSS dopant)
and in Fig. 7 for [y =15 (the most stable charged
kink when the phenomenological correlation energy
of Rice is included). In the first case the midgap
state is pushed down to a quarter of the gap when
the kink is pinned to the impurity. The lowest
dopant level is pushed up by 0.13 eV. When [, =15
two additional gap states appear. For a free kink
(I =15), these extra states occur at +0.596 eV.
These extra states are not as localized as the midgap
states. Even when the dopant and kink are far
apart, the dopant level overlaps the extra states and
is repelled to lower energies by the state at 0.596 eV.
At small n;, the dopant level is pushed up by the
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FIG. 6. Gap states of a doped chain with a kink-
antikink distortion ([z=5). Kink is centered n; sites
from the impurity. Dopant is an FSS impurity. Energy
in parentheses is the value for large n;. Only the lowest
dopant level is shown. Antikink midgap state is not
shown.
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FIG. 7. Gap states of a doped chain with a kink-
antikink distortion (I =15). FSS potential is considered.
Only the lowest dopant level is shown. Antikink midgap
state is not shown.

midgap state. As a result, the shifts of energy levels
are much more complicated for large /.

The energy of charged kink formation on a doped
chain depends on how the gap states are filled.
When a neutral-kink —neutral-antikink pair occurs
on an undoped chain, the midgap state of each is
singly occupied, the two electrons coming from the
valence state used to make the two midgap states.
A kink is charged if two electrons occupy the
midgap state. If the kink is near an impurity, the
prescription for filling the states is not clear cut be-
cause the kink and antikink are no longer
equivalent. The kink state is below midgap and is
occupied by the two valence electrons, when the
chain is neutral, forming a charged kink near the
impurity and an oppositely charged antikink far
from the impurity. When the charge donated by
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FIG. 8. Energy of charged kink and polaron distor-
tions as a function of the separation ny of the distortion
from a FSS dopant. Parameters for the polaron and the
kinks are shown. Values in parentheses give the free kink
and polaron energies. Correlation is not included.
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FIG. 9. Energy of charged kinks as a function of
halfwidth [, for a free kink, strong and weak kinks
pinned to incompletely screened (€;,=1.0,A=2.0)
dopants that are adjacent to sites, and strong and weak
kinks pinned to FSS dopants. In the latter case, strong
and weak kinks are nearly identical.

the impurity is added to the chain, it can occupy ei-
ther the impurity state or the midgap state of the
antikink. The first configuration is unstable be-
cause the impurity state is above midgap. Thus the
midgap antikink state is occupied. The configura-
tion of a charged pinned kink and a neutral an-
tikink is not normally stable either if the energy
needed to form each is included. Doping via kink
formation is possible only if the energy of the neu-
tral antikink is ignored.'~> We adopt this conven-
tion when discussing kink formation during doping.

Figures 8 and 9 show the energies for charged-
kink formation as a function of the separation be-
tween the kink and an FSS impurity and as a func-
tion of /. The most stable charged kink is pinned
to the impurity and has a halfwidth ([, =5) that is
smaller than that of a free kink (I =7). The kink
pinned to an FSS impurity has an energy of 0.075
eV and is more stable than the configuration of a
filled donor level on a dimerized chain by 0.403 eV.
When the separation between the impurity and kink
increases, the kink energy and width increase to the
free-kink values. The energy of a charged kink
with [z =15 is also shown in Fig. 8. When the
phenomenological correlation energy of Rice is ad-
ded, this charged kink is the most stable pinned
kink. When the U, is added to the energies in Fig.
8, the stable charged kink has an energy of 0.36 eV.
This is still more stable than the configuration with
an occupied dopant level on a dimer chain, but by
only 0.12 eV.
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These results point out the necessity of an accu-
rate treatment of the dopant and the correlation. In
the SSH model, the charged kink pinned to an FSS
dopant is stable. In this case the threshold for opti-
cal absorption is the energy difference between the
kink gap state at —0.35 eV and the impurity state
at 0.60 eV. This is greater than is allowed by the
observed midgap absorption.*> If correlation is ad-
ded, the charged kink is less stable but /; =15. For
these wider kinks, the energy difference between the
kink gap state and the dopant level (see Fig. 7) is
consistent with the optical threshold. Consequent-
ly, the explanation that midgap absorption results
from kink formation during doping is only con-
sistent with the experimental findings if correlation
is added to the SSH model. Such a result must
remain tentative until a better treatment of correla-
tion is attempted. Nonetheless, the presence of a
dopant, even the fully screened impurity (which has
the weakest potential that might be a realistic
model), substantially alters the original explana-
tion>* of midgap absorption by kink states.

In the remaining part of this section we will con-
sider what effects other models of the dopant might
have on kinks and then we will present results for
polarons on a doped chain. Figure 9 compares the
energy of a charged kink pinned to an FSS dopant
with the energy of a kink pinned to an incompletely
screened dopant which is adjacent to a site (e; =1.0
and A =2.0, denoted ISS). In the latter case, the
potential is unscreened at the site adjacent to the
impurity and only partially screened at the nearest-
neighbor sites. The potential is fully screened at all
other sites. When pinned to FSS dopants, weak
kinks are more stable than the corresponding strong
kinks by only 0.004 eV. However, if a potential
with large local screening corrections is considered,
the weak and strong kinks are very different. The
stable strong kink is wide, /; ~12, even when corre-
lation is ignored; it is pinned and is only slightly
more stable than a kink pinned to a FSS dopant.
On the other hand, the stable weak kink is very nar-
row, I ~0.1, with an energy of —1.22 eV. For al-
most every value of /i, the pinned kink is the most
stable one. The depinned kink is more stable only
for strong kinks with [, <2.

The dependence of the pinned-kink energies,
widths, and gap states, and the dopant states on the
local screening €, is shown in Fig. 10. The differ-
ence between weak and strong kinks is noticeable
for potentials which are nearly fully screened
(€1 ~8) and significant for €; <6. For €; <6 less
energy is needed to occupy the dopant level on a
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FIG. 10. Kink gap state, the lowest impurity level,
and the energy of the stable charged kink pinned to a
dopant which is adjacent to a site and incompletely
screened (A =2.0). Results for weak and strong kinks
are shown. Lowest impurity level of a dopant on a dimer
chain is also shown. Halfwidths for different €, are
shown in parentheses.

dimerized chain than to form a free charged kink.
Thus the charged kink is stable when €; <6 only if
the interaction with the impurity is included.
Furthermore, the optical threshold is above midgap
for all €, if a weak kink is present and for €, > 3 if
a strong kink is present. Consequently, the midgap
absorption is not conclusive evidence for kink for-
mation unless correlation really does suppress the
level repulsion. The results were obtained for
A =2.0. For smaller A the incomplete screening is
not restricted to the site adjacent to the impurity
and to the nearest-neighbor sites and the effect of
the dopant on the kink should be more pronounced.

To understand the difference between weak and
strong kinks, we must consider the effect of the
bond arrangement near the impurity. The weak
pinned kink has long bonds on either side of the site
adjacent to the impurity. The two regions of the
lattice separated by the impurity couple only weakly
through the pair of weak bonds. Thus the energy is
minimized by lowering the energy of those occupied
states which are localized to the dopant. This local-
ization is enhanced if the kink is as abrupt as possi-
ble. The total energy is lowered even though there
is little gain in lattice energy when the kink is
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abrupt. The gap states are shown in Fig. 10. By in-
creasing the localization of the gap levels, the repul-
sion between the empty donor level and the occu-
pied kink state is enhanced. The former is pushed
up nearly to the band edge and the latter pushed
down to the valence edge. These shifts stabilize the
kink. In contrast, the strong kink is much wider.
With strong bonds on both sides of the impurity,
extra charge is localized near the impurity. In this
case, the energy is lowered by increasing the region
where the lattice relaxes from the dimerized to the
uniform configuration. This relaxation lowers the
lattice energy. However, the band gap narrows dur-
ing this relaxation and, as a consequence, the elec-
tronic energy should increase. This increase is com-
pensated because the energy of the extra electrons
localized to the uniform region is lowered by the
dopant potential. Thus, the lattice can relax with
little increase in electronic energy. Moreover the lo-
calized electrons are extended over a large region so
the repulsion of the gap states is not important (see
Fig. 10) as it is for weak kinks. When €;=1 the
donor state is at midgap and the kink state only 0.3
eV below the donor level.

These results for the weak kink may be too ex-
treme to be realistic because correlation is not in-
cluded and because the charge-transfer model may
break down for such strong potentials. However,
the results point out the dramatic changes that oc-
cur in the SSH model of kinks when other poten-
tials are considered. These results also illustrate
that the discrete nature of the (CH), lattice is cru-
cial if the dopant is incompletely screened. The
continuum model for (CH), would not predict a
difference between weak and strong kinks.

So far we have discussed dopants which are adja-
cent to sites. There is little difference between the
kinks pinned to FSS impurities and those pinned to
fully screened impurities adjacent to midbonds.
Moreover, in our phenomenological model an im-
purity near midbond is nearly fully screened at each
site even when A =2.0. Thus the energy of a kink
pinned to such an impurity is only 0.05 eV lower
than that of a kink pinned to an FSS dopant.

One important difference does occur when the
impurity is adjacent to the middle of a bond. In
that case, a kink centered on one side of the impuri-
ty reverses the phase of the bond alternation at the
impurity while a kink on the other side leaves the
phase unchanged. The kink energy is lower if the
kink weakens the bond. Consequently, kinks cen-
tered on one side of the impurity have lower ener-
gies than kinks on the other side. This difference is

small in our model (0.002 eV if A =2.0) but would
be much larger if the incomplete screening of im-
purities adjacent to midbonds were not minimized
as it is by our model. In addition, the kink energies
are lower by 0.01 —0.02 eV if the dopant is original-
ly adjacent to a short bond in the dimer lattice be-
cause the kink weakens the bond.

If the dopant potential is modeled with anisotro-
pic screening, the distortion of the kinks is even
more drastic than if isotropic screening is used be-
cause the potential is screened by €, rather than ¢
at large distances. For (CH), €;~10 while
€, ~1—3. The potential is so attractive at large dis-
tances that there are noticeable differences in the re-
sults for long and short chains. For example, when
€, =1 the midgap state of the antikink far from the
impurity is 0.07 eV lower on the 300-unit chain
than on a 700-unit chain. The perturbation caused
by this potential is so large that on a doped dimer
lattice one level originally in the conduction band is
pulled into the valence band and (on a 700-unit
chain) 20 states appear in the gap, including levels
at —0.30, 0.04, and 0.25 eV. When €, =3 there are
11 states in the gap including levels at 0.002, 0.46,
and 0.59 eV. The distortion of pinned-kink gap
states is also large. If €, =3, the stable kink has a
width [, ~4, the gap state of the kink is pulled into
the valence band and the lowest impurity state is
pushed up to 0.25 eV. If €, =1, then the kink gap
state is also pulled below the valence-band edge. In
addition, the lowest impurity level is below midgap.
As a result, the midgap state of the antikink at the
end of the chain loses its charge to the impurity lev-
el and the antikink is charged.

If anisotropic screening is the correct model for
screening, then the SSH model for kink formation
must be abandoned. Kink gap states are not the
only states in the gap. Rather, the kink states are
pulled out of the gap and the impurity states spread
throughout the gap when anisotropic screening is
used. Kink formation is meaningless because the
distortions are so large. Proper inclusion of correla-
tion into the SSH model may reduce this distortion
but it is not clear that including correlation is
enough.

The other distortion of (CH), which has been
considered extensively is the polaron. We now
present our results for these distortions. We first
consider a chain with an FSS dopant. The DOS of
the stable pinned polaron is shown in Fig. 5. The
DOS of the charged pinned polaron and charged
kink-antikink pair on a doped chain are nearly
identical, as they were for the free polaron and
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kink-antikink. The only differences occur near
midgap. As before, the changes are minor com-
pared to the changes of the DOS caused by the
dopant.

The calculations for polarons were performed as
the calculations for kinks were done. The polaron
was centered at different sites along the chain and
the stable polarons found by varying 4, and I,.
When an FSS dopant is present, the stable charged
polaron is pinned to the impurity, has an energy of
0.33 eV, an amplitude 4,=0.8, and a halfwidth
I,=8. This polaron is more stable than either a
charged free kink or the filled dopant level on a di-
mer chain. Figure 8 shows the increase in polaron
energy when the polaron is farther from the dopant.
The results in Fig. 8 are for a polaron with 4,=0.8
and [, =8. The most stable polaron at each separa-
tion 1,0 has a slightly lower energy than the po-
laron with 4, =0.8 and /,=38; it also has a smaller
amplitude (4,—0.6 for large separations) and is
wider (/,— 12 for large separations).

The dependence of the gap states on the separa-
tion between the polaron and an FSS dopant is
shown in Fig. 11. Both polaron gap states are lower
than the impurity state when the polaron and the
impurity are widely separated. When the polaron
approaches the impurity, both polaron states are re-
pelled to lower energy by the impurity state. This
repulsion helps stabilize the pinned polaron. In-
terestingly, the highest occupied state of the pinned
polaron, at 0.18 eV, is only 0.47 below the empty
dopant state. Thus the threshold for optical absorp-
tion is below midgap. Unlike the pinned charged
kink, the charged polaron not only is more stable
than the free kink and the filled dopant state on a
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FIG. 11. Gap states of a doped chain with a polaron
distortion (4,=0.8,/,=8). Dopant was modeled by a
FSS dopant. Only the lowest dopant level is shown. Po-
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FIG. 12. Energies of polarons on an undoped chain as
a function of halfwidth /, and amplitude 4,,.

dimerized chain but it also has a consistent optical
threshold.

The dependence of a free charged polaron’s ener-
gy on A, and [, is shown in Fig. 12. The depen-
dence on 4, and [, is similar for polarons near im-
purities. For a fixed 4,, the polaron energy is ap-
proximately a quadratic function of /,. The width
of the most stable polaron with a given A4, varies
approximately as the inverse of 4,. Moreover, the
stable polaron energy depends roughly quadratically
on A, with a minimum at 4, =0.6. This quadratic
behavior is valid only near this minimum. The ef-
fective spring constant of the polaron potential en-
ergy is much weaker at large 4, and [, than at
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FIG. 13. Polaron halfwidth, amplitude, and energy for

the most stable polaron:centered at site n, with a FSS

dopant at site 0. Bond pattern used for the dimer lattice
is shown.
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small 4, and [,.

The results for depinned polarons near an FSS
dopant are similar. The width, amplitude, and en-
ergy of the most stable polaron centered at a given
site n, relative to an FSS dopant that is adjacent to
site 0 are shown in Fig. 13. The lattice configura-
tion of the dimer lattice is also shown in the figure.
When |n,| >8, the charged polaron actually is
wider and has a smaller amplitude than the free po-
laron. The polaron is free only for much larger
|n,|. This discrepancy occurs because for
| n, | ~1, the polaron energy can be lowered if the
polaron and its gap states are wide encugh to over-
lap the impurity state and benefit from the repul-
sion with that state.

When a fully screened impurity is adjacent to a
site the polaron energy is not a symmetric function
of n,, although the differences are not apparent in
Fig. 13. For the lattice configuration assumed in
the figure, polarons centered at negative n, have a
lower energy (by ~0.001 eV) than those at the cor-
responding positive n,. This occurs because the po-
laron at negative n, increases the average bond
length near the impurity (the distance between sites
—1 and 1 in the figure) while the polaron at posi-
tive n, reduces this distance. As with kinks, weak-
ening the local bonds lowers the polaron energy.
The energies do not change much if the fully
screened dopant is adjacent to the middle of a bond.
However, because of the symmetry of the impurity
location, the small difference between polarons on
different sides of the dopant vanishes.

In view of the simplicity of the SSH model and
the dopant model, the magnitudes of these small
differences have no significance. However, they do
point out the trends that occur for dopants modeled
with incomplete screening. For the extreme case of
an ISS dopant, the charged-polaron energies are
negative (see Fig. 14). Moreover, those centered at
negative n, are very different from those at positive
n,. The difference is signaled by the sharp transi-
tion in behavior at n, ~0. Those polarons at nega-
tive n, increase the average bond length near the
impurity and have much lower energies. For n, <0
the amplitude 4, > 2 so that the bond alternation is
actually reversed at the center of the polaron. Be-
cause [, ~ | n, |, the increase in average bond length
is a maximum near the impurity. For n, ~ —1, the
polaron is very narrow, just as the weak kink is.
The most stable polaron is not pinned but rather is
at n,~—15. For n,>0, the charged polaron is
similar to the free polaron with A4,<1 and
I, ~10—20.
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FIG. 14. Polaron halfwidth, amplitude, and energy for
the most stable polaron centered at site n, for a dopant at
site 0 with incomplete screening (€;=1.0 and A =2.0).
Bond pattern of the dimer lattice is shown.

IV. CONCLUSIONS

We have determined the effect that a dopant can
have on the electron states and distortions of lightly
doped polyacetylene by considering several models
for the dopant potential. These models include
dopants isotropically screened in two extreme
fashions—with a bulk dielectric at each site and
with no local screening. In addition, we have tested
dopants screened anisotropically to phenomenologi-
cally account for the anisotropy of (CH), .

We find that the dopant potential can affect the
band structure of (CH),, distort the kink states, and
introduce impurity states away from the band
edges. Even the fully screened dopant can intro-
duce these modifications. When these changes are
included, the charged kink near a fully screened
dopant remains more stable than the configuration
with no distortions. However, the predicted
optical-absorption threshold is toco high. On the
other hand, the charged polaron is also more stable
than the undistorted configuration (and more stable
than the charged-kink —free-antikink pair, but not
the charged kink alone) and the predicted optical
threshold is consistent with the experimental obser-
vations. This suggests that the charged polaron
may be the distortion formed during doping. How-
ever, the charged polaron has one unpaired spin and
would not be consistent with the susceptibility mea-
surements of Weinberger et al.'® This objection can
be removed but only if banding of the polaron states
weakens the predicted Curie-type susceptibility’ or
if the experiments are incomplete or can be reinter-
preted.?’
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Our results are very sensitive to the form of the
dopant potential. When local screening corrections
are included, the discrete nature of the (CH), lattice
is important. Kinks and polarons which weaken
the bonds near the impurity are more stable than
distortions which strengthen the bonds. Isotropical-
ly screened dopants introduce a few impurity levels
into the gap. An anisotropically screened dopant
pulls many levels into the gap. However, one result
is common to all dopant models. The simple pic-
ture for doped (CH), of rigid bands unaffected by
the dopant is invalid for each of the dopant models
considered.

Because of the sensitivity of the results to the
model used, the nature of dopant states, kinks, and
polarons in (CH), cannot be reliably determined
with simple models. Fundamental studies must be
done to develop realistic models for the dopant, the

screening and the electron-dopant interaction. Elec-
tron correlation must also be included in the SSH
model, especially when potentials with incomplete
or anisotropic screening are considered. We will re-
port results for such extentions of this work in fu-
ture publications. Until a realistic model of the
dopant effects has been developed, the nature of
doping in (CH), must remain unclear.
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