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Symmetric relaxation of the hydrogen-saturated silicon vacancy
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With the use of the self-consistent pseudopotential method, the Hellman-Feynman

theorem is applied to study the symmetric relaxation in the hydrogen-saturated vacancy

(HSV) which has been used previously to model the electronic properties of amorphous sil-

icon hydride. The hydrogen and nearest-neighbor silicon atoms are found to relax outward

by 0.46 and 0.35 a.u. , respectively. The primary effect of this relaxation, which is driven by
the large H-H interactions in the ideal HSV, is to restore the depleted local H density of
states just below the band gap. It is suggested that geometries other than those considered

here may lead to more stable configurations.

I. INTRODUCTION

Recently several investigators have used the
hydrogen-saturated vacancy (HSV) in Si to model
the electronic structure and transport properties of
hydrogenated amorphous silicon (a-SiH„). A
tight-binding coherent potential approximation
(CPA) treatment' on a random 5% "alloy" of
HSV's in a silicon lattice displayed a valence-band
spectrum very similar to that of a-SiH„as well as
reproducing the experimentally observed widening
of the gap when the H content is increased. The
self-consistent electronic structure of the HSV itself
has been studied from both the supercell and the
isolated-defect approaches. Both of these studies
found the density of states (DOS) immediately
below the gap to be strongly depleted around the H
sites, and the former study (Ref. 2, hereafter re-
ferred to as I) also found a DOS increase a"round the
H sites for conduction states immediately above the
gap.

The depletion of conduction-band states near the

gap by H has been suggested ' as the cause of the
low hole mobility in a-SiH„, and dc transport calcu-
lations on the CPA model' have borne out this
qualitative picture. More recently, a calculation of
the absorption coefficient (i.e., ac conductivity)
based on the CPA model has suggested an interpre-
tation of the difference between the "optical gap"
and the "DOS gap" in a-SiH„. Thus it seems that
the HSV has provided a reliable basis for under-
standing several of the crucial properties of a-SiH„.

The interpretation discussed above has all been
based on the electronic structure of the idea/ HSV.

However, in I it was emphasized that the large
repulsion between H atoms in the ideal HSV was
likely to lead to substantial atomic relaxation in this
defect, and a preliminary study of the magnitude of
the relaxation has been reported. In this paper we
allow the symmetric breathing relaxation of the
HSV and find substantial rearrangement of the H
local DOS both above and below the gap which
must be reconciled with the data on a-SiH„ if the
HSV is to remain a viable model for this system.

The plan of the paper is as follows. In Sec. II the
numerical procedure which is used to calculate the
forces on the atoms is presented. The numerical re-
sults and their interpretation are given in Sec. III.
The last section is devoted to a discussion of the im-
plications of these results for our current under-
standing of the electronic properties of a-SiH„.

II. NUMERICAL TECHNIQUES

The self-consistent pseudopotential (SCP) method
has been described in detail elsewhere. The Si
and H local pseudopotentials, Hedin-Lundqvist
exchange-correlation potential, supercell size corre-
sponding to eight Si atoms, and calculation of local
DOS (LDOS) are as described in I. The novel
feature of the present work is the calculation of
forces on atoms using the Hellman-Feynman (HF)
theorem. Formal aspects of the HF theorem in
density-functional theory have been discussed else-
where. However, since this study may be the first
of its kind for a model of a localized defect in a
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bulk solid, and since technical aspects of the calcu-
lation of HF forces have not been presented in
much detail elsewhere, selected details of the
present calculations will be presented in this section.

sion

F, i=+ Gv, ( ~G~ )p(G)e
G(G

(3)

A. Hellman-Feynman force calculations

For a given atomic configuration I Rz I, the force

FJ on an ion at Rz is given by

Fr=Fr "+FJ (1)
~ I

where FJ'" is the direct Coulomb contribution from
all other ions, which can be calculated using an

Ewald technique, ' and FJ is the electronic contri-
bution which takes the classical form

Fi ——Jd r p(r)Vvj. (r Ri)— (2)

in terms of the local ionic pseudopotential vj. The
charge density p should be the "exact" charge densi-

ty, i.e., that which satisfies the local-density-
functional equations. An approximate charge den-

sity, which might lead to a reasonable total energy

E„,IR;I (which is variational in p) and thereby to
reasonable forces from the numerical derivative

EE«,/IR&, can lead to widly uncontrolled results
for FJ if the HF expression is applied directly. An
example is the Gordon-Kim" procedure for deriv-

ing the forces between two closed-shell ions from a
total charge density approximated by the sum of
two spherical ionic densities. Direct application of
the HF theorem to this approximate charge density
leads to nearly vanishing forces for ionic separa-
tions of interest, resulting solely from the exponen-
tial tail of one ionic charge overlapping the nucleus
of the other ion, whereas the Gordon-Kim pro-
cedure of calculating E„, in an intermediate step is
known to be quite reliable.

Physically, the HF force FJ or~iinates from the
distortion (dipolar with respect to RJ) of the valence
charge density (away from that of overlapping
spherical atomic densities) due to bonding. In prac-
tice, the calculated (and therefore approximate)
charge density must be (1) converged with respect to
k-point sampling, (2) self-consistent, and (3)
represented sufficiently generally to allow the im-

portant bonding-charge distortions. A plane-wave
representation, either of the total (valence pseudo-)
charge density p (as done here) or of the distortions
of p due to bonding, seems to be a particularly satis-
factory representation as it is not fixed to particular
atomic positions.

For the HSV, FJ was calculated from the expres-
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FIG. 1. x component of the electronic contribution to
the force, in hartrees/bohr, on H and nearest-neighbor
Si atoms, illustrating convergence vs G-space cutoff G.
Results are for configuration 1.

where vj(G) and p(G) are Fourier coefficients of vj
and p. The summation limit G must be extended
until convergence is obtained. Figure 1 shows the
convergence of F' for both H and Si as G is in-
creased. The important contributions to F' arise
from wavelengths (2m'/6 ) y a 0/4, where a 0
=10.263 a.u. is the Si lattice constant. For all re-
sults quoted here the cutoff was taken as G =27
(2n/ao) =10 Ry.

Accurate values of FJ require a charge density
which is more accurate than is necessary for simply
determining a self-consistent potential or the total
energy. This in turn requires more precise eigenvec-
tors of the Hamiltonian matrix H o o, . A common
procedure in the SCP method for obtaining eigen-
'values efficiently is to construct H o z, matrix ele-

ments up to a large cutoff 62=Ez and use the
I.owdin procedure' to fold down the eigenvalue
problem to a smaller one corresponding to G

&

——Ej.
For the present calculations the Lowdin unfolding
procedure' for subsequently obtaining the eigenvec-
tor components up to G=G2 has also been em-

ployed. These procedures, which are reminiscent of
second-order perturbation theory in the matrix ele-
ments H o z . for Ej & G, G' & Ez, produce eigen-

vectors of sufficient accuracy for the present pur-
poses. The cutoffs E& ——4.S Ry, Ez ——8 Ry corre-
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spond to plane-wave basis sets of approximately 175
and 400 plane waves, respectively, and provide only
slightly less accurate solutions to the 400X400 sec-
ular equation at substantially less cost than by
direct methods.

In Table I examples of the changes in the calcu-
lated forces due to large-6 components of the wave
function are displayed. For this convergence check
the single special k point' was used to approximate
the charge density for the ideal configuration, and
the Lowdin unfolding procedure was applied to give
initially 300 and then 400 plane-wave coefficients of
the wave functions. The calculated forces on the H
and Si atoms increased in magnitude by 35%%uo and
6%%uo, respectively, while the total energy per atom
changed only from —5.5028 to —5.5058 Ry.

The set of four special k points' for the simple
cubic lattice has proven adequate for the HSV su-

percell for determining p. One special point is

clearly insufficient, while results almost identical to
those from the four-special-point mesh were ob-
tained using the 10- and 35-point regular meshes
and the 20-special-point set.

B. Geometry

The HSV supercell is a cube corresponding to the
crystalline Si cubic cell of edge length ao and con-
taining eight Si sites. For the HSV the Si atom at
the origin is replaced by hydrogens at (u, u, u) and
equivalent positions tetrahedrally placed around the
origin. For the ideal HSV, u was chosen as
0.0883ao, corresponding to a H —Si bond length of
Si3-SiH suggested by Lucovsky. '" Only symmetric
"breathing-mode" relaxations, i.e., atoms relaxing
radially from the center of the defect only, of the
HSV have been considered. Thus only u and the

TABLE I. Comparison of the x component of the calculated electronic forces (in arbitrary
units) on H and Si atoms when 300 or 400 plane-wave coefficients are included in the plane-
wave expansion. Contributions from each star of reciprocal-lattice vectors as well as the total
are given. Owing to the symmetric placement of the Si atom [at (ao/4, ao/4, ao/4)] within the
unit cell, several stars 6 give vanishing contributions to the force independently of p(G).

H Si

300

100
110
111
200
210
211
220
221
310
311
222
320
321
400
322
330
331
420
421
332
422
430
431
333

Total

—1.57
—3.52
—8.78
—1.21
—4.69
—1.49

2.85
1.61
0.32

11.86
4.S2

—O.S6
0.69
2.52
1.42
0.39
0.19

—0.01
—0.01

0.06
—0.04

0.21
0.19
0.06
5.01

—1.60
—3.56
—8.78
—1.23
—4.76
—1.48

3.13
1.71
0.31

12.66
4.68

—0.63
0.77
2.91
1.58
0.44
0.18

—0.02
—0.01

0.07
—0.05

0.27
0.24
0.07
6.90

—9.54

1.64
—0.59

1.71

2.68
—4.68

—1.54
—0.33

—0.05
0.61

—0.58
0.25

—10.42

—9.70

1.66
—0.61

1.75

3.03
—5.26

—1.73
—0.43

—0.07
0.69

—0.75
0.38

—11.04
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coordinate u of the neighboring Si atom at (v, u, u)

and symmetric positions are allowed to vary
(u =0.25ap for the ideal HSV). Changes in unit-

cell volume have not been considered.

HSV GEOMETRY

RELAXED
————IDEAL

INTERSTITIAL
SITE

III. RESULTS

A. Relaxation of the HSV

Si
ND

0

In addition to the ideal HSV geometry, three re-
laxed geometries have been studied. Their coordi-
nates and the calculated atomic forces are presented
in Table II. Configuration 3 was determined from
the previous configurations (0, 1,2) by fitting forces
determined from the harmonic potential-energy ex-

pression, valid for small enough displacements,

X

VACANT
SITE

FIG. 2. Schematic geometry of the HSV relaxation in

the (110) plane of the supercell. Dashed lines represent
the configuration before relaxation.

v =u —up, the potential energy V for small displace-
ments can be written

V(u, u)=Au+Bu+Cu +Dv +Euu, (3)

to the six calculated forces, and then determining
the equilibrium values of u and u. After calculating
the forces for configuration 3 (Table II), forces de-

rived from expression (3) were least-squares-fitted
twice, to the calculated forces for all four configu-
rations, and separately to configurations 1, 2, and 3
(those nearest equilibrium}. From these two poten-
tial functions the equilibrium values up and vp and
their uncertainties (arising from which fit one
chooses to use) were found and are given in Table
II.

The results of the geometrical relaxation can be
summarized as follows. The H atoms relax out-
ward by V3I up —u(0)

I
=0.46 a.u. [u(0)=u for

configuration 0] while the neighboring Si atoms re-
lax outward by 0.35 a.u. , resulting in a 7% decrease
of the H —Si bond length. This relaxation rotates
the Si—Si bond by 4.5' and compresses it by 2.5'%//.

The ideal and relaxed geometries in the (110}
plane are shown in Fig. 2. In terms of u =u —up,

V(u, u)=au +bv +cu v .

From this expression the energy AE gained by re-

laxation is found to be about 1 eV/supercell, i.e.,
per HSV defect. Direct calculation of bE (dis-

cussed more fully below} between configurations 0
and 3 is 1.1 eV.

B. Changes in eigenstates and LDOS

As expected, this rather large atomic relaxation
leads to significant changes in the hydrogen-related

states and LDOS. In Fig. 3 the supercell band
structure along I -R is shown for both the ideal and

relaxed HSV. The states of particular interest in

following the effect of relaxation are numbered 1

through 6, and the charges of each of these states

within spheres distributed throughout the cell are

given in Table III. States 1 —3 lie in the lower
valence bands and before relaxation each is strongly

TABLE II. x components of H, u and Si,u positions (in units of the lattice constant 10.263 a.u.), and the x com-

ponents of ionic, electronic, and total forces on H and Si atoms {hartree/bohr). Equilibrium positions are calculated by

fitting to quadratic potentials as described in the text; uncertainties (in parentheses) are due to the two separate fits to
the calculated forces and do not include uncertainties in the calculated forces.

Configuration

0
1

2
3

Equilibrium

0.0883
0.0960
0.1000
0.1203
0.1142(3)

0.2500
0.2500
0.2560
0.2730
0.2696(1)

pion
X

—0.019
—0.090
—0.108
—0.213
—0.179

H
F„'

0.038
0.091
0.115
0.202
0.179'

ptot

0.019
—0.001

0.007
—0.011

0.0

pion
x

0.060
0.080
0.036

—0.049
—0.040

Si
F„'

—0.041
—0.040
—0.014

0.052
0.040'

Ftot
x

0.019
0.040
0.022
0.003
0.0

'Calculated from equilibrium condition F„"'=0.
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————lDEAL

RELAXED

FIG. 3. Supercell band structure along the I -R direc-
tion for configuration 0 (ideal) and configuration 3 (near

equilibrium). Dotted arrows indicate states which are
affected strongly by the relaxation. Numbers label
states discussed in text and referred to in Table III.

localized near the H atoms. The outward relaxation
of the H atoms decreases the overlap of the attrac-
tive H pseudopotentials in this region. As a result
these states rise in energy and lower their amplitude
near the H atoms, although state 2 (and to a lesser
extent state 3) remains strongly H related.

States 4—6 lie near the gap and therefore are cru-
cial in determining low-excitation-energy properties.
State 4 is the uppermost valence band whose eigen-
value is used to fix the energy zero in Figs. 3 and 4.
[With respect to the average potential V„,(G=O),
the energy of state 4 moved downward by 0.5 eV
during relaxation. ] From Table III it can be seen
that for this state the charge near H nearly doubles

during relaxation. Conversely, the charge on the
lower-conduction-band state 5 decreases dramatical-

ly near and between the H atoms during relaxation,
although its eigenvalue changes very little. Finally,
state 6, the low-conduction-band state at E. in the
ideal HSV, is raised by nearly 3 eV by the relaxation
although its strong H-related character is not
changed dramatically (Table III). Both states 5 and
6 have large amplitudes in the interstitial regions of
the cell.

The LDOS's for the spheres along the bonding
chain pictured in Fig. 2 are given in Fig. 4 along
with the total DOS. The only notable change in the
total DOS occurs at the bottom of the valence
bands, where the strongly H-related peak at —13 to
—12 eV found in I for the ideal HSV is found to
merge with the low Si valence states during relaxa-

TABLE III. Relative charges within each of the equal-volume spheres at the positions indicated in Fig. 2 for the six
states designated in Fig. 3. Both ideal (configuration 0, in parentheses) and near equilibrium (configuration 3) values
are given, with normalization such that a uniform state will have a value 1.00 within each sphere. Also given below is
the total charge (in electrons) within each sphere and the ratio "charge (relaxed)/charge (ideal). "

State
number

Total charge

Ratio

Vacant
site

0.44
(7.90)
6.27

{13.15)
1.49

(17.46)
0.66
(0.83)
1.98

(s.27)
8.64

(8.58)
0.84
(2.10)
0.40

H

1.13
(s.29)
7.92

(7.3s)
3.06

(11.00)
2.86
(1.50)
1.10

(2.18)
2.96
{3.61)
2.35

(2.12)
1.11

H —Si bond

1.53
(2-72)
4.60
(1.55)
3.20

(4.25)
2.20
(1.52)
0.31

(0.90)
1.61

(2.13)
2.21
(1.90)
1.17

Si(1)

1.61
(1.66)
0.73
(0.54)
2.45

(1.29)
1.36

(1.21)
0.63

(0.77)
1.80

(2.34)
1.39

(1.51)
0.92

Si—Si bond

2.15
(1.06)
0.50
(1.68)
1.75

(0.05)
2.75
(1.40)
0.89

(0.09)
1.12

(0.18)
1.34

(1.79)
0.75

Si(2)

1.74
(1.06)
0.60
(1.15)
0.38
(0.25)
1.21

(2.74)
1.37

(0.54)
0.15
(0.71)
2.03
(1.47)
1.38

Interstitial

0.61
(0.14)
0.82
(0.26)
1.15

(0.05)
0.05
(0.07)
8.22

(4.99)
4.59
(1.57)
0.32
(0.20)
1.63
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(xO.t) Si—Si BOND

st(s)

configurations 3 and 0 is —7.70 eV, while the
change in the Coulomb double-counting correction
is a similar contribution of —7.24 eV. The Ewald
and exchange-correlation correction energy differ-
ences are 13.10 and 0.72 eV, giving the final energy
change (gain) from relaxation of —1.12 eV. Thus
the eigenvalue sum contribution has the same sign
as the total energy difference in this case, but other
contributions compete in importance with the eigen-
value sum.

I

I H —Si
I

I

I

BOND

O

z
Cl

SITE

I VACANT SITE

TAL

-14 -12 -10 -8 -6 -4 -2 0 2 4
ENERGY (eV)

FIG. 4. Total and local densities of states in the spher-
ical regions pictured in Fig. 2. In the LDOS curves the
dashed peak below —12 eV has been divided by ten. All

LDOS are plotted on the same scale. States move from
the single- to the double-cross-hatched regions during re-

laxation.

C Charge density

The overall appearance of the charge density of
the relaxed HSV in the (110) plane is similar to that
of the ideal HSV in I and is not shown. The differ-
ence plot in Fig. 5 of p(configuration 3)—p(ideal)
indicates that the charge distortion accompanying
atomic relaxation is dominated by a removal of
charge from between the tetrahedron of H atoms
and the addition of charge to Si —H bonding region.
This rearrangement of charge can be accounted for
qualitatively by the rigid motion of atomiclike H
and Si charge densities. In addition, there is an in-
crease in charge in the H —Si backbonding position
(more than 1 a.u. from the Si nucleus) which is con-
sistent with this rigid-atom picture. The increase in
charge in the Si—Si bond likewise can be ascribed
to the 2.5% compression of this bond; its asym-
metric form, however, suggests a distortion of the
bond charge due to bond rotation. The atomic re-
laxation also results in a decrease of the already
small charge density in the interstitial region.

tion. Accordingly, the vacant-site and H-site
LDOS's show a general decrease in the —13- to
—9-eV region.

There is a large increase in the LDOS just below
the gap at the H site, H —Si bond, and the second-
neighbor Si ["Si(2)"],of which the latter may be a
"supercell effect" which indicates that for these en-

ergies the charge perturbation extends to larger dis-
tances. Conversely, near the bottom of the conduc-
tion bands there is a strong decrease in the LDOS at
the vacant site, H site, and H —Si bond, together
with a significant increase near Si(2) which again
may be a supercell effect.

It should be noted that little can be learned about
the energetics of the relaxation solely from the
DOS, i.e., from the sum over occupied states of the
eigenvalues. It is found that the change in eigen-
value [relative to VH,„„,(G=O)=0] sum between

CHARGE DENSITY DIFFERENCE

(110) PLANE + si
~ H

FIG. 5. Plot in the (110) plane of the difference in
charge density between configuration 3 and corifigura-
tion 0; i.e., "relaxed" minus "ideal." Contours are
drawn at 0 {heavy contour), +5, +10, +20, and +50
electrons/ce11.
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IV. DISCUSSION

The preceding section has described the sym-
metric, constant volume relaxation of H and neigh-

boring Si atoms in the HSV. The restriction to con-
stant volume has compressed the H —Si and Si—Si
bonds by 7% and 2.5% compared to their "equili-
brium" values, indicating the "relaxed" HSV as
described here is under pressure. The compressibili-

ty of crystalline silicon and the Si —Si bond
compression (corresponding to hV/V=7. 5%) im-

plies a local pressure of the order of 75 kbar. A full
relaxation of the HSV (within the breathing-mode
constraint assumed here) would require minimizing
the energy with respect to lattice constant, then
again allowing internal atomic relaxation, and
iterating this procedure to convergence. It is not
clear that the result of such a calculation would jus-
tify the expense, so "full relaxation" in this sense
has not been attempted.

As a first approximation the "fully relaxed" HSV
(in the sense described above) can be approximated
by the present relaxed atomic configuration, but
with lattice constant expanded by 2.5% to restore
the Si—Si bond to its length in crystalline silicon.
This leaves the H —Si bond compressed by 4.5% by
the H-H interactions.

One important property which can be sensitive to
the variation of lattice constant and to internal
stresses is the vibrational frequency of the system.
From the potential-energy expression (4) and atomic
masses the breathing-mode frequencies are found to
be 3300 and 425 cm ' for "optic" and "acoustic"
modes, respectively. [These modes however are not
normal modes of the present supercell lattice since
the Si(2) atoms are fixed. ] The high-frequency H-Si

stretching mode is 50% above the 2100-cm ' band
assigned to H-Si stretching modes' ' in a-SiH„.
Volume relaxation would lower the calculated fre-

quency, perhaps drastically, considering the large
but canceling electronic and ionic forces on H
(Table II) at equilibrium.

Experience in electronic structure calculations in-

dicates, however, that the qualitative features of the
electronic structure of the HSV should not vary sig-
nificantly with a 2.5% increase in lattice constant.
Thus the changes in the LDOS near the gap should
be taken seriously and their implications given con-
sideration.

Brodsky has suggested a "quantum-well model"
for a-SiH„ in which it is assumed that H —Si bonds
deplete the valence-band DOS's near the gap and re-
sult in localization of the wave functions within 0.6

eV of the valence-band edge. Support for this
model arose from the isolated HSV calculations of
DiVincenzo et al. (and also from I), and the model
could explain qualitatively certain optical and trans-
port processes. On the contrary, the present study
shows that most of the H —Si bonding states are re-
stored to the region —0.6&E &0 eV by symmetric
relaxation.

The CPA HSV alloy model of Papaconstanto-
poulos and Economou' (PE) also indicates a strong
depletion of valence-band states just below the gap.
Moreover, this model explains in a quantitative
manner a number of properties of a-SiH„: (1) re-
moval of states from, and the widening of, the gap
upon hydrogenation, ' (2) existence of Si—H anti'-'

bonding resonance states' just above the gap, (3)
the absorption coefficient in the range 2&hv &3
eV, and (4) the position of H-related bonding states
in the valence band. ' From the "H-site" and
"H—Si bond" LDOS in Fig. 4 it is clear that sym-
metric breathing relaxation of the HSV rernoues pre
cisely those features of the H related LD-OS in the
CPA model which are responsible for giving an inter
pretation of properties (I)—(3) above Proper. ty
(4)—the position of H-related photoemission
peaks —is less sensitive to the relaxation calculated
here, with relaxation causing peaks to shift away
somewhat from those measured by von Roedern
et al. ' but more toward agreement with those
found by Smith and Strongin. '

As a consequence, it appears that the ideal HSV
provides a good model of a local defect upon which
an alloy model of a-SiH„can be built, while our re-
laxed HSV fails. This result, in itself, implies no
contradiction, as PE have emphasized that it is the
local H-Si chemical environment rather than the
geometrical arrangement of the cluster of four H
atoms which is the determining factor in their
model.

This result may however be interpreted as sug-
gesting only that the present model of relaxed HSV
does not actually occur, but rather is dynamically
unstable towards a lower-symmetry, lower-energy
configuration. The present study guarantees only
that the relaxed configuration is stable with respect
to breathing-type distortions with full tetrahedral
symmetry, and that it is not Jahn-Teller unstable to-
ward a lower-symmetry configuration. However,
the restricted minimum-energy configuration found
here may well be a saddle point in the full configu-
ration space of atomic distortions.

In such a case the H (and Si) atoms are dynami-
cally unstable with respect to motion perpendicular
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to the (111)H —Si bonding directions. The fully re-
laxed configuration could be a low-symmetry one
which allows lengthening of the compressed H —Si
and Si—Si bonds toward more typical lengths as
well as the avoidance of strong H-H interactions, at
the cost of relatively low-energy distortions of
H —Si—Si and Si—Si—Si bond angles. Avoiding
the compression of the H —Si bond should leave the
H LDOS depleted in the upper valence-band region,
similar to that of the ideal HSV in 1, and therefore
retain the single feature (the local H-Si chemical en-

vironment discussed by PE) most essential to
modeling a-SiH„.

Assuming a complete loss of symmetry, the con-
figuration space consists of the coordinates of each
of the four H and four Si atoms, a total of 24 vari-
ables. The present approach of calculating forces
rather than energies provides the only reasonable
approach to finding the lowest-energy configuration
in such a case. However, the loss of symmetry
leads to a large increase in computational effort
(from k-point sampling), and nothing is known at

present about the number of configurational itera-
tions to be expected to reach equilibrium in such a
large parameter space. Nevertheless restricted re-
laxations along these lines may be studied in the
near future.
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