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The cross section for the scattering of light is obtained for the screened single-particle ex-

citations and the collective plasma modes of a single parabolic band, taking into account

the different electron-scattering processes. The dielectric constant in the random-phase ap-

proximation is evaluated, including the effect of energy-dependent electron-relaxation pro-

cesses. Thereby, the conservation of the local electron number is observed. We find that
with an increasing scattering rate the line shape of the single-particle spectrum changes
from a Gaussian to a Lorentzian form and the shape of the plasma-mode spectrum is

shifted and broadened by the collisions. The details of the line shapes, as a function of the

frequency co and the temperature T, are determined by the energy dependence of the relaxa-

tion rate. The general theoretical results are used for a comparison with experimental data
on GaAs.

I. INTRODUCTION

The scattering of light from a solid-state plasma
provides certain information on the excitation spec-
trum of the electron gas. The spectrum consists of
the two parts: the single-particle spectrum and the
collective part. Since the single-particle scattering
is caused by the individual electrons (Compton
scattering) this portion of the spectrum mirrors the
Maxwellian velocity distribution in the case of a
nondegenerate electron gas. In addition, there is the
collective-mode scattering due to plasmon excita-
tions in the electron gas. At room temperature and
for electron concentrations of the order of 10'
cm and less, the single-particle spectrum overlaps
with the collective plasmon excitations. Hence the
plasma modes are Landau damped.

In this paper we address ourselves to the ques-

tion: How is the frequency-resolved scattering cross
section affected by the electron-scattering processes
in the solid that bring about a relaxation of the elec-

tron distribution to local equilibrium? In particu-
lar, we consider the scattering of electrons by
charged impurities and by polar optical modes,
since these are the two dominant scattering process-
es for several of the III-V compounds at room tem-

perature. In fact, recent experimental results on

GaAs obtained by Abramsohn, Tsen, and Bray' ex-

hibit a more Lorentzian behavior of the scattered
light spectrum on the samples with high electron
(and hence impurity) concentrations. This behavior
replaces the Gaussian line shape to be expected in
the absence of relaxation processes, observed first
on samples with small electron concentrations by
Mooradian. '

In Sec. II we present the theory of light scattering
in the presence of relaxation processes, emphasizing
the importance that the local electron number must
be conserved. In the brief Sec. III we give the for-
mulas for the scattering times r (p) for those
mechanisms which are considered to bring about
the relaxation of the electron distribution to local
equilibrium. In Secs. IV and V we present some
theoretical results for the energy and temperature
dependencies of the scattering cross section pertain-
ing to n-type GaAs. Finally, we compare our re-
sults with the experimental findings by the above
authors for the scattering of light by the
conduction-electron system in GaAs at T=300 K.

II. THEORY: LIGHT SCATTERING BY AN
ELECTRON GAS IN THE RELAXATION- TIME

APPROXIMATION

The cross section for the scattering of light by
density fluctuations of the electrons is directly pro-
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portional to the imaginary part of the inverse
dielectric function. For Stokes scattering the cross
section for scattering into the frequency interval dco

is given by

=c[tt (to }+1]1m' '(q, co ),
CAN

where q is the momentum transferred to the elec-
trons by the scattered light, n(to) is the Bose func-

tion, and the constant c is proportional to
(e2y~y 2)2 4, 5

When taking into account the scattering of elec-
trons by impurities and phonons, we must use the
proper dielectric function. It is well known that the

I

effect of collisions generally is not accounted for by
merely replacing co by to+i/r in the collisionless
dielectric Lindhard function of the random-phase
approximation (RPA). This approximation fails to
conserve the local electron number, as pointed out
by Mermin. The straightforward way of correc-
tion is by employing a relaxation-time approxima-
tion in which the collisions relax the electron-
density distribution towards the local equilbrium

density, instead of the uniform equilibrium value.
To obtain the proper RPA dielectric function, we
start from the conventional Boltzmann equation
which is an equation of motion for f(p, R, t), the
average density of particles with momentum p at
the space-time point R,t:

1 d
+—+ f(p, R, t) ——f d r f e' i' o '

Ugff R+ , t ——U,«R —
, , t f(—p'&R,t)

f(p, R, t) —f(p, R, t)
r(p)

Here the relaxation-time approximation is used for the collision term; U,tt is defined below, Eq. (4},and fi= l.
It is assumed that the density-distribution function relaxes towards the local density distribution,

f(p, R, t)=
exp[P[e(p }—p] —P5p(R}]+1

where 5JM(R) is the local deviation of the uniform chemical potential; P= 1 lks T, and we take ks ——1.
The effective potential depends on the distribution function f,

3

U,«(R, t)=U(R, t)+ f d'R'U(R —R') f [f(p,R', t)—f,(p)],
(2n')

where

(3)

fo(p)= (5)
exp[P[~(p) —et+I]

is the equilibriuin density distribution, U(R) is the Coulomb potential, and U is the external potential. Furth-

ermore, it is assumed that the relaxation time r ( p ) is isotropic and depends only on the particle energy e (p).
With the ansatz

f( P R t }=fo[&(p)1 +5f( P R t } '(6)

we linearize Eq. (2), assuming that the external field U is small; then the deviation 5f from the equilibirum

distribution fo in the Fourier space is given by

where

5f(p q t0) —fo p-
m* 2

I

fo P+—
2

.5f(p, q,~)—5f(p, q, ~ }

r (p)
5U,«q, oi = —t

5U ff( q, co) = U( q, co)+v(q)f,5f(p, q, co)
(2n }

In order to get 5f, we expand the local density-distribution function, Eq. (3), with respect to the local devia-

tion 5p of the uniform chemical potential and obtain (for details see Appendix A)
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5f(p, q, co)=
fo p —

2
fo—p+

' 5p(q) .
P 9
m*

(9)

By inserting Eq. (9) into Eq. (7) we get

5f(p, q, co)=
fo p —

2 fo 0—+2
I

m~

5U,ff(q)+ 5p(q } (10}

The density change is given by

d3
5n(q, co)=2 f 5f(p, q, co) .

(2m )

By integrating the transport equation (7}over the phase-( p) space we obtain

fo 0—
2

5 (- )=-~ (- }-2 P ' "' '+25 (-)" "'conq, co=qg q, co —i
3 +tpq f(2m} & p (2n} & p

fo p+—
2

m*

. (12)

In order that the relaxation-time approximation is made to conform to the continuity equation, Eq. (12), we

are led to the following equation:

d'p 5f(p, q, co) 5 ( )2f d'p 1

(2m )' ~ (p)
JM Q

(2m )' ~ (p)

The comparison of Eqs. (10) and (13) leads to

fo p —
2

p q
m*

fo 0+2

m*

(13)

2f dp 5f(p, q, ) f dp 1

(2~)' &(P) (2n. )' r (p)

fo p —
2 fo p+2—

p'q
m*

d p 1

(2m }' ~ (p)

fo p-
2

fo 0+2—
p q
m*

X2f "~,
(2m )'

fo 0— fo p+2—
co~ (p)+i

X
p q
m~ r(p) co+

1 P m*

(14)
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We now define the following integrals containing r (p):

l

r (p)

fo p —
2

B(q,ro) = —u(q)2 f d p
(2m )

fo—P+ 2

v'q
m*

B,(q, co) = —v(q)2 f dp 1

(2~)' ~r (p}

fo p —
2

l

r (p)

fo —0+2
(16)

B,„(q,ce) =—u(q)2 J (2m ) cor(p)+i l

r (p)

1+
v q
m~ m~

fo P — fo P+—

where v(q) =4ne/q e„. From .the preceding equations, (10)—(14), and with defining Eqs. (15}—(17), we ar-

rive at the general formula for the density change,

5U,rr(q, co )
5n(q, a) }=

v(q)

B,(co,q )B,„(q,co )
B(q,co )+—i

B,(co,q) B,„(q—,co }
(18)

The dielectric function is defined by

e(q, co) =1—v(q)
5n(q, a))

5U,rr q, co

Hence

B,(q, co)B, (q, co)
e(q, co) =1+B(q,co) i—B, q, m —B,~ q, co

This is the final result for e (RPA), taking into account energy-dependent electron-relaxation processes.
For r (p) =const, Eq. (20) reduces to Mermin's formula,

(19}

(20)

e(q, co) =1+
1+ B(q,co)

i B(q,co}

re@ B(q,O)

(21)

where B(q,co) is given by Eq. (15) and

d p
fo 0—

2
B(q,O)=u(q)2 f (2n.)

fo p+2—
v'q
m*

(22)

For r (p)~ oo, Eq. (20) simplifies to Lindhard's formula

e(q, co) =1+B(q,co) . (23)

The light-scattering cross section is determined by the imaginary part of the inverse dielectric function, Eq.
(1). From Eq. (20) we get
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Ime '(q, co)=

1+B'+

8,'„ iB, i' 8—', iB,—B"+
iB, B—,„i~

+ —B"+
8,'„fB,

i

—8,' iB,„i
(24)

where 8' and 8" are the real and imaginary parts of 8, respectively. For the special case r =const, Eq. (24}
becomes

Ime '(q, co )=—
8"(q—,co+ )+ [ ~

B(q,co+ )
~

B(q—,O)B'(q, co+ )]
corB(q, 0)

1+8(q,o) I 8(q,~+ )
I
'[1+8(q,O}1'

[I+8'(q, co+ }] +8" (q, co+) 28 "(q—,co+) ' +
N'rB q, O [corB(q,0)]

(25)

where co+ =co+i /r. Equation (24) yields the general form of do /de, Eq. (1), valid for a degenerate or a non-
degenerate electron gas with energy-dependent ~.

In the case of semiconductors we are primarily interested in those electron concentrations and temperature
regimes where the electron gas is nondegenerate. The Maxwellian distribution is given by

(4m} ~ n

2(2m ~T)
p

2

2m*T (26)

(27)

where n and m* are the density and the effective mass of the electrons. For this distribution we can calculate
the function 8 in closed form for the special case r =const; the details are given in Appendix B. The result is

2 2

m arco+ m ~co—
2 im~ 2 im*

8(q, a),r)= imC —w + —N 12 12q(2m~T} q(2m~T) r q(2m~T)' q(2, ~T)

where

C=e (4m. ) nm~/2me„q (2m*T)'

Here e„ is the background dielectric constant. The
function w is in terms of the error function given
b 8

0
=const)& mC exp

2
2

N-
2m*

2

4T q
2m*

(31)

w(z}=e ' erf( iz) . —

In the limit v —+ oo, we have

(2&)

co m* q . coB"=2' exp — — sinh
2q2T 8m*T 2T

(29)

For small electron densities, the quantities
B',B"«1 and can be neglected in the denominator
of Eq. (25). With the relation

(32)

By introducing the mean free path I

l =Up-t', (33)

Hence do/de mirrors a Gaussian distribution dis-
placed from co =0 by q /2m*, the Compton shift.

The Gaussian distribution is changed when elec-
tron collisions become important. A decrease of r
leads to an increase of the imaginary part in the ar-
gument of the function w in Eq. (27),

m

q(2m*T)'

[n(co)+1]2sinh =exp
2 2

(30)

where n(co) =(e~ 1) ', we arrive —at the cross sec-
tion,

where UT is the thermal velocity
1/2

2T
UT= m* (34)
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we can express Eq. (32) as

T] o

1

/q
(35)

In the limit of small values for cow [=ql(c/ur),
where c is the velocity of light in the medium], Eq.
(25) becomes

(~&)Bo(
I
B

I

' B'B—o}Ime-'=
~B

~
(1+Bo) +(cur) [(1+B') +B" ] 2B—"(cor)(1+Bo)

with Bo=B{q,0}. Since B"is an odd function of co, the cross section for small frequencies is given by

rBp(B' B'B
p
—)

BII Blt
e) r Bo(1+B') —2 r(1+Bo)+ ' (1+Bp) +B' (1 +Bo)

a

N+C

where a, b, and c are constants. The Gaussian line
shape of Eq. (31) changes into the Lorentzian shape,
Eq. (37), for small cor

For sufficiently high electron densities and/or
sufficiently low temperatures, collective plasma
modes emerge from the single-particle spectrum. In
the limit ~~ 00, the plasma peak is determined by

[1+B'(q,co)]=0,
which results in

' 1/2

N =2Np 1+ 1+ 12Tq

m*Np

(3&)

(39)

with co& being the free-electron plasma frequency,

one'
N e„m' (40)

III. RELAXATION TIMES

The energy dependence of the relaxation time is
determined by the scattering mechanism. Let us

.However, for small relaxation-time values, the
plasma peak becomes less pronounced. It even may
disappear altogether due to lifetime smearing.

For the general case of an energy-dependent r,
the integrals in Eqs. (15)—(17) cannot be evaluated
analytically. However, in our case where the relaxa-
tion time is isotropic, the angle integration can be
done analytically (cf. Appendix B}. The final ex-
pressions for the real and the imaginary parts of B,
B„and B,„are to be calculated numerically by tak-

ing into account the known energy dependence of
the relaxation time. With Eq. (24), the cross section
for Stokes scattering is readily obtained.

(37)

I

briefly review the relevant mechanisms and their
energy dependences, with respect to our evaluation
of e[co,q, r (p)].

A. Ionized impurity scattering

For a homogeneous distribution of Nr ionized
iinpurities (donors plus acceptors), Brooks and Her-
ring have evaluated ' the relaxation time due to
the scattering by the screened Coulomb potentials,

mNge beln(1+ be)—
v 2e' (m')' e' 1+be

{41)

(42)

and

nNgn'=n+(n+N„) 1— (43)

where Xz is the ionized-acceptor concentration and

ND is the total (neutral plus ionized) donor concen-
tration. "

where e is the electron energy and the parameter
b =2e„m~T/me n' For an .uncompensated n-type
semiconductor, both Nq and n' can be set equal to
the electron concentration n. For a partially com-
pensated n-type semiconductor, however, the num-
ber of ionized acceptors must be taken into account,
leading to a density n' (which enters the above
Brooks-Herring forinula} larger than the average
electron density n. In this case, Wq and n' are given

by
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B. Polar optical scattering

In polar semiconductors, the conduction electrons
can interact strongly with the displacement polari-

zation caused by optical phonons. This scattering
process is (in general) highly inelastic in that the en-

ergy change in a collision Ae» T. Therefore, a re-
laxation time cannot be defined. ' We introduce the
approximate relaxation time,

=CKCOp

+PO

COp

n(cop) ln

COp

1+

COp

1+

' 1/2 +e 'lnpcoO

1+ 1—

1 — 1—
' 1/2 (44)

where the second term corresponds to phonon emis-
sion and occurs for e & cop only. ' The constant a is
Frohlich's parameter; cf. Ref. 13. For the case of
GaAs, a =0.067 and cop ——417 K.

For completeness we mention the relaxation
times for acoustic-phonon scattering and for neutral
impurity scattering in Ref. 14. For the case of
combined scattering mechanisms, the total relaxa-
tion time is given by

(45)

where ~; is a single energy-dependent relaxation
time defined for each scattering mechanism. The
carrier mobility, i.e., the drift velocity of the car-
riers, is determined by the mean value of r (e ),

(46)

where for a nondegenerate electron gas the average
value of r is given by

processes, Eq. (48), the mobility is evaluated to be
6300 cm /Vsec which is in the general range of
mobilities quoted for GaAs samples of this carrier
concentration.

IV. RESULTS AND COMPARISON
WITH EXPERIMENTS

To discuss the effect of electron-relaxation pro-
cesses on the light scattering cross section, given by
Eq. (1), we choose the III-V compound GaAs with a
nondegenerate electron gas in the conduction band
as an example. The generalization to a degenerate
electron gas for GaAs (and for other substances) is
straightforward and can be carried out by using the
general result for the dielectric function, Eq. (20),
and Appendix B.

The parameter values for the electron-relaxation
processes are given in Sec. III. The three different
electron concentrations, n =6)& 10', 2.6)& 10', and

1 1

T (E) r;~p(E) 1p (E0)
+ (48)

1 =(7)= p d&e E 1 (E) .
(47)

In some III-V semiconductors, the polar optical
scattering is the dominant scattering process for
high energies, whereas the ionized impurity scatter-
ing is dominant for low energies. Hence we can use
the approximation

l.5

l.o
C

~reOJ
II
40

0.5

4

l5
xl0 cm

500K

Figure 1 indicates the energy dependence of ~ for
the parameter values characteristic of GaAs. The
density n =6&10' cm, the temperature T=300
K, and NI n'= n in Eq.——(41). When only the polar
optical scattering process is taken into account, we
get a mobility value @=7560 cm /Vsec (a larger
value if a&0.067). For the combined scattering

Pl/2m T

FIG. 1. Energy dependence of the relaxation time ~
for the combined processes of impurity and polar optical
scattering, ' e=p /2m ~, electron density n =6)(10"
cm, temperature T=300 K.
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-I
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FIG. 2. Intensity of the scattered l'gli ht for different
=6)&10' cm, and T=300constant relaxation times; n =

K.

7&(10' cm, are being considered.
In order to accentuate the qualitative effect of the

he line shape, we first take
'ft. Figures 2—4 show the results for di-e =~=const. igures

ferent values o r. ef The following two findings are
emphasized: (a) The shape of the single-particle
spectrum c anges romh f om the Gaussian to a Lorentzi-
an behavior as e vh th value for r decreases, an t e
shape of the spectrum for collective plasma mo es
is determine y anined b Landau damping, the strength of

he lasmaw ic epen sh' h d d on the overlap between the p asma
mode and the single-particle spectrum, and y co-

A the number of collisions in-lision processes. s e
and itsthe lasmon spectrum broadens an its

ufficientlcenter shifts to smaller frequencies. For su
'

y
small electron-relaxation tim, pes the lasmon struc-
ture is su mergeb d in the single-particle spectrum.

ofNext we consider the temperature dependence o

I I I I I I II I I I I I

I6
n=2.6 x IO crn

I

-120 -80 -40 0 40 80 120
Frequency (d (cm )

1016 —3FIG. 4. Same as Fig. 2; here n =7)& 10 cm

the line shape. Here, the energy dependence of the
relaxation time mus et be taken into account for t e

~ ~ ~f 11 in reason: The relaxation time r e iso owing
ed t low temperatures by iomzed

'
p

'
y

scattering which is strongly energy dependent [Eq.
t h' h temperatures it is determined

by polar optical scattering with a weak energy
e [E . (44)]. We use the combined

scattering rate for impurity and po ar op ica
scattering processes [Eq. (48)]. Figures 5 —7 are the
line-shape resu ts orlt f r the three different cases:
r=r=co, r=r(T), and r=r(e, T). n=6X10
cm and r is evaluated from Eq. (47). We can see
that for all temperatures the plasmon peak is most
pronounce w en ~= Do,

andalone. As for the two other cases, F ( ) an
r (e, T), there is a substantial difference between the

I I

I5
n "6&IO crn

Londau
doAlPlng

only

I I I

-120 -80 -40 0 40
-I

Frequency (u (cm)
80 120

10' cmFIG. 3. Same as Fig. 2; here n =2.6g 10 cm

I

0 20 40 60 80 100
Frequency ~ (cm )

FIG. 5. Temperature dependence ofof the scattered light
intensity; n =6& 10' cm; here '7 = Oo.
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I 15 I

n=6~10 cm

2.0-

I I I I I I I I L I I I

n=6.101'cm-~
T=300K
xxx Q—- T (T) theory

1,5

gati 1.0

0.5

0 20 40 60 80 100
Frequency ~ (crn )

FIG. 6. Same as Fig. 5; here v =F (T).

two spectra at low temperatures and at low frequen-
cies, due to the dominance of the energy-dependent

impurity scattering. Our results are in qualitative
agreement with the temperature dependence of the
scattering cross section observed by Mooradian on
a n-GaAs sample with n =10' cm (cf. Fig. V.4
in Ref. 3). In calculating the line shapes we assume
nondegeneracy, the Fermi temperature TF-17 K.

Let us now proceed to compare theory and exper-
iment. The detailed experiments by Abramsohn,
Tsen, and Bray' are on GaAs at T=300 K, for
q=2.91' 10 cm ', and for the same three n values
as above. For the comparison we use the
relaxation-time formula for combined impurity and

polar optical scattering, Eq. (48); cf. Sec. III. In ad-
dition we consider the limit r=oo for Landau

damping alone. The results are shown in Figs.
8 —10. For the cases r =r (T) [Eq. (47)] and

r =r (e, T) [Eq. (48)], there is fair agreement at the
higher frequencies, while for r= 00 the theory com-

pletely fails to reproduce the experimental data.

The shapes of the experimental spectra fit some-
what better to the curves for r (e, T) than to those
for F (T) (Figs. 8 and 9). We expect the r(e, T)
curves to be in even better agreement at T & 300 K,
when the energy-dependent impurity scattering
dominates. Therefore, it would be of great interest
to have the corresponding experimental spectra at
lower temperatures, in particular for nondegenerate
semiconductors. At low frequencies and for in-
creasing electron densities, the disagreement be-
tween our theory and the experimental findings is
quite obvious, as shown in Figs. 9 and 10. It ap-
pears that the involved light scattering processes
cannot be described on the basis of quasifree elec-

4,0 I . I

16
n= 2~10 crn
T= 300K

0 20 40 60 80 100 120
Frequency ~ (cm )

FIG. 8. Theoretical spectrum for the light scattering
in n-GaAs for ~ = 00, ~ =v (T), and v =~ (e, T). Experi-
mental data, , by Abramsohn, Tsen, and Bray (Ref. 1).
Here n =6)&10' cm

CO

Vl

c

I I I

n=6~10 cm
T=300 T=r (e,T)

3.0—

~ 2.5
K

20

1.0

ty~
~0 ~ ~

0 20 40 60 80 100
Frequency ~ (cm )

FIG. 7. Same as Fig. 5; here ~ =v (e, T).

0 20 40 60 80, 100 120
Frequency ao (cm )

FIG. 9. Same as Fig. 8; here n =2.6)&' cm
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4—

l6n= 7xl0 cm

T= 500K

xxx7c&'—~~7& theory
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X
X

I x I
x
X
X
X
X
x
X
X
X
X
X
X
X

x
x
X

I I I I t I +

40 80
)

120 160
Frequency ~ (cm )

FIG. 10. Same as Fig. 8; here n =7)& 10' cm

trons. Instead, the effect of the electron band struc-
ture on the scattering cross section has to be taken
into account. The scattering of light by electron-
energy fluctuations, first suggested by Wolff, '5 can
be considered as a possible explanation for part of
this effect." When all of the band-structure ef-
fects can be expressed in terms of the constant ef-
fective mass of a single parabolic band, Eq. (1}
should accurately account for the light scattering by
the conduction electrons.

V. SUMMARY

The energy-resolved cross section for the scatter-
ing of light by quasifree conduction electrons in a
single parabolic band, Eq. (1), is given in terms of

the RPA dielectric function, Eq. (20). This func-
tion accounts for the energy-dependent electron-
relaxation processes involved in relaxing the elec-
tron density to its local equilibrium distribution.
Because of its general form, it applies to the nonde-
generate as well as to the degenerate state of the
electron gas. Electron-relaxation processes have a
pronounced effect on the spectrum of the scattered
light. In a nondegenerate electron gas the shape of
the spectrum is changed from a Gaussian to a
Lorentzian behavior as the relaxation time in-
creases, and the peaks of the collective plasma
modes are shifted and lifetime broadened as the col-
lision rate increases. Within the considered range of
electron densities the collective plasma modes can
be damped out completely by the single-particle ex-
citation spectrum, provided the relaxation times and
the temperatures are sufficiently small and high,
respectively. Relaxation processes play a decisive
role for the understanding of experimental findings
as the comparison with experimental data on GaAs
indicates. At high frequencies, when band-structure
effects can be ignored, the comparison results in al-

most quantitative agreement.
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APPENDIX A: LOCAL DENSITY DISTRIBUTION f
The local density-distribution function in Fourier space is obtained from the density-matrix operator,

f(p q &)= p —~ p+~
2 exp[P(HO —p) —P5IM ]+1 2

(Al}

In order to get 5f [Eq. (9)], we expand f with respect to the local deviation 5p of the uniform chemical poten-

tial. Using the identity'

1e"+~=e~ exp dt e "'pe+
0

where A and 8 do not commute (in general), we obtain in first order in 5p,
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exp[P(Ho —p)]f(pq,t) , (=p
~ 1+P f dt exp[ P—(Ho p—)t]5p exp[P(Ho —p)t]2 exp[P(Ho —p)]+ 1

X
1

exp[P(Ho —p }]+.1 2

= p- —'
2 exp[P(Ho —p }]+1

p+

Pe
8

e +1
exp[ —P(e —e+ )]—1

E —E+
5 -+

=fo(p +-, ,o—
fo p —

2 fo p+ ——q
2

' &p(q), (A3)

where e+ ——e[p+(q/2)] —p. Hence, we have

fo p —
2

fo p+ ——q
2

' &v(e)
p'q
m*

(A4)

APPENDIX B: INTEGRALS WITH v (p)

Assuming a parabolic band, e(p) =p /2m ~, we must evaluate the following integrals:

B~=v (q)2 f 3
P (tor (p))

(2m )

fo p+2 fo p —2—
p'q
m*

—=v(e)2f "',fou»
(2n)

N+ +
'T p—

2

m*

C07 p+—
2

p+
2

p q

where P (toe (p)) stands for the functions 1, 1/for (p), or 1/[cog (p)+i] The first .form of B~ is conveniently
used if r is a function ofp, whereas the second form is more suitable if r=const.

For constant ~, W is also a constant, and we can proceed with the angular integrations; the result is
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B~=2u(q}P (coo}f z f11(p} ln
(2~)' 2pq

2
'2

q pq 1

2m~ m~
'2

pq 1
~+2 g g +

m~
ln

2pq

pqy+ g +
'2

q pq
2m' m4 2

2 2

arctan co+ + ~ —arctan co+
2m~ m* 2m~ m~

2 2

+l arctan co — + g —arctan co-
pq 2m* m* 2m* m~

where fc is the Fermi-Dirac distribution.
For a nondegenerate gas, we obtain by partial integration:

(82)

+ CO p
2

B~=Tm~C'u(q)P (for) f dp exp
00 2m*T

pq l

2m~ m~

~+ g+ g +pq
2m* m*

CO — + pq l

2m* m~

pq 1-2 *+ ~ + 2m m

(83)

where C'=(4m )3/~n/(2n. ) (2m ~T) /~. The final integrations yield

2 2
q q
2 . m~/r 2 . m/r

ReB~ ——~C Imw +i —Imw +l
q(2m +T}l/2 q(2m +/T}1/2 q (2m +T)1/2 q (2m +T)1/2

(84)

ImB~ ———mC Rew
2 . m~/r

q(2m~T)' q(2m~T)'
+l

2

m~ —q
2 . m /r—Rew +l

q (2m +T}1/2 q (2m ~T)1/2
(85)

where C =C'u (q)m ~(2m ~T)'/~/2q; Bi =B [Eq. (15)].
For an energy-dependent r, ~ =r (p), the first form of Eq. (81) yields

p+
P —exp

P —
2

2m*T
B~=C' 3P N~ p

(21r }
J

l

r (p) m*

2
2+ q

00 4=C' dp p2exp
0 2m ~T

+1
W(cor (p)) f dx

( —2)sinh x
2m*T

—pq, xr (p) m~

(86)

The x integration can be performed by expansion of sinh; the final p integration must be done numerically.
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