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We demonstrate that not only the static structural properties but also the crystal stability

and pressure-induced phase transformations in solids can be accurately described employ-

ing an ab initio pseudopotential method within the local-density-functional formalism.
With the use of atomic numbers of constituent elements and a subset of crystal structures

as the only input information, the calculated structural properties of Si and Ge are in excel-

lent agreement with experiment.

I. INTRODUCTION

In this paper, we present an ab initio microscopic
study of the static structural properties and other
important structural properties including crystal
stability and phase transformation of Si and Ge.
Part of the results have been previously reported. '

The method is based on a pseudopotential approach
and uses the local-density-functional approxima-
tion which has also been used in all-electron calcu-
lations of static structural studies of metals.

We choose Si and Ge as our prototypes since they
are the most studied semiconductors experimental-
ly. Both have the (cubic) diamond structure and are
found to undergo a semiconductor-metal phase
transformation under pressure. With the use of the
x-ray diffraction technique, the transformed phases
have been determined to be of the tetragonal P-tin
form. These structural transformations are accom-
panied by a large volume decrease (22.7% for Si
and 20.7%%uo for Ge). Because of the difficulty in ac-
curate pressure calibration, there has been some
scattering of the data for the transition pressures.
The transition pressures were first measured to be
150 kbar for Si and 105 kbar for Ge. The more re-

cent values are 125 kbar for Si (Refs. 7 and g) and
100 kbar for Ge.

In addition to the diamond and p-tin phases, a
hexagonal diamond phase has been made' for Si at
room temperature and atmospheric pressure using a
sequence of high-pressure and high-temperature
treatments. This phase is semiconducting and has
the same density as the (cubic) diamond phase. The
axial ratio is 1.65, very close to the ideal value of
1.633. Since this form has not been found in nature

and no large crystals have been prepared, ' it is me-
tastable with respect to the diamond phase. A simi-
lar structural form has not been found in Ge. There
are other metastable phases of Si and Ge [a bcc
form with 16 atoms per unit cell for Si (Ref. 10)
and Ge (Ref. 11) and a tetragonal form with 12
atoms per unit cell for Ge (Ref. 12)]; these will not
be considered in the present study.

There are interesting relations between the gen-
eral phase transformation in semiconductors and
other crystalline properties. Jamieson has related
the transition pressure (P, ) and the atomic volume
change (6V) in the phase transformation to the fun-
damental energy gap (Es), and he obtained an em-

pirical rule of P,b, V =Es/2 for group-IV elements
and isorow III-V compounds. Although this rule is
less accurate when later refined experimental data is
considered, the trend is still correct. This is con-
sistent with the physical picture that the bigger the
energy gap is, the more stabilized the structure is.
Phillips has suggested that ionicity may be an im-
portant parameter in characterizing the phase
transformation. He noted that the rocksalt struc-
ture becomes more favorable as the high-pressure
phase with increasing ionicity. The covalent coun-
terpart of the rocksalt structure, that is, the simple
cubic structure, is included in the present study.

Pressure-induced phase transform ations in
tetrahedrally coordinated semiconductors have pre-
viously been studied using information from elec-
tronic structure. Van Vechten observed' that the
difference in total energy between the semiconduct-
ing diamond phase and the metallic P-tin phase is
approximately equal to —, of the difference of the
band-structure energies between the free-electron
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gas and the Penn model' evaluated at the experi-
mental transition volume of the diamond phase.
This, however, can only be regarded as an empirical
relation. If accurate eigenvalues obtained from
self-consistent band-structure calculations are used
for the band-structure energies, the aforementioned
relation no longer holds. A perturbative pseudopo-
tential theory has been used' to calculate the ther-
modynamic parameters involved in the phase
transformation. While good agreement with experi-
ment was found in this approach, the error in ener-

gy incurred in the perturbative treatment especially
when applied to the covalent phase may be of the
order of the energy differences involved in the
phase transformations (about a few tenths of an eV

per atom). Besides, the theory introduced a poten-
tial parameter which is adjusted to fit the zero-
pressure experimental volume. The sensitive depen-
dence of the theory on that parameter is illustrated
in a recent study' on the pressure-induced phase
transformation of ZnSe with the use of a self-
consistent pseudopotential theory. Without adjust-
ment of the potential parameter, the rocksalt struc-
ture of ZnSe is calculated to be more stable than the
zinc-blende structure in contradiction to the experi-
mental observation. The theoretical results become
consistent with experiment only after the parameter
is adjusted to fit the experimental zero-pressure
value.

In the following sections, we will first briefly dis-
cuss the ab initio pseudopotential approach' to the
total-energy calculations (Sec. II). The procedures
for pseudopotential construction and total-energy
calculations are described in Sec. III. The results
for Si and Ge, which will include (a) static structur-
al properties, (b) crystal stability, (c) pressure-
induced phase transformation, and (d) electronic
structures, are presented and compared with experi-
ment in Sec. IV. Final conclusions are given in .Sec.
V. We examine the accuracies of the calculated
quantities with regard to various approximations
used in the calculation in the appendices.

II. THEORY

In the present study, we use the ab initio pseudo-
potential approach' within the local-density-

functional formalism. This approach has been
shown' to reproduce all-electron results faithfully.
By focusing attention on the valence electrons
which play a dominant role in the determination of
structural properties, we are spared the computation
of core states.

A plane-wave basis set is used to represent the
(pseudo)valence wave functions. Such a basis set
describes the charge density in the valence region to
the same degree of accuracy for different crystal
structures. In other words, the basis is not biased
toward a particular crystal structure which is usual-
ly difficult to achieve in other choices of basis sets.
Furthermore, the angular dependence of the charge
density is well accounted for, and there is no need
for a spherical averaging procedure of the charge
density which may introduce appreciable error in
describing highly directional covalent bonds.

The structural properties of solids are studied pri-
marily through comparisons of total energies of sys-
tems under investigation. It is advantageous to per-
form the total-energy calculations in momentum
space. The total energy is given by

~tot ~kin++ec+EII++xc[P]+&cc

The individual contributions can be interpreted as
the electronic kinetic energy, the electron-core in-
teraction energy, the electron-electron Coulomb en-

ergy, the electronic exchange and correlation ener-

gy, and the core-core Coulomb energy (the Ewald
energy), respectively. Since the effect of core elec-
trons are included in the pseudopotentials, the term
"electrons" used in this paper refers to the valence
electrons only. The prime in the second, third, and
fifth terms on the right-hand side of Eq. (1) denotes
that these terms are reduced finite quantities: Be-
cause of charge neutrality, the infinite contributions
arising from the long-range Coulomb interaction
cancel with one another and, thus, are excluded
from these three terms. E„,[p] is a functional of
charge density p( r ). In the local-density-functional
approximation,

E„,[p]=Jp(r)e„,[p(r)]dr, (2)

where e„,[p(r)] is a function of p(r).
The individual terms (per cell) in Eq. (1) are given

by
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The symbols n;, k;, and f; are, respectively, the oc-
cupation number, the crystal momentum, and the
(pseudo)wave function in the momentum represen-
tation of state i N.is the total number of cells in
the system, 0, is the cell volume, and 1 and G are
the direct and reciprocal-lattice vectors. Z —=g, Z„
and Z, and 7, are the core charge and the position
vector for the sth atom in the basis. The symbol

p(G) is the Fourier transform of the (pseudo)
valence charge density, and Vz, (k;+G, k;+G') is
the Fourier transform of the superposition of core
pseudopotentials in momentum representation. The
prime in the 1 summation in Eq. (7} excludes the
1 =0 term when ~, =~, , and q is a parameter con-

trolling the convergency of the Ewald summa-
tions.

The momentum-space formalism is closely relat-
ed to the plane-wave method for the calculation of
electronic structures. The Schrodinger equation
used in the plane-wave method can be easily derived
variationally from the expression for the total ener-

gy in Eqs. (1)—(7). Using the resulting eigenvalues
e s, we obtain an alternative expression for the total
energy

1 p IZ...=—g n, e; EH+a, Z„,+E„, —
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The double summation over G's in Eq. (4) is ab-
sorbed in the simple summation of the eigenvalues
of the occupied states.

FIG. 1. Ab initio core pseudopotentials of (a) Si and
(b) Ge generated using the reference valence configura-
tion of s p 'd '. The letters s, p, and d denote the non-
local pseudopotential for angular momenta l=0, 1, and
2, respectively. Dashed line denotes the Coulomb poten-
tial of a (fictitious) pointlike atomic core.
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III. CALCULATIONS

A. Pseudopotential construction

The ab initio pseudopotentials of Si (Ge) are gen-
erated through the Ham ann-Schliiter-Chiang
method using the 3s 3p 3d ' (4s 4p 4d '

)

reference configuration. The r, values (in a.u. )

chosen are 1.17, 1.35, and 1.17 (1.17, 1.36, and 1.36)
for the s, p, and d components of the pseudopoten-
tial of Si (Ge). The reference configuration has a
partially filled d orbital for the generation of the d
pseudopotential. The nonlocal (angular-momen-
tum-dependent) pseudopotentials of Si and Ge are
shown in Fig. 1. The d pseudopotential of Ge is
more repulsive than that of Si because Ge has 3d
orbitals in the core and the 4d orbital of Ge is more
extended than the 3d orbital of Si. The repulsive d
pseudopotential of Ge pushes the d pseudo-orbital
away from the core to simulate this effect. The
Wigner interpolation formula for the exchange
and correlation energies is used for the present
study.

The pseudopotentials thus generated are exam-
ined in the atomic limit. They are capable of repro-
ducing the corresponding all-electron excitation en-

ergies and eigenvalues to within a few mRy and
wave functions (outside the core region) to within

l%%uo for atomic configurations over a wide energy
range (about 2 Ry) above the atomic ground state.
Examples are given in Table I and Fig. 2. Such
agreement is a prerequisite for the solid-state calcu-
lations using the pseudopotential approximation'
in which the interaction between the valence elec-

trons and the atomic cores is approximated by pseu-

dopotentials.

B. Total-energy calculations

For the present study, the total energy as a func-
tion of volume was calculated for seven crystal
structures: the fcc, bcc, hcp, (cubic) diamond (CD), .

hexagonal diamond (HD), P-tin, and simple cubic
(sc) phases. The first four phases encompass 80%
of the observed elemental crystal structures. The
HD phase is very similar to the CD phase. The P-
tin phase is observed as a high-pressure form for Si
and Ge. The simple cubic structure is a covalent
counterpart of the NaC1 structure. The ideal axial
ratio (c/a =v'8/3) is used for hcp and the HD
structures. Several c/a ratios are used for the p-tin
structure.

For each crystal structure of Si or Ge, we calcu-
late the total energy at six to 15 different values of
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FIG. 2. Comparison between the pseudo (solid lines)
and the corresponding all-electron (dashed lines) radial
wave functions for the configurations 3s 3p and
3s'3p 3d' of Si.

atomic volume ranging from 0.55 to 1.13 times the
experimental value of the diamond phase (Q,„~,).
For each value of atomic volume, the one-electron
Schrodinger equation is solved iteratively to self-
consistently at which point the input and output
screening potentials are identical to within 10 Ry,
and E„, is stable to within 10 Ry. The wave
functions are expanded in a plane-wave basis set
with a kinetic-energy cutoff (E„„)of 11.5 Ry. Note
that Ez„ is kept constant for different atomic
volumes and different crystal structures. In this
way, the smallest wavelength of the plane waves
used in the finite plane-wave expansion is approxi-
mately the same; namely, the spatial variations of
wave functions are accounted for to similar accura-
cy. Furthermore, QE„„ is a measure of the k-
space potential cutoff, that is, the extent to which
the pseudopotential is sampled in k space. If Ez„ is
kept constant, the k-space potential cutoff is practi-
cally the same for different atomic volumes and dif-
ferent crystal structures. This facilitates meaning-
ful comparisons of total energies.

The number of sampling k points ' used in the
Brillouin-zone summation of the electronic density
and total energy is increased until E„,converges to
the desirable accuracy as described below. For both
the CD and HD phases the calculation yields semi-

conducting systems, and the absence of Fermi sur-
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faces allows fast convergence for E„, with respect
to the number of sampling k points. Ten (six) spe-

cial k points in the irreducible Brillouin zone
(IBZ) for the CD (HD) phase are sufficient to
achieve 0.3 mRy/atom convergence for E„,.

The other five phases are all found to be metallic
in our calculation. A large number of k points are
needed to account for the effects of the Fermi sur-

face. The term most sensitive to the finite number
of sampling k points in the total-energy calculation
[Eq. (8)] is the Brillouin-zone summation of valence
eigenvalues. A few sampling methods have been ex-
amined. They are as follows. (i) The linear
tetrahedron method in which the Brillouin zone is
divided into tetrahedra. The eigenvalues are as-
sumed to vary linearly within each tetrahedron, and
this enables an analytic integration inside the
tetrahedron. (ii) The discrete sampling method in
which the Brillouin-zone summation is done in a
straightforward manner using special k points.
(iii) The interpolation method in which the eigen-
values of a set of sampling k points are calculated
directly from solving the Schrodinger equation, and
the eigenvalues of a much larger set of k points are

interpolated and used for the Brillouin-zone sum-

mation. The interpolation can be carried out
through a Fourier-series expansion of the eigen-

values. We find that the convergence of the total
energy with respect to the number of sampling k
points is slow using the linear tetrahedral method.
The errors come mainly from the linearization as-
sumption. The convergence is faster if the discrete
sampling method is used and even faster if the in-

terpolation method is used.
As a numerical example, the convergent errors (in

units of Ry/atom) caused by the finite number of
sampling k points in the total-energy calculation of
the fcc phase of Si at atomic volume 0.750,„„,are
0.05 Ry/atom using 20 k points in the IBZ by the
linear tetrahedron method and 0.005 and 0.001
Ry/atom using ten k points in the IBZ by the
discrete sampling method and the interpolation
method, respectively. The results presented in the
following sections are obtained using the discrete
sampling method. For a convergence of 0.001
Ry/atom in total energy, the number of sampling k
points in the IBZ are 24, 35, 70, 36, and 60 for the
P-tin, sc, bcc, hcp, and fcc phases, respectively.

TABLE I. Eigenvalues and excitation energies of the pseudoatom for different atomic con-
figurations of Si and Ge. Energies are in rydbergs. The method in Ref. 22 is employed to
generate the pseudopotentials using $ p d reference configuration and Wigner correlation
(Ref. 23). Values in parentheses are deviations from the corresponding all-electron results.

Configuration

Si
3$ 3p

3$ '3p

3$3p '3d '

3$3p 3d '
3$ 3p

—0.7994
( —0.0014)
—0.8538

( —0.0008)
—1.0226

(—0.0008)
—1.4851

(0.0000)
—2.0948

(0.0028)

Eigen values

p

—0.3126
(—0.0006)
—0.3543

(—0.0004)
—0.5048

(—0.0006)
—0.9420

(0.0000)
—1.5154

(0.0024)

—0.0380
(0.0001)

—0.3364
(0.0000)

Excitation energy
(hE„,)

0.4932
(0.0006)
0.7030
(0.0009)
(o.ooo9)
(o.oooo)
1.7640

(0.0005)

Ge
4$4p

4$ '4p

4$'4p'4d'

4$ 4p

0.8350
(—0.0015)

0.9202
(0.0001)
1.2155

(0.0017)
2.1342

(o.oo3o)

0.3061
(—0.0008)

0.3533
(—0.0006)

0.6075
(o.ooo3)
1.4745

(0.0026)

0.0607
(0.0000)

0.5582
(0.0000)
1.0238

(0.0004)
1.7218

(o.ooo2)
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IV. RESULTS

A. Static structural properties

The static structural properties such as lattice
constant, cohesive energy, and bulk modulus can be
obtained from the calculated total energies as a
function of volume for the observed crystal struc-
ture. We have calculated total energies of the cubic
diamond structure of Si and Ge for 15 atomic
volumes ranging from 0.55 to 1.130,„~,. They are
then least-squares-fitted to Murnaghan's equation
of state 2@aI

80 V ( Vo/V) '
E„,(V)=, +1 +const,

Bo Bo —1

where Bo and Bo are the bulk modulus and its pres-
sure derivative at the equilibrium volume Vo. This
equation of state has been examined and found to be
quite accurate for quite a few crystals under
moderate compresssion. ' ' The minimum total
energy (E;„),the equilibrium lattice constant, and
the bulk modulus are readily deduced from the fit-
ted parameters in the equation of state. The
cohesive energy is then the difference between the
crystal energy which is the sum of E;„and the
zero-point vibration energy and the total energy of
the isolated pseudoatom with spin-polarization ef-
fects included.

The calculated lattice constants, cohesive ener-

gies, and bulk moduli are compared with experi-
ment ' in Table II. The agreement is very good.
These results also compare well with other ab initio
calculations. There have also been microscopic

calculations of the static structural properties of Si
(Ref. 35) and Ge [Ref. 35(a)] using pseudopotentials
which are empirically fitted to the observed excita-
tion spectra. These results are somewhat sensitive
to the fitted pseudopotential, and the comparisons
with experiment are not as good as the ab initio re-
sults. It is interesting to note that the band struc-
tures of ab initio calculations within the local-
density-functional formalism cannot be used direct-
ly to compare with the excitation spectra; for exam-

ple, the calculated indirect gap of Si is smaller than
the experimental gap by a factor of 2 (see Sec.
IV D).

The least-squares fit to the Murnaghan's equation
of state has a rms error of about 10 Ry/atom.
Other functional forms of the equation of state such
as a polynomial form of the total energy as a func-
tion of the lattice constant, the volume, or their re-

ciprocals have also been examined. The equilibrium
lattice constant and E;„are rather insensitive to
the functional form of the equation of state. The
variations are 10 A and 10 Ry/atom, respec-
tively. In contrast, the bulk modulus (Bo) has a
variation of about 10%, and its pressure derivative

(80) can vary by a factor of 2. The calculated
values of 80 are 3.2 for Si and 3.7 for Ge using
Murnaghan equation of state which compares well

with the experimental values of 4.2 for Si and 4.6
for Ge in view of the large theoretical uncertainty.

The above results are calculated using a plane-
wave kinetic-energy cutoff E„„of11.5 Ry except
for the cohesive energy to be discussed later. At
this E„„,the lattice constants converge to better
than 1%, and the cohesive energies and the bulk

moduli converge to about 5% (Appendix A). The
dependence of the cohesive energy of Si on E„„is

shown in Fig. 3. As E„„increases, the variational
freedom of the wave functions becomes larger

Si

Lattice
constant

(A)

Cohesive
energy

(eV/atom)

Bulk
modulus
(Mbar)

TABLE II. Comparison of calculated and measured
static properties of Si and Ge.

5—
Eexpt,

coh
E 4
CO

0

Npw
50 100 200

I I I

300
I

Calculation
Experiment

5.451
5.429'

4.84
4.63b

0.98
0.99'

Ge
Calculation
Experiment

5.655
5.652'

'Reference 31 (0 K).
Reference 32 (0 K).

'Reference 33 (77 K).

4.26
385

0.73
0.77'

0
0

I I

5 10 15 20

Epw (RV)

FIG. 3. Convergence test of the calculated cohesive

energy (E„h) of Si with respect to the kinetic-energy
cutoff (Ep ) of the plane-wave basis set (N„„ is the ap-
proximate number of the plane waves in the basis set).
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which gives rise to a lower total energy and a larger
cohesive energy. The cohesive energy converges
rapidly when E&„ is larger than 10 Ry. The calcu-
lated cohesive energies (per atom) for the case
E&„——11.5 Ry are 4.67 and 4.02 eV for Si and Ge,
respectively, as compared to the almost fully con-
verged values of 4.84 and 4.26 eV using E~„=20
Ry (Table II). The differences in cohesive energy
between theory and experiment are 0.21 eV for Si
and 0.41 eV for Ge. The pseudopotential approxi-
mation' accounts for errors of the order of 0.05
eV. ' The remaining portion of the errors seems to
come from the local-density-functional approxima-
tion and the functional form of the exchange-
correlation energy, especially for the atomic calcula-
tions. Even with the spin-polarization effect in-

cluded in the fashion described in Ref. 30 in the
atomic calculations, the calculated ionization poten-
tials of atoms differ from the experimental values

by a few tenths of an eV.
Comparison of various energy contributions to

the total energy between an isolated atom and a
crystalline atom for Si and Ge are given in Table
III. The term Ez„ is the sum of E,'„EII, and E,',
[Eq. (15)]. The term E,z,„ is the energy gain result-

ing from spin polarization of the atom. It is calcu-
lated by taking the total-energy difference between
the spin-polarized and the unpolarized pseudoatoms
with the valence configuration s p where the form
of the exchange-correlation energy proposed by
Gunnarsson and Lundqvist is used. The term E„;~
is the zero-point vibrational energy estimated from
measured phonon frequencies. As the crystals
form, the electrons become localized to form chemi-
cal bonds, which gives rise to an increase in elec-
tronic kinetic energy (Ez;„) and decreases in poten-
tial energies (E„, and E~,). We note that both E„,
and E~, are essential in stabilizing the crystal. In
the absence of either one, the crystal would become
unstable. The contributions from Esp and E
tend to favor the isolated atom, but their effects are
not dominant.

Shown in Fig. 4 are contour plots of pseudo-
valence charge densities of Si and Ge in the (110)
plane. Because of the norm-conserving property of
ab initio pseudopotentials, the pseudovalence charge
distributions are expected to faithfully reproduce
real valence charge distributions outside the core re-

gion, and there is no need for core orthogonaliza-
tion. The contour plots for Si and Ge look rather
similar. The contour lines in the bonding region
are elongated along the bonding direction, which
agrees with the experimental valence charge density
of Si synthesized from the x-ray data.

TABLE III. Comparison of various energy contribu-
tions (in units of Ry/atom) to the total energy between
the (pseudo)atom and the crystal for Si and Ge.

Si

E„,
Ept
Espin

Evtb

Etot

Atom

2.518
—1.926
—9.095
—0.058

0
—7.561

Crystal

3.015
—2.381
—8.555

0
0.005

—7.916

Diff.

0.497
—0.455
—0.460

0.058
0.005

—0.355

Ge

Ept
Espin

Ev,b

Etot

2.511
—1.910
—8.135
—0.056

0
—7.590

2.844
—2.312
—8.438

0
0.003

—7.903

0.333
—0.402
—0.303

0.056
0.003

—0.313

Valence charge density (110plane)

11.7 11.3

FIG. 4. Contour plots of the valence charge density
in the (110) plane of the cubic diamond (CD) phase of Si
and Ge at O,„pt (Ref. 31). Charge density is in units of
electrons per atomic volume with a contour step of 1.
The black dots denote the atomic positions and straight
lines denote the atomic chains.

We have calculated the x-ray structural factors of
Si and Ge by adding the core structural factors to
the valence structural factors obtained in crystalline
calculations. The core structural factors are ob-
tained from atomic calculations with the valence
configuration of s p . They differ from the corre-
sponding results using valence configuration sp by
at most 0.006 e/cell, which demonstrates the inert-
ness of the core electrons as the valence configura-
tion changes. A comparison between calculated x-
ray structural factors with experiment for Si
and Ge are given in Table IV. (The experimental
values in Table IV have been corrected for the
Debye-Wailer factor and anomolous dispersion ef-
fects. ) The agreement is very good. We note that
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TABLE IV. Comparison of calculated x-ray structure factors for Si and Ge with experi-
ment (in units of electron per primitive cell).

Si

111
220
311
222

331
422
333
511
440

Theory

28.00
15.13
17.23
11.28
0.34

14.76
10.11
13.22
8.92
8.96

11.88

Expt. '

(28.00)
15.19
17.30
11.35
0.38

14.89
10.25
13A2
9.09
9.11

12.08

Theory

64.00
38.85
47.26
31.24
0.28

40.47
27 37
35.84
24.26
24.28
32.14

Expt. b

(64.00)
39.42
47.44
31.37
0.27

40.50
27.72
36.10
24.50

32.34

'References 40 and 41.
Reference 42.

the (222) reflection, which is forbidden in a simple
superposition of atomic charge densities, is well ac-
counted for. Our results agree well with other ab
initio calculations. ' ' The smaller values of
the (222} refiection calculated in Ref. 45 may be due
to the limited number of Gaussian-type orbitals
used in the wave-function expansion.

B. Crystal stability

As described in Sec. III 8, total energies at several
different lattice constants are calculated for seven

crystal structures: the fcc, bcc, hcp, sc, CD, HD,
and P-tin phases. These data are then least-
squares-fitted to the Murnaghan equation of state.
The fitted total-energy curves as a function of
atomic volume for the seven phases of Si and Ge
are shown in Figs, 5 and 6. The minimum total en-

ergy per atom (E;„},the relative total energy
difference b,Em;„(=Em;„—E;„), and the corre-
sponding atomic volume ( V;„)for each phase of Si
and Ge are given in Table V. We note that the
value of E„„controlling the plane-wave expansion
is 11.5 Ry. For this value, the difference 4E;„be-
tween phases has already converged to 0.001
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FIG. 5. Total-energy curves of the seven phases of Si
as a function of the atomic volume normalized to 0, pt

(Ref. 31). Dashed line is the common tangent of the en-
ergy curves for the diamond phase and the P-tin phase
(c /a =0.552).

FIG. 6. Total-energy curves of the seven phases of
Ge as a function of the atomic volume normalized to
0 pt (Ref. 3 1) ~ Dashed line is the common tangent of
the energy curves for the diamond phase and the p-tin
phase (c/a =0.551).
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TABLE V. Volumes at the minimum structural energies (V;„, normalized to measured free volume), the minimum

energies (E;n), and hE;„(=—E;„—E"";„'n ) for the seven plausible structures of Si and Ge.

Si

~min

E;„(Ry)
hE;„(eV)

Diamond

1.012
—7.9086

0

Hexagonal
diamond

1.015
—7.9074

0.016

P-tin

0.773
—7.889

0.27

sc

0.808
—7.883

0.35

bcc

0.736
—7.870

0.53

hcp

0.723
—7.868

0.55

fcc

0.733
—7.867

0.57

Ge
~min

E;n (Ry)
aE;„(eV)

1.003
—7.8885

0

1.003
—7.8874

0.015

0.802
—7.870

0.25

0.839
—7.866

0.31

0.795
—7.856

0.44

0.805
—7.855

0.45

0.816
—7.854

0.46

eV/atom while the absolute magnitude of E;„con-
verges to only 0.02 eV/atom (Sec. VIA). Here we
neglect the contribution from the zero-point vibra-
tion which has only small effects on the results to
be reported.

The values for the p-tin phase given in Table VI
and Figs. 5 and 6 are calculated using the experi-
mental axial ratio (0.5516 for Si and 0.5512 for
Ge). Total-energy calculations have also been done
for p-tin phases of different axial ratios (to be dis-
cussed in detail in the next subsection). From these
calculations of the total energies of the seven

phases, we find that the CD phase has the lowest
E;„and is, thus, the most stable phase among the
seven phases of Si and Ge. This is in agreement
with experimental observation.

Compared to the CD phase, the HD phase has
similar tetrahedral bonding character and differs
only in the positions of the third nearest neighbors.
It is expected that total energies for the two phases
should be very close. Our calculations are not only

consistent with this observation but they also show

that the CD phase is more stable by a small energy
difference (0.016 and 0.015 eV/atom for Si and Ge).

The contour plot of valence charge density of the
HD phase of Si at Q,„~, is shown in Fig. 7. The
charge distribution is quite similar to that of the
CD phase (Fig. 4).

For both Si and Ge, the other five phases are me-
tallic and have E;„afew tenths of an eV per atom
higher than the CD phase. The ordering of phases
as E;„increases is P-tin, sc, bcc, hcp, and fcc. The
V;„'s (normalized to Q,„~,) of the metallic phases
of Ge are larger than those of Si. This results from
the filled 3d bands in Ge which exert a Pauli-type
repulsion on the valence electrons having d-like
character as manifested by the more repulsive d
pseudopotential of Ge (Fig. 1). This effect is more
appreciable in the metallic phases than in the sp-
bonded CD and HD phases.

Values of b,E;„ofa few metallic phases of Si
and Ge have been estimated from thermodynamical
data. They are (in units of eV/atom) 0.46 and 0.53
for the bcc and hcp phases of Si [Ref. 46(a)] and
0.29 and 0.37 for the p-tin and fcc phases of Ge, " '

respectively. These empirical values compare very
well with our results (Table V). We note that the
crystal stability of Si has been reported in Ref. 35(c)

TABLE VI. Comparison between various contributions to the total energy of the cubic diamond (CD) and the hex-
agonal diamond (HD) phase at Q,„„t (Ref. 31). Energies are in units of Ry/atom. E, is the electronic contribution
which is the sum of Ek;n, E„„E~,and E,', .

E
E„,
Ea
E,',

Ecc

Etot

3.0001
—2.3782

0.5322
—0.6632

0.4909
—8.3995
—7.9086

Si
HD

3.0007
—2.3784

0.5435
—0.6861

0.4797
—8.3871
—7.9074

CD-HD

—0.0006
0.0002

—0.0113
0.0229

—0.0112
—0.0124
—0.0012

CD

2.8295
—2.3096

0.5471
—0.8920

0.1750
—8.0634
—7.8884

Ge
HD

2.8311
—2.3100

0.5587
—0.9156

0.1642
—8.0516
—7.8874

CD-HD

—0.0016
0.0004

—0.0116
0.0236

—0.0108
—0.0118
—0.0010
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Hexagonal diamond (2110)

using a pseudopotential empirically fitted to excita-
tion spectra. The diamond phase was found to be
more stable than the P-tin, bcc, hcp, and fcc phases.
However, the bE;„'s between phases reported in
Ref. 35(c) differ from the present results and the
thermodynamically derived results.

Since the structural properties of Si and Ge are
qualitatively similar, we will concentrate on the re-

sults of Si in the following discussion. The contour
plots of valence charge densities of the CD phase
and the five metallic phases of Si at 0.751fl,„„,are
shown in Fig. 8. (The contour plot for the HD
phase is not shown because it is quite similar to that
of the CD phase. ) The maximum valence charge
density between nearest neighbors is a useful scale

(a) Diamond (110) (b) P-tin (100)

11.5

FIG. 7. Contour plot of the (valence) charge density
in the (2110) plane of the hexagonal diamond phase of
Si at Q,„p, (conventions of Fig. 4).

to gauge the covalent character: The CD and HD
phases have large values of maximum valence
charge density and, thus, strongly covalent charac-
ter. Next come the P-tin and sc phases. The bcc,
fcc, and hcp phases have the least covalent charac-
ter. Notice the existence of prominent bond charge
in the CD (as well as HD), P-tin, and sc phases.

The valence charge distribution around the atoms
in the close-packed phases are reminiscent of the
valence charge distribution in the atom. In fact, the
charge density resulting from a superposition of
atomic valence charge densities has similar peak po-
sitions and values. Figure 9 shows contour plots of
the charge density so obtained in the (110} plane
for the bcc phase of Si at 0.7510,„;and its differ-
ence from the corresponding self-consistent result
(see Fig. 8}. As the crystal forms, there is small

charge pileup between nearest neighbors. This ef-
fect becomes bigger as the covalent character in-

creases. %e note in passing that the charge distri-

bution in the close-packed phases is quite spherical-

ly symmetric around the atoms, and this supports
the use of spherical averaging procedures for close-

packed crystals in some band-structure methods
such as the augmented-plane-wave method.

It is instructive to compare the contributions to
the total energy [Eq. (1)] for different phases. The
comparison of the individual energy contributions
between the CD and the HD phases of Si and Ge at

Q,„~, are shown in Table VI. The energy terms

E~;„,EH, and E,', favor the CD phase while E„,and

E,', favor the HD phase. The signs of EH, E,'„and

(d) bcc (110)
(a) bcc (11O) LCAC 4L

%F

(c) sc (100)

(e) fcc (100)
JL

4,

fr

(f) hcp (1120)
(b) Difference

0.3

FIG. 8. Charge density contour plots of six phases of
Si at 0.7510, pt (conventions of Fig. 4).

FIG. 9. (a) Contour plot of the charge density of the
bcc phase of Si at 0.7510,„p, constructed from a super-

position of pseudoatomic charge densities. (b) Contour
plot of the difference between Figs. 8(d) and 9(a) (con-
ventions of Fig. 4).
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TABLE VII. Comparison of various contributions to the total energy [Eq. (I)] for the diamond, sc, p-tin, bcc, hcp, and

fcc phases of Si (at 0.7510,„'„,) and Ge (at 0.7420,„'„,). Energies are in units of Ry/atom. E, is the e1ectronic contribu-
tion, which is the sum of Ek;„,E„„EH,and E,', .

Si (0.7510,„„,)

EH
I

Eec

Eec

Etot

Diamond

3.4195
—2.5366

0.4200
0.0736
1.3764

—9.2394
—7.8630

sc

3.1081
—2.4379

0.1121
1.0698
1.8520

—9.7330
—7.8809

p-tin

3.0674
—2.4283

0.0842
1.1928
1.9162

—9.8046
—7.8884

bcc

2.9896
—2.4037

0.0332
1.4199
2.0390

—9.9085
—7.8695

hcp

2.9855
—2.4033

0.0351
1.4229
2.0397

—9.9075
—7.8678

fcc

2.9855
—2.4035

0.0356
1.4235
2.0412

—9.9079
—7.8667

Ge (0.7420,„,)
Ekln

EH
IE

Ecc

3.2103
—2.4651

0.4237
—0.1138

1.0551
—8.9034
—7.8483

2.9414
—2.3713

0.1266
0.8225
1.5191

—9.3791
—7.8600

2.9035
—2.3507

0.0955
0.9421
1.5803

—9.4481
—7.8678

2.8468
—2.3378

0.0451
1.1395
1.6935

—9.5482
—7.8546

2.8470
—2.3380

0.0477
1.1373
1.6940

—9.5472
—7.8532

2.8456
—2.3377

0.0477
1.1401
1.6957

—9.5476
—7.8518

E,', can be explained qualitatively by the observa-
tion that the distance to the third nearest neighbor
is longer in the CD phase than in the HD phase.
The values of EH and E,', are close, and they are al-

most canceled by E,', . A slightly more localized
charge distribution in the HD phase (see Figs. 4 and
7) seems to be the reason for the larger absolute
magnitudes of Ek;„and E„,for the HD phase. (The
computational error in the differences of the vari-
ous energy contributions and the total energies is
about 0.0003 Ry/atom. ) Since the total energy
differences are of the same order as or even smaller
than the various energy terms, all energy terms are
important in determining which of the CD and HD
phases is more stable.

Incidentally, the structural relation between the
cubic ZnS and hexagonal ZnS phases of ionic semi-
conductors is the same as that between the CD and
HD phases of covalent semiconductors. The differ-
ence in Ewald energy (E,', ) between the hexagonal
form and the cubic form is reduced (in favor of the
hexagonal form) by 0.0007 Ry/atom for the III-V
compounds and 0.003 Ry/atom for the II-VI com-
pounds with respect to the covalent counterpart at
the measured Si volume. These values are compar-
able to the total-energy difference between the CD
and HD phases of Si and Ge. The favorable gain in
the Ewald energy seems to be the reason why stable
hexagonal ZnS structures are found in the II-IV
compounds, for example, CdS, ZnS, and ZnSe.

The individual contributions to the total energy
for the diamond, sc, P-tin, bcc, hcp, and fcc phases

of Si (at 0.751Q,„'~, ) and Ge (at 0.742Qex&, ) are
given in Table VII. Note that the change of the en-

ergy contributions between different phases corre-
lates quite well with the nearest-neighbor distance,
which in turn is closely related to the coordination
number. The coordination numbers are 4, 6, 6, 8,
12, and 12, and the relative nearest-neighbor dis-
tances at the same atomic volume are 1, 1.155,
1.159, 1.260, 1.296, and 1.296 for the diamond, sc,
p-tin, bcc, hcp, and fcc phases, respectively. (The
p-tin phase has four nearest neighbors and two
second-nearest neighbors at a 6%%uo larger distance. )

As the coordination number becomes smaller, the
nearest-neighbor distance will usually become
smaller if the atomic volume is kept the same. This
causes a larger charge pileup between nearest neigh-
bors and a more localized valence charge distribu-
tion (Fig. 7). Thus, Ek;„and EH will increase, E„,
and E,', will decrease, and the sum of these four
terms [called the electronic contribution (E,)] will
decrease. The Ewald contribution (E,', ), however,
will usually increase because of the larger electro-
static potential energy between neighboring atomic
cores. In other words, the electronic contribution
favors phases of low coordination numbers while
the Ewald contribution favors phases of high coor-
dination numbers. Here the bcc, hcp, and fcc
phases are regarded as one entity because their ener-

gy contributions are very close.
The total energies of the phases depend on the de-

tailed balance between the electronic and the Ewald
contributions. At the particular atomic volumes of
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TABLE VIII. Comparison of the calculated and measured transition volumes (V, '~) of
the diamond and P phases, their ratios (V, /V, ), and the transition pressures (P, ) for Si and
Ge. Volumes are normalized to the measured zero-pressure volumes (Ref. 31).

Si
Calculation
Experiment
Deviation

0.928
0.918'
1.1%%uo

0.718
0.710'
1.1%

0.774
0.773'
0.1%%uo

99
125b

—20%

Calculation
Experiment
Deviation

'Reference 5.
bReferences 7 and 8.
'Reference 9.

0.895
0.875'
2.3%

0.728
0.694'
4.9%

0.813
0 793'
2.5%

96
100'
—4%

Si and Ge (Table VIII), the relatively high Ewald
contribution causes the total energy of the diainond
phase to be higher than those of other phases. Con-
sequently, a phase transformation will occur before
the diamond phase of Si or Ge, which is the most
stable phase at zero pressure, is compressed to such
small volumes. This topic will be discussed in the
next subsection.

C. Pressure-induced phase transformation

It is a well-known thermodynamic theorem that
the phase transformation occurs when the Gibbs
free energy,

G =—E„,+PV —TS, (l2)

becomes equal between the two phases. By apply-
ing this theorem to the zero-temperature case con-
sidered here, it is easily shown that the pressure-
induced phase transformation occurs along the
common tangent line between the E„,( V) curves of
the two phases under consideration and the negative
of the slope of the common tangent line is the tran-
sition pressure (P, ).

Although the HD phase of Si or Ge has the
second lowest E-;„, the common tangent between
the HD and the CD energy curves either does not
exist or has a slope much larger than that between
the P-tin and the CD energy curves. Consequently,
the HD phase is not the phase the CD phase will
transform to under pressure. Since the HD energy
curve lies slightly higher than the CD energy curve,
the HD phase is a metastable phase having an
equilibrium volume very close to that of the CD

phase (Table V). The HD phase of Si has been ex-

perimentally observed' to be metastable. Our cal-
culated equilibrium volume for the HD phase is in
excellent agreement with experiment. '

As can be seen from Figs. 5 and 6, the phase
transformation to the P-tin phase has the smallest
transition pressure among the possible pressure-
induced phase transformations from the CD phase
of Si or Ge. Thus our calculations show that under
increasing hydrostatic pressure, the CD phase of Si
or Ge will transform to the P-tin phase among the
six possible choices for the transformed phase.

With increasing applied hydrostatic pressure, the
crystals of Si and Ge will follow the path
1~2~3~4 as shown in Figs. 5 and 6. The phase
transformation occurs along the path 2~3. This
segment represents a mixture of these two phases.
The initial and final transition volumes ( V, and VP)
are determined from the tangent points. The calcu-
lated transition volumes and transition pressures of
Si and Ge are given in Table IX along with the ex-
perimental values. ' The agreement for the tran-
sition volumes are excellent. The differences be-
tween theory and experiment are only a few percent.

FIG. 10. Ball-and-stick model for the diamond crys-
tal structure. Dashed lines denote the cubic unit cells
and solid lines denote the tetragonal unit cell.
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TABLE IX. Eigenvalues of Si and Ge in eV at I, X, and L calculated using E~„=11.5
and 20 Ry, which correspond to about 180 and 400 plane waves, respectively. Energies in
eV are measured from the valence-band maximum (I 25 ).

Ep„

I )

r„
I is
pC

pC

X,
X4
X)
X
L2
Li
L3
Li
L3
Lc

11.5 Ry

11.95
0
2.54
3.39
7.66

—7.80
—2.92

0.62
9.99

—9.57
—7.01
—1.23

1.52
3.37
7.48

20 Ry

—11.93
0
2.53
3.29
7.63

—7.78
—2.88

0.61
9.97

—9.52
—7.00
—1.20

1.48
3.31
7.48

11.5 Ry

—12.48
0
2.53
1.01
6.45

—8.58
—3.08

0.71
9.53

—10.39
—7.42
—1.41

0.51
3.67
6.96

20 Ry

—12.48
0
2.55
0.73
6.41

—8.57
—3.04

0.73
9.54

—10.36
—7.41
—1.39

0.47
3.70
6.99

The transition pressures have a larger discrepancy.
While the calculated transition pressures are for
zero temperature, the experimental transition pres-
sures were measured at room temperature. Us-
ing the phase diagrams shown in Ref. 49, we esti-
mate that the transition pressure may change by &
+ 15% from room temperature to 0 K. In addition,
possible superstress effects may cause the measured
value to be higher than the theoretical value and the
theoretical value itself has a large uncertainty (Ap-
pendix C). Thus, the agreement of the calculated
transition pressures with experiment is considered
to be quite satisfactory.

There is an interesting structural relationship be-
tween the CD phase and the p-tin phase. Shown in

Fig. 10 is a ball-and-stick model of the diamond
crystal structure in dashed cubic cells. A tetragonal
unit cell can equally well be chosen to represent the
crystal structure as indicated by solid lines in Fig.
10. The space lattice of the diamond crystal struc-
ture is then body-centered tetragonal with an axial
ratio (c/a) of V2. The observed P-tin phases be-

long to the same lattice class but with a much
smaller axial ratio [0.552 for Si (Ref. 5), 0.551 for
Ge (Ref. 5), and 0.546 for the real P-tin (Ref. 31)].

Calculations have been carried out for several p-
tin structures of Si and Ge with axial ratios varied
within 20% of the observed values. The calculated
total-energy curves of Si for the diamond phase and
the p-tin phases with axial ratios 0.458, 0.488,
0.552, and 0.621 are shown in Fig. 11. The energy
curve with axial ratio 0.46 lies above the other

curves. As the axial ratio increases, the energy
curve moves downward. After the axial ratio
reaches the value 0.55, the energy curve moves up-
ward again. It is clear from Fig. 11 that the
transformed p-tin phase under hydrostatic pressure
has axial ratio close to 0.55. When we vary the axi-
al ratio within 5% of the value 0.55, the calculated
total-energy curves differ from each other by less

—7.84

—7.86

E
O
tlat

—7.88

LLJ

—7.90

—7.92 I I l

0.6 0.7 0.8 0.9
Volume

l

1.0 1.1

FIG. 11. Total-energy curves of the diamond phase
and the P-tin phases with axial ratios (i) 0.552, (ii) 0.621,
(iii) 0.488, and (iv) 0,458 as a function of the atomic
volume normalized to 0,„„,. Dashed line is the common
tangent of the energy curves for the diamond phase and
the p-tin phase (i).
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FIG. 13. Ewald constant of the P-tin phase as a
function of axial ratio (c/a).
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FIG. 12. Individual energy contributions of the P-tin
phase of Si as a function of the axial ratio at a fixed
atomic volume of 0.710 p$ (The contribution E,', has a
constant 2.285 subtracted out. )

than 0.4 mRy/atom and are essentially indistin-
guishable from the curve (i) if drawn in Fig. 11.
Consequently, the theoretical estimate of the axial
ratio of the pressure-transformed P-tin phase of Si
is 0.55+5%. A similar treatment has also been
done for Ge. The calculated axial ratio is also
0.55+5%. These values agree quite well with the
experimental values of 0.552 (Si}and 0.551 (Ge).

It is instructive to analyze the individual energy
contributions to the total energy as the axial ratio of
the P-tin phase varies. Figure 12 shows the indivi-
dual energy contributions and total energy of the
P-tin phase of Si as a function of the axial ratio at a
fixed atomic volume (0.71Q,„~,). The minimum of
the Ewald energy (E,', } has an axial ratio of 0.5445
at which the second-nearest-neighbor distance is
very close to the nearest-neighbor distance and the
effective coordination number is 6 instead of 2 or 4.
It is a rule of thumb that the Ewald energy favors
high coordination numbers and evenly distributed
atoms in the crystal. The total energy also has a
minimum close to the axial ratio 0.5S and it is a
shallow minimum. We may argue that the Ewald
energy E,', plays a dominant role in determining the
equilibrium axial ratio. The electronic contribution
E, serves as electronic screening and reduces the ef-
fect of the Ewald contribution. This is supported
by the fact that the observed axial ratios are very
close to the axial ratio of minimum Ewald energy.

1.3

Si
1.1

0.6—
E

0.4
tl5

CC
0.2

C0
E
&0

p
UJ

I

C'= -0.2
UJ

h, Eec

h, Ee

—0.6 —
VP

tr
gi

0.6 0.7

~Ecc

lf '
I

0.8 0.9 1.0
Volume

FIG. 14. Differences between various contributions
to the total energy of the diamond phase and the P-tin
phase {c/a=0.552) of Si as a function of atomic volume
(normalized to Q,„~,).

We note that the minima of Ek;„and EH and the
maxima of E,', and E„, are also in the vicinity of
axial ratio 0.55, which are related to the fact that
the valence electrons are more uniformly distributed
around that axial ratio.

In contrast, the Ewald contribution does not
favor the diamond phase. Figure 13 plots the
Ewald constant, which is proportional to the Ewald
energy for a fixed volume, as a function of the axial
ratio. While the observed P-tin phase is in the vi-

cinity of a local minimum, the diamond phase cor-
responds to a local maximum. This unfavorable
Ewald contribution is more than compensated by
the electronic contribution (E, ) for the diamond
phase at Q,„p, as indicated in Fig. 14 in which we

plot the differences between various contributions
to the total energy of the diamond and the P-tin
phase (c/a =0.552) of Si as a function of atomic
volume. Figure 14 also shows that E«and E„,
favor the diamond phase and Ek;„and EH favor the
P-tin phase. When the atomic volume decreases
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FIG. 17. Density of states of Si in units of
state/eV atom. Energies are measured from the
valence-band maximum.

—12

I' 6 X K X K W Z X

FIG. 15. Electronic structure of Si. Numbers refer
to the conventional indices for symmetry group repre-
sentations. Energies are measured from the valence-
band maximum (I »).

D. Electronic structures

In this subsection, we present the results of elec-
tronic structure calculations for the diamond phase
of Si and Ge at Q,„~,.

' The electronic structures of
Si and Ge shown in Figs. 15 and 16 are calculated

0

under pressure, the system becomes more metallic
and the stabilizing effect of the electronic contribu-
tion {bE,) for the diamond phase becomes weaker
with respect to the opposing Ewald contribution

(bE,', ). At the transition pressure, the gain in

Ewald energy becomes so favorable relative to the
p-tin phase that the phase transformation occurs,
i.e., the Ewald contribution is the driving mechan-
ism for this diamond —p-tin phase transformation.

using a plane-wave basis set with a kinetic-energy
cutoff (Ez„) of 11.5 Ry at which point the overall
convergent error of eigenvalues is about 0.05 eV.
The s-like antibonding conduction state I 2 has a
large convergent ermr. It changes from 3.39 to 3.29
eV for Si and from 1.01 to 0.73 eV for Ge when

Ez„ is increased from 11.5 to 20 Ry. For E„„=20
Ry, the overall convergent error of eigenvalues is
0.01 eV. (The Schrodinger equation is solved self-
consistently for each E~„.)

In Table IX we listed the eigenvalues at I, X, and
I. of Si and Ge calculated using Ez„——11.5 and 20
Ry. These values agree quite well with other ab ini-
tio calculations. " ' ' In particular, the
differences in eigenvalue between our results and
the all-electron linearized augmented-plane-wave
(LAPW) calculation of Si are only about 0.1 eV.

Since the density-functional formalism was
developed only for ground-state properties, the cal-
culated eigenvalues do not correspond directly to
elementary excitations. Nevertheless, a comparison
of the calculated values with experimental excita-
tion spectra may provide some clue to the construc-
tion of a fundamental theory for elementary excita-
tions. The density of states for Si and Ge are
displayed in Figs. 17 and 18. The peak positions
agree quite well with the angle-integrated photo-
emission spectra. " In Table X, we compare our
results with experiments at critical points. It seems
that the calculated results can explain the peak posi-

4pI
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0 — Ge
M
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M
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—12
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FIG. 16. Electronic structure of Ge (conventions of
Fig. 15).

Energy (eV)

FIG. 18. Density of states of Ge (conventions of Fig.
17).
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TABLE X. Comparison of the peak positions in the calculated valence-band density of
states with those in angle-integrated photoemission spectra. Energies in eV are measured
from the valence-band maximum.

Si

Lp

L3

'Reference 55.
Reference 54.

'Reference 56.

Theory

—11.93

—9.52

—4.52

—1.20

Experiment

—12.4 +0.6'
—12.5 +0.6b

—9,3 +0.4

—6.4 +0.4'
—6.8 +0.2"
—4.7 +0.2'

4 4~

—2.5+0.3b

—2.9'
—1.2 +0.2'

Theory

—12.48

—10.36

—7.41

—4.51

—3.04

—1.39

Experiment

—12.6+0.3'
—12.8+0.4b

—10.6+0.95'
—10.5+0.4'
—7.7+0.2'
—7.4+0.2"
—4.5+0.2"

—3.2+0.2'

—1.1+0.2'
—1.4+0.2'

tions in the photoemission spectra rather well with
an overall error of about 0.3 eV.

On the other hand, the comparison with the opti-
cal measurements shows large errors. The calculat-
ed indirect gaps are 0.48 eV from I to 0.85X for Si
and 0.47 eV from I' to L for Ge. The experimental
values are 1.17 eV (Ref. 57) from I to 0.82X (Ref.
58) for Si, and 0.74 eV from I to I. (Ref. 59) for
Ge. %hile the calculated positions in the Brillouin
zone for the valence-band maximum and the
conduction-band minimum are in good agreement
with experiment, the magnitudes of the energy gaps
are underestimated. This seems to be a general
phenomenon in the ab initio density-functional cal-
culations. The calculated direct gaps are 2.54 eV
(I q5 I |5) for Si and 0.73 eV (I'2» I'2. ) for Ge.
Again, these values are lower than the experimental
values of 2.74 eV for Si (Ref. 60) and 0.89 eV for
Ge, ' but by a smaller amount (0.2 eV).

V. CONCLUSIONS

In summary we present an extensive microscopic
study of the structural properties of two group-IV
elemental crystals, Si and Ge, employing an
ab initio pseudopotential method' within the
local-density-functional formalism. Using atomic
numbers of the constituent elements and a subset of
crystal structures (diamond, hexagonal diamond,
P-tin, sc, bcc, hcp, and fcc) as the only input infor-
mation, the calculated structural properties are in

excellent agreement with experiment. They includ-
ed (i) the static structural properties such as lattice
constants, cohesive energies, and bulk moduli, (ii)

the crystal stability such as the determination of the
most stable phase, and (iii) properties of pressure-
induced phase transformation.

In particular, our calculations show that the dia-
mond phase of Si and Ge is the most stable phase
among the seven phases under consideration and it
will transform to the P-tin phase under hydrostatic
pressure. The transition volumes and transition
pressures, along with the axial ratio of the final P-
tin phase in the pressure-induced phase transforma-
tion agree very well with experiment. %e also show
that the Ewald energy is the driving force for this
pressure-induced diamond —P-tin phase transfor-
mation. The present results along with the results'
of lattice-dynamical properties demonstrate that not
only the static structural properties of crystals but
also the other important structural properties of the
crystal stability, phase transformation, and lattice
dynamics can be accurately described from first
principles within the local-density-functional for-
malism.
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TABLE XI. Convergent test of the static properties of Si and Ge with respect to the

kinetic-energy cutoff (Ep ) of the plane-wave basis set.

Si

(Ry)

3.5
4.3
6.0
8.0

11.5
Expt. '

Lattice
constant

(A)

5.467
5.386
5.394
5.439
5.451
5.429

Cohesive

energy
(eV/atom)

1.84
2.56
3.45
4.11
4.67
4.63

Bulk
modulus
(Mba r)

1.76
1.29
0.97
1.01
0.98
0.99

6.0
8.0

11.5
Expt. '

'References 31, 32, and 33.

5.551
5.599
5.655
5.652

2.41
3.24
4.02
3.85

0.89
0.79
0.73
0.77

APPENDIX A

In this appendix, we give the results of the con-
vergence test of the static properties with respect to
the kinetic-energy cutoff (E~„) for the plane-wave
basis set (Table XI). The lattice constant converges

quite fast, e.g., it has already converged to within

1% at Ez„——4.3 Ry for Si. At E„„=11.5 Ry, the
lattice constants converge to better than 1%, and
the cohesive energies and the bulk moduli converge
to about 5%.

APPENDIX 8

the scheme as long as the generated pseudopotential
is capable of reproducing all-electron atomic results
for a wide range of atomic configurations (see Sec.
III).

%'e also note that the pseudopotential approxirna-
tion works best for cases in which the valence wave
functions do not overlap appreciably with the core
wave functions as in the present case. When the
overlaps are not negligible (e.g., in the case of Na),
signficant error will result from the fact that
V„,(p) [Eq. (10)] is a nonlinear function of the
charge density. It has been shown that such er-
rors can be eliminated by including core-charge ef-

In this appendix, we discuss the accuracy of the
pseudopotential approximation in which an
ab initio pseudopotential is used to simulate the in-

teraction between the valence electrons and the
atomic core. Shown in Fig. 19 is another ab initio

pseudopotential of Si generated using a reference
configuration of 3s 3p 3d, and r, values (in
a.u. ) of 1.35, 1.56, and 1.56 for the s, p, and d com-
ponents of the pseudopotential. %hile the pseudo-
potentials shown in Fig. 1(a) and Fig. 19 are quite
different, the calculated equilibrium lattice con-
stant, the cohesive energy, and the bulk modulus
differ by only 0.5%, 1%, and 2% respectively. We
have also tested other generation schemes for
ab initio pseudopotentials and obtained similar re-
sults. This demonstrates that the structural proper-
ties do not depend appreciably on the pseudopoten-
tial generating scheme and the parameters used in

—6CC

M
Q

R (a.u. )

FIG. 19. Ab initio pseudopotential of Si generated
using 1.35, 1.56, and 1.56 a.u. for r, values of s, p, and
d components.
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fects in the treatment of the exchange-correlation
potential and energy.

As for the core-core interaction energy, we con-
sider it as purely electrostatic in our formalism.
This approximation is quite accurate if the atomic
cores do not overlap. Since 97% of the 2s (2p) core
eltx:trons of Si are within a sphere of radius 1.12
a.u. (1.15 a.u.), the value 1.2 a.u. is a good estimate
of the core size of Si. Thus, the volume is to be
compressed to V, /Vo ——16% of the fice volume in
the diamond phase and to even smaller volume in
closely packed phases before the atomic cores over-

lap. Ge has relatively extended 3d core electrons
and, hence, a larger core size. The value V, /Vo is
about 30%. Therefore, the electrostatic approxima-
tion for the core-core interaction should be quite ac-
curate for the volume compressions considered in

the present study.

APPENDIX C

In this appendix, we examine the variation of the
calculated structural properties with respect to the
functional form of E„,[p]. If the exchange-
correlation form (E„, ) proposed by Hedin and

Lundqvist (HL) is used in the calculation of the
static properties of Si, the resulting lattice constant
decreases by 1%, and the cohesive energy and the
bulk modulus increase by 5% as compared to the
corresponding results using the Wigner form E„,.

The variations in the lattice constant and the
cohesive energy can be qualitatively explained
directly from the different functional forms of

E„,[p]. In the zeroth-order approximation, the
exchange-correlation contribution to the total ener-

gy per atom is Z, e„,(p) where Z„ is the number of
valence electrons and p the average valence charge
density. Compared with the Wigner form of e„„
the HL form decreases faster as p increases, viz. , it
favors a high charge density and small lattice con-
stant. This also leads to a larger cohesive energy
calculated using the HL form because the overall
valence charge density of the crystal is larger than
that of isolated atoms.

As for the study of crystal stability, b,Em;„be-
tween the CD and the HD phases varies by less
than 10 eV/atom when different E„,'s are used.
This is because both phases have almost the same
equilibrium atomic volume and similar valence
charge distributions. The difference b,E;„between
the other five phases and the CD phase is lowered

by about 0.02 eV/atom when E„, is used instead of
E„,. This results from the fact that these five
phases have smaller equilibrium atomic volume and
that E„, favors small atomic volumes. Such varia-
tions in &&;„do not effect our conclusions about
the crystal stability.

Since E„, favors a small atomic volume, the cal-
culated transition pressure for the diamond —P-tin
phase transformation using E„, is 10% smaller
than that using E„,. The transition volumes have
only small variations, they decrease by 1% when

E„, is used instead of E„,.
Other functional forms of E„,[p] have also

been examined, the results are similar to those dis-
cussed above. It should be noted that the expression
of E„,[p] in Eq. (2) is itself an approximation (the
local-density-functional approximation ).
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