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The characteristics of the radiation produced by a dipole, located near the rough surface
of a material medium, are examined. The field distribution is calculated at any point out-
side the medium for arbitrary orientation of the dipole moment, so that one may obtain the
electromagnetic Green’s function in the presence of surface roughness. The medium can
have either local or a nonlocal dielectric function and the results are valid to first order in
roughness. The surface roughness converts the surface polariton field, created even in the
absence of roughness, into radiation and thus leads to well-defined resonances in the far-
field radiation pattern. Numerical results for the case of metallic as well as dielectric grat-
ings are given. The effect of the nonlocality of the dielectric function on the resonances in
the radiation is shown to be significant in certain cases. For metallic gratings the dominant
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effect of the nonlocality is to shift the position of the angular resonances.

I. INTRODUCTION

An excited molecule placed close to a material
medium, such as a metal, is known to couple
resonantly! ~* with the surface polariton modes of
the material medium provided that the molecular
frequencies are such that the surface modes are ex-
cited. For example, for a molecule placed close to
the surface of a semi-infinite medium, the condition
for the excitation of surface polaritons is that the
real part of the dielectric function at the molecular
frequencies is less than — 1. Under such conditions
most of the radiation from excited systems is in the
form of surface polaritons. Reference 1 deals with
this problem extensively for various types of materi-
al media including the effect of the spatially disper-
sive nature of the medium. In order to detect this
excitation of nonradiative surface polaritons, one
has to convert the surface polaritons into radiative
modes. Several schemes’~’ have been used to
achieve this. One approach is to study the spon-
taneous emission by an excited system in the pres-

ence of surface roughness such as a grating struc-
ture. The grating structure converts the nonradia-
tive modes into radiative ones. This geometry
should be contrasted with that of, for example, a
sphere® where the surface modes are radiative in na-
ture and the excitation of surface polaritons is thus
directly observable. The object of the present study
is to calculate the radiation characteristics of a di-
pole located close to the rough surface and to find
out how the excitation of surface polaritons is re-
flected in the properties of the far-field radiation.
In Sec. II we treat the problem assuming a local
dielectric function €(w) and calculate the fields ra-
diated for arbitrary orientation of the dipole. In
Sec. III we incorporate the effects of spatial disper-
sion of the dielectric and examine how the resonant
coupling between the dipole and the surface polari-
tons is affected by the k dependence of the dielectric
function of the medium. Numerical results for the
case of a grating are given in Sec. IV and the struc-
ture of the resonances in the far-field radiation pat-
tern is studied in detail.

II. FIELD DISTRIBUTION PRODUCED BY A RADIATING DIPOLE NEAR THE ROUGH SURFACE
OF A MEDIUM CHARACTERIZED BY LOCAL DIELECTRIC FUNCTION €(w)

The question of the electromagnetic field distribution produced by an electromagnetic wave incident on a
rough surface has been investigated, in detail, by a variety of methods.>~!' Let us assume that the rough sur-
face is described by z=—hf(x,y) where the medium, with dielectric function €(w), occupies the space
z +hf(x,y) >0. The region outside the medium is assumed to be vacuum. The dipole is taken to be located at
a point Ty outside the medium. The field produced by a dipole, oscillating at frequency w, is given by
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which with the use of the angular spectrum representation can be written in the form
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where
Wi=ki—«2 Ko=(%,W,), Ko=(Kk,—W,) (2.3)

and K is the two-dimensional vector representing the component of the momentum vector parallel to surface
z=0. The integration in (2.2) is over the entire two-dimensional plane. W) is real for k < ko and pure ima-
ginary for k > k. The field produced by a dipole is thus expressed as a superposition of plane waves with
propagation vector Ko (KO) for z>zy (for z <z;). The waves corresponding to k <k, are homogeneous
whereas the ones for k > k are evanascent in nature. The dipole produces fields which are both homogeneous
and evanascent in character. For each plane wave, whether homogeneous or evanascent, it is possible to intro-
duce its s and p components. Introducing the unit vectors (perpendicular to the direction of propagation K)

2 XK (Ex )X K (£x ) X K¢
S5 () =225 2 ()= 020 S (R) = (2.4)
K Kk Kk
we can rewrite the dipole field as
J [ a8 (06 (0455 (R ()] 07, 252
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Then, using (2.2) and (2.4), one can show that
k - ;
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0
eS(K) = ———[k2(KXB), Jexp( —i K To+iWozo) . 2.9
27k W,

Having expressed the dipole field in terms of a superposition of plane waves and the plane waves in terms of
their respective s and p components, it would now be easier to use the results from the problem of electromag-
netic scattering from a rough surface to find the fields produced by a dipole placed near a rough surface. This
is because one can study the interaction of individual plane waves in (2.5) and then superpose the result to ob-
tain the total field distribution. One can only do a perturbation theory in powers of the surface roughness
parameter . The total field produced in the region z <z can be written [in analogy to (2.5)] as

EFo)= [ [ d%{S7®)e(R)+e(®)+hef (&) + - ]

P =
iKg T

+8, (R e () +eX () +he) (R) 4 - - - 1)e , 2<2g (2.10)
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In this section, as well as in Sec. III, we will only be concerned with dipolar fields outside the medium, and the
expressions for first-order fields inside the medium will not be given. The zeroth-order fields si(”( K ),81(,0)( K),
for z <0, are related to g’ (k),&, (k') by Fresnel relations

W —W
E:,O)(I?)Z‘WTZE__{_WEE(E’), (2.11)
Wo—W
si°’<'?>=-W°W€s><'?> : (2.12)
0
where
2 (2.13)

Wi=kie(w)—K>.
Note that W gives the z component of the propagation vector of a plane wave inside the medium and that
W, W, depend on K.

Note the presence of the denominator in (2.11) which can vanish (assuming real €) provided the following
conditions are satisfied:

elw)<—1, k>w/c. (2.14)
The vanishing of this denominator can be shown to be equivalent to the result
2
Woe+W=0 = D(x,0)=k>—2 @) __g :
o€+ = D(k,0)=«k 2 o) r] (2.15)

which is the well-known surface polariton dispersion relation. Since the dipolar field also consists of evanas-
cent waves [k > (w /c)], hence, surface polaritons get excited. This excitation leads to large widths of the di-
polar frequencies and thus a very large decay rate as discussed in detail in Ref. 1.

The first-order fields have been calculated earlier for a plane wave incident on a rough surface. If the in-
cident field is a superposition of plane waves with propagation vectors I—{f)m:fc' © WO then the first-order
fields are given by [cf. Ref. 11, Egs. (4.12) and (4.13)]

. ik{le—DF(R—&Q) [ g 2w® _
eli)= [ 0 : K K(O) = 0 e
(W+W) ke (WO wi)
W(O) - =(0) 2W(0) )
+ Kx’(‘o) = 0 - €D(70) | 4% (2.16)
0 KK Wy'e+W
e = =(0) =(0)y, = (0
8;’1)(,-(»)___ f i(e—1)F(&—Kk"") kOWK X K 2wy ()
(Woe+ W) k@ | w0 L0
=, 2(0) QW) .
0) | KK (0) 0 (i) =(0)
+ | W (0 | TERK WBO)G—FW—‘O’ g, (K'0) 1d%©,
(2.17)
and F (&), the Fourier transform of the surface roughness f(x,y), is given by
F(E’):ZI—Z [ dxdy f(x,p)ei® 7 .18
T

It should be kept in mind that W'”, W(” are functions of ¥‘* and obtained from the corresponding W by
K— 9. The first-order fields that appear in (2.10) can be obtained from (2.16) and (2.17) by the replacement

g (K ) —e>(K), e (RO)—ep> (&) (2.19)

We have thus obtained the field distribution produced by a dipole (with arbitrary orientation) to first order
in the surface roughness parameter. The function f(x,y) is quite arbitrary. The self fields which are impor-
tant for lifetime' studies can be obtained from (2.10) by letting ¥—T,. The far-zone behavior of the fields can
be obtained from the asymptotic expansion of the angular spectrum '?
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ikor
E(F,0)~ —2miko | cosf | — (SR () +e7(R) +he, (1))
+SS(ReS (R)+e(®) +het () (2.20)
with
K=(kosiné cos¢,kysinbd sing ), % <O<m. (2.21)

Here the angles (0,¢ ) characterize the direction of observation. The power radiated per unit solid angle is

%:%Ckgcoszo( Ll e®@ 4 hell | 24 el +e el ) . (2.22)
Note that only the homogeneous waves contribute to the far-zone behavior.

Let us now examine the structure of (2.16) and (2.17) for |k | <ko. The field for | k| <k, is obtained
from a linear superposition of the incident field amplitudes at all possible momentum (&) values. It is there-
fore possible that the denominator W{'e + W'® under the integral in (2.16) and (2.17) can vanish for certain
«'© [satisfying (2.15)], if Ree(w) < —1. Thus the resonantly excited surface polaritons get converted into ra-
diation (homogeneous waves) by surface roughness. Therefore, the dipolar radiation'® in the presence of sur-
face roughness would have important contributions from the excitation of surface polaritons inside the medi-
um. The radiation characteristics depend on the orientation of the dipole. For a dipole oriented along the z

axis, the s component of the field £>’ is zero as seen from (2.8) and (2.9) and the p components acquire
simpler form

koik
k)=~ 5 W’(’) expl—iR-To—iWozo) , (2.23)
(<)(_.)_ kOiKp ( c > o> W ) (2.24)
g K)=— W, expl —IK To+iWozZg) . .

On substituting (2.23) and (2.24) in (2.16) and (2.17), we obtain the s and p components of the first-order dipo-
lar fields (in the domain z < 0):

i . (0) ()
()= 2Ko€ D) o gy | EXE2 | B o
: (W +Wy) k'@ | (WPe+ W)
iK(O)k
(0.2 _ ppr(0) oP
exp(— Fp—iWy'zo) | ———— |, (2.25)
X Xp( 1K 0 0 20 27TW8
()
— —2i(e—1) IK kOP . —(0). = .117(0)
Mi)y=—=2 0 [ g% OF(k —kO) | — ——— |exp(—i K 'V To—iWy zg)
g, (K) (Woe+ W) f Py p 0 0 20
Wé)m (0) (&) (0)
X e p—Tt ww o — EKK N (2.26)
(Woe+ W) KK
—
where tion of (2.26) for certain models of the material
medium.
W2=kde—«?, Finally, it should be noted that the calculations
o212 o2 given in this section determine the Green’s function
W =koe — (k)" (2.27) G;; for the electromagnetic problem in the presence
W2 —k2 (k)2 of a rough surface:
Wi=k3—k?. L J0E;(T,»)
Gij( I,Iop® )= (2.28)

In Sec. IV, we will examine the numerical evalua- a[Pj(wz/ D]
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with E given by (2.10). The far-zone behavior of
such a Green’s function is obtained from (2.20).
The above analysis then shows the type of resonant
structure that G can have, even when T is in the
far zone. Such Green’s functions are quite impor-
tant in the theory of surface-enhanced Raman
scattering.'

III. EFFECTS OF THE NONLOCALITY
OF THE DIELECTRIC FUNCTION ¢(k,®)
ON THE RADIATION EMITTED
BY A DIPOLE NEAR A ROUGH SURFACE

In this section we examine how the nonlocal na-
ture of the dielectric function affects the radiation
properties of the dipole near a rough surface. When
the dielectric function depends on k, then the elec-
tromagnetic problem is an involved one and has no
unique solution because of the difficulties associated
with the question of additional boundary condi-
tions.”>~2? Let us write the k dependence of the
dielectric function as

- X X
elk,w)=€y+————€=€5—— (3.1)
@ ot kz_uz_’ 1=¢0 2
where
pr=n(w*—oi+iol) . (3.2)

The parameters 77, g, X, etc. depend on the medi-
um. For example, if a metallic medium is treated in
hydrodynamic approximation, then the longitudinal
dielectric function is well approximated by (3.1)

60217 C‘)O:O, X:wpz/ﬂy

n=1/B, B=+v},

(3.3)

where vy represents the Fermi velocity. The trans-
verse dielectric function €, can be taken to be in-
dependent of k. On the other hand, for an excitonic
medium in effective-mass approximation, €, is the
high-frequency dielectric constant, w, is the exci-

tonic frequency, and
|

*
me

fiwg

X =4mrawly, 1= (3.4)
Since the results are sensitive to the additional
boundary conditions, we assume that the electric in-
duction and the electric field for an excitonic medi-
um occupying domain V are related by

_ﬁ(f’,w)-—— GOE(?,(D)

X o oexplip|T-T" g -
dr v | F—7|

")

xd’' . (3.5)

For the metallic medium, we will use the additional
boundary condition that the normal component of
the current at the boundary is zero. This is the ad-
ditional boundary condition most extensively used
for a metallic medium. Ruppin® and Dasgupta
and Fuchs?? have used it to study the Mie scattering
and the polarizability of the sphere when the hydro-
dynamic dispersion of the metal is taken into ac-
count. Using these boundary conditions, we solve
Maxwell’s equations to obtain the field distribution
in the two cases.

A. Spatially dispersive dielectric medium

The most general solution of the integral equa-
tion (3.5) is given in Ref. 20, for arbitrary domain
V. The explicit form of the perturbative solution
for the case of an electromagnetic field incident on
a rough surface, i.e., for the case when V represents
the domain Z +Af(x,y)>0, has been obtained in
Ref. 21. Such a solution can be used, in analogy to
our treatment in Sec. II, to obtain the field distribu-
tion produced by a radiating dipole in the neighbor-
hood of the rough surface of a spatially dispersive
medium. The fields in the domain z <z, would be
given by (2.10) but now the zeroth-order and first-
order contributions like egm,ai”,al(,m,e;,” would be
different. The zeroth-order terms can be written in
terms of the well-known!® Fresnel relations for a
spatially dispersive medium (z <0):

e (k)= 1 [(Wo—WDED(R)+(Wy— W,)es(®)] (3.6)
2W,
a -1
() =2Woel> (K) [(W, +W,)— a—’( WotWo) | , &= 1m0, 3.7)
2
g (&)= —£\> ()M + W,P) /(M —W,P), (3.8)



26 DIPOLE RADIATION IN THE PRESENCE OF A ROUGH . .. 5837

2
a; K+W, W,
M= |kui+ L= "2y e (3.9)
a; w,—o;
2
a |k +WyW; |,
P=—|— | ————— [k} 41 , .
a; | Wo—W, l i+ (3.10

>
where €< are the dipolar fields given by (2.6)—(2.9). The various W ’s and a’s are functions of k and are de-
fined by

a;=(W,—W,)"\, i=1,21, Wi=k}f—x’k}=kie, i=1,2,
Wi=k}—«? elk;,0)=0, Wi=kd—«?, W2=,u2-K2.

(3.11)

The wave vectors of the two transverse waves inside the medium are represented by kl,kz and that of the
longitudinal wave by K 1- Note again that the vanishing of the denominator M — WP gives the dispersion re-
lation for surface polaritons inside the spatially dispersive medium. The first-order fields also involve the
zeroth-order fields inside the medium. The s components of the zeroth-order transverse fields in the medium
are given by (3.7). The p components (inside the medium) are given by

ke
K

K + W, W, (0)(

Wo—w, ), e (K)=€\Q(K) | o5 - (3.12)

The longitudinal field inside the medium is given by
e”(K)=2Woxko(M —W,P) ™ 1e)>(K) . (3.13)

We now present expressions for the first-order dipolar fields in the case of a dipole in the vicinity of a rough
surface. The results given below are generalizations of the results obtained in Ref. 21. The p component of
the first-order field, for z <0, is given by

2 _’——P
(1), = 1 — 2 2W0k1(K'Y+W2YZ)
=— M| =2Wy(k-X B — 1=2
g (K) 2Wokko(M — W,oP) ol " X)+k“B+ a1 (Wp—W)) +1=
W KY(RY +W,Y,)
WP |k*C — 1=2 3.14)
* 0 o + al(Wz—Wl) + (
and the s component (z <0) by
e(R) = o |(Wo— W) (R) + (W — W) — EXX)2 (3.15)
2W0 K
The various functions i,?,e(li),A,B,C are given by
~1 - -
a Wr+Wy (© XX
el (W1+W0)—-—1—(W2+W0) 2 0 (KXY)z (kKXX)z ’
a, a, K K
e =eiM(1=22) , (3.16)
Y=—i [dW'FR-R%") 3 TR, 3.17)
i=1,2,1
X=—i [dFR—«)| 3, (k,-z—k(z))€§°’(;?’)+k,25§°)(k”){ic’—k"+2[Wo——W,(K')]}], (3.18)
i=1,2,1

C==2 [d®'Fik—k)| 3 (k2—kdeLk")—kPef (&R W;(k")

i=1,2,1

b

B=—2iW, [ d%'F(x —k"k}e'(R") . (3.19)
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The zeroth-order transmitted fields that occur in (3.16)—(3.19) are given by (3.7), (3.12), and (3.13). Thus the
complete expression for the first-order dipolar field is known in terms of e},> ). The Green’s function for the
problem at hand can then be obtained using (2.28). The far-zone behavior of the fields is obtained using
(2.20). The zeroth-order fields (p components) involve denominators,

(k%Wl + Wok%)(ﬁz’ﬁl)
(W,—W))

Qy

(291

M — W0P=k0K2+

+le2 |, (3.20)

the vanishing of which results in the surface polariton dispersion relation?* in a spatially dispersive medium.
Since the first-order fields involve a superposition of the zeroth-order fields, with a weight factor that depends
on surface roughness, it is clear that the excitation of surface polaritons would have a dramatic effect on the
first-order fields. The case of a dipole oriented along the z axis is much simpler since the zeroth-order fields
have no s components. In the next section the field (3.14) will be computed for various directions of observa-
tion.

B. Metallic medium

The electromagnetic fields outside and inside the medium can be written in the form

E: f fdeeXp(ll_(??+1Wtz)[-€’£0)(kv)+hggl)(’?)_+_ . ]

+ [ [ d explic-T+iW2) K [e(R) +hef (®)+ -+ 1, 2> —hf, (3.21)
E= [ [ d%explic T—iWo2)[€ QR +hER®)+ - 1, z<—hf, (3.22)
Ef= [ [ d% explik-T+iW,2)E V(&) , (3.23)
where € ' is the incident field produced by an oscillating dipole at z =z, on the medium and
2 w2
W= €(0)—k2 e=1——"2— (3.24)
et ! o’+iol

The boundary conditions that are to be used at z = —hf are (i) tangential component of the electric field con-
tinuous, (ii) tangential component of the magnetic field continuous, and (iii) normal component of the current
zero. The last boundary condition when combined with the continuity of the normal component of the elec-
tric induction leads to the continuity of the normal component of the electric field. It can be shown that the
matching of these boundary conditions leads to the following equations:

e () + 8 (R =e(®)+ K pe(®)

) +K el (®) —E R () =X (k) (3.25)
XK, x &) =X [Kox € U@ +£X[Ky X &R,
XK, xE M) -2 X [Kox ERUR)]=F(K),

where
Ko=(&, W), Ko=(®,—W,), K,=(R,W,),
X(R)=i [ d FR—&"{ WolR[eR (R ") —e & W,(&"E V(R + Wik K, (el (R},
F(@) =i [ d'F(R—&" N Wo(R)EX[Ko(R)XER(R")]—2X[Ko(R)XE (']} (3.26)
+ W (RNEX[K (R XED(R"]
+(®R—RIX[KH(RIXEDRN+K(RIXE AR —K (R )XE DR .

The above linear equations can be solved in general. Instead of presenting the general solution, we give the re-
sult for the first-order fields produced by a dipole oriented along the z axis. As before, for such an orientation
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of the dipole s components of all the fields are zero. The zeroth-order fields are found to be

2
(0) _ k ( (0) )’

€y = k2 eRz+sz
o (Wt+W(o)8(O)W(I;’z) Wo)el ,
K°+W,W;

o . KK+ Wo W) 327

e =D"'W,(k2+ W, W))e” —k3+m— ,

D= (k2 4+ W, W))Wkl +kiW,)—k kI W, +W,) .
The z component of the first-order field ER 1 is found to be

eh =Dk k%, — (B X)W, — (V) >+ W, W)} W, (3.28)
with

(Rp)=ik§ [ d%'F(&—&"{R[E QRN +E V)] —e[&E VK],

x,=i [ A% FR—R ) Wo(R QAR — e8]+ W, (& e (& )+ WHER DR} (329

(RR)=i [ dF(R—&"){ Wo(RNRERQR)—REVRN]+ W,k [REP(R)]
+Wi(RNKRERD) .

The dot products that appear in (3.29) can be related to the z component of the field by utilizing the p-
polarized nature of the field, e.g.,

(BRI, (k")
REO(R)= — 0 (3.30

KI2
Expression (3.28) will be used in the next section to study the effect of the hydrodynamic dispersion of the
dielectric function associated with a metallic medium. The new surface-plasmon dispersion relation will be
given by the vanishing of D [Eq. (3.27)] and is in agreement with the result of Fuchs and Kliewer.'

IV. NUMERICAL RESULTS FOR THE RADIATION FROM A DIPOLE
IN THE PRESENCE OF A GRATING

To see the effects of the excitation of surface polaritons and the conversion of these two polaritons into ra-
diation because of surface roughness, we have evaluated the radiation in the far zone assuming that the rough-
ness is in the form of a grating, i.e.,

f(x,y)=singy, F(?)=%[8(F—§)—8(E+§)] ) @.1)

We assume for concreteness that the dipole is oriented along the z axis and evaluate the p component of the
emitted radiation. The important contribution to the radiation [Eq. (2.22)] comes from s;,” terms and hence
we compute explicitly the quantity defined by

52(0,4)=cos?6 | e (kosind cosg, kosind sing) | 2 4.2)
and for the sake of illustration we take ¢ = /4. On substituting (4.1) in (2.26), we obtain for the p component

of the first-order dipolar field in the far zone (K =ksiné cos¢,k(sinf sing )

(KK _ (>)
Www _ KK )-—gm(_ _M__
KK _ (Wo_e+W_) ’

where the ellipsis represents terms with — — + and where s}f (®_)is given by (2.23) with K — K _ and where

(e—1)

(1)( )
T (Woe+ W)

4.3)
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Ky=K+g = K4 =_(kosiné cos¢,ksind sind +g) ,

=kje ——KZJ:, W(Z)J7 =k(2,—;cft .
It is thus clear that the radiation in the direction kK
can arise from the components K, in the angular
spectrum representation of the free space dipolar
field. The denominator Wye+ W in (4.3) cannot
vanish since |k | <w/c, but the denominators
(Wi €+ W) can vanish if

kie(w)

- 4.
elw)+1 @3)

1+

K

Of course, since k4 and w are real, one really has a
resonant structure corresponding to values given by
(4.5), i.e., for (0,¢ ) values around (8y,¢) such that

3
LA o e e e e e s S S B S

(a)
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02:w/wp=0.3
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T

T
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8
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(b)

T TTTTIT

0.5= w/wp=04

w

S
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T
1

o'l e | |
122.51° 125.01° 127.51° '142.2° 144.7° 147.2°

8

FIG. 1. Signal S?, in arbitrary units, as a function of
the angle 0 of observation, in the resonant region, for az-
imuthal angle 45° for the case of a dipole located at
(0,0,z¢) near a metallic grating. The curves are in the ab-
sence of any hydrodynamic dispersion. The dipolar fre-
quencies are as indicated in the figure. The other param-
eters have been chosen as I'=10"w,,0,|zo| /c=0.1
and the grating periodicity to be taken to be order of a
wavelength gc /w, =0.25.

(4.4)

Ree(w)
Ree(w)+1 °

(4.6)

[
k (Z)sinzeo +82%42gkysinfysing o = k3

One can similarly write the analog of (4.2) for the
case when the spatial dispersion of the dielectric is
taken into account.

The results of our numerical computations are
shown in Figs. 1—4 for two different types of ma-
terial medium. We plot $'2/(@,7 /4) as a function
of the angle 0 of observation for various values of
the frequency w. We only show the resonant re-
gion, i.e., the region in which (4.6) is satisfied. In
Figs. 1 and 2, we show the behavior for the case of
a metal with longitudinal and transverse dielectric
functions

2
@p
(0*+ioT—pk?) "’

B=3v} @.7)

EI(I?,(O)ZI—

&(K,0)=1—0,/(0*+ioT) .
The parameter B can be rewritten in terms of
A="tiw,/Ef as

58 [0.012388 ]2

" X 4.8)

The dipole is assumed to be at a short distance
(<< A) from the surface. Note that such short dis-
tances were used in the experiments® of Pockrand
et al. In Fig. 1 we show the behavior of the dipole
radiation in the absence of spatial dispersion. The
resonances in S‘® occur in accordance with (4.6).
For dipolar frequencies far away from static surface
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w10, 5706
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T
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T T
Lot

TERST S S T T VS S B A X T Y

125.01 126.01 16411 166.11
8

FIG. 2. Same as Fig. 1, but now the hydrodynamic
dispersion of the metal is taken into account; the other
parameters for various curves are as shown.
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FIG. 3. Same as in Fig. 1, but the material medium is
now a dielectric grating [Eq. (4.9)] with parameters
47 =0.0125, €,=8.3, Al =5X107> eV, #w,=2.5524
eV, m¥c?/fw,=1.8045X10°, wq|zo|/c=0.1, and
gc/wo=0.75. The upper (lower) curves give the signal in
the absence (presence) of spatial dispersion.

plasmon frequency wp/\/i, the effect of hydro-
dynamic dispersion is found to be unimportant and
hence is not displayed. However, as one approaches
the @,/ V2, the effect of hydrodynamic dispersion
becomes quite pronounced as seen in Fig. 2. The
most notable effect of the hydrodynamic dispersion
is to shift the position of the peak.

Figures 3 and 4 give the variation of the signal
$? as a function of  for the dipolar radiation in
the presence of a dielectric grating with the dielec-
tric function

4raw (2)

e(K,w)=¢€y+
0

*
me

k2

—(w —wi+iol)

(4.9

Such a dielectric function has been extensively
used!>1%20.22 i the study of the optical properties
of materials, such as CdS and ZnSe, near an isolated
excitonic resonance. The upper curves give results
in the absence of spatial dispersion (m}— o),

OET ! l [ I I
— —
[~ 1.0004 = w/w, =1.0005 7]
- -
10 = -
B m
B B
10 = =
5(2) E
— 1.0005 =w/wy=1.0004
) N N N N B B

100° 1o* t20° 130° 140° 150° 160° 170°
8

FIG. 4. Same as in Fig. 3, but with a reduced grating
periodicity gc /wo=1.5.

whereas the lower ones are in the presence of spatial
dispersion. In the case of a dielectric material with
dielectric constant of the form (4.9), the effect of
spatial dispersion is quite pronounced in contrast to
the case of a metal.?> A shift in the resonance posi-
tion due to the spatially dispersive nature of the
medium may also be noticed. The grating periodi-
city is also found to change the width of the reso-
nance as is seen from a comparison of Figs. 3 and 4.
This can be understood from the behavior of the
denominator (Wyi€+ W) or equivalently that of
ki —[ke/(e+1)]=D,. Assuming that (4.6) is
satisfied with the upper sign, then writing the roots
of (4.6) as a and B3, we obtain for the denominator

D, = (sinf —a)(sind —f3)

€ Ree

_ . 4.10
€+1 Ree+l1 ( )

The term in large parentheses is proportional to Ime
or to the damping I". Thus in the vicinity of reso-
nance sinf =g, (4.10) becomes
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D, =~(a—p)|sind—a

€ Ree
€+1 Ree+1

i

" (a—B)

I

(4.11)

The width of the resonance thus depends on a —f3,

which obviously depends on the grating periodicity.

This dependence is in addition to its dependence on
.

Thus in conclusion we have shown how the exci-

tation of the surface polaritons by the dipolar field
is reflected in the far-field radiation pattern pro-
duced by the dipole in the presence of surface
roughness and how the nature of the resonances in
the radiation is affected by the nonlocal nature of
the dielectric function of the medium.
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