
PHYSICAL REVIEW B VOLUME 26, NUMBER 10 15 NOVEMBER 1982

Energy-diffusion equation for an electron gas interacting with polar optical phonons
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We present a novel method to solve explicitly the Boltzmann equation for highly energet-

ic electrons interacting with polar optical phonons and scattering mainly in the forward
direction. In this approach, the collision integral of the Boltzmann equation is reduced to a
differential operator which is much easier to manipulate than the integral form and does

not require a relaxation-time approximation. The relaxation of the distribution function
with time as well as the spatial evolution of highly energetic electrons are calculated and

closed-form expressions for the distribution function are given. In both cases the behavior

of the electron distribution is characterized by two fundamental parameters: a drift factor
which represents the net rate of phonon emission, and a broadening factor which is propor-
tional to the latter and also to time and distance.

I. INTRODUCTION d ~ —~o
E' =qVdE—

dt
(lb)

The theory of high-field transport in semicon-
ductors is closely related to the solution of the
Boltzmann equation for high carrier energies. ' Ow-

ing to its complexity (integro-differential equation),
the Boltzmann equation cannot be solved explicitly.
In the past two general methods of approximation
have been proposed. The first relies on the concept
of electron temperature and assumes a Maxwellian
form of the isotropic part of the electron distribu-
tion function. 2 Unfortunately, this analytical
method applies only to the case of very high elec-
tron densities. The other methods use numerical
techniques (iterative and Monte Carlo) to solve the
Boltzmann equation. ' These methods are more
exact but are rather time consuming and costly and
therefore not easily applicable to semiconductor de-

vice models.
Recently, transient transport phenomena at high

energies have been the subject of considerable in-

terest in connection with "ballistic transport" in

very short devices. The idea is that for small de-

vice dimensions (of the order of the mean free path)
the charge carriers suffer only a few collisions and

gain extremely high speeds. In the calculations
semiempirical (Newton) equations such as the fol-
lowing are often used:

where e and eo are the average and the zero-field

energy, respectively, u~ is the drift velocity, E the
electric field, m the effective mass, and r~ and r,
are the empirical momentum and energy relaxation
times.

This method has been subject to controversy since
the boundary conditions have been oversimplified
and spatial inhomogeneities and the statistical na-
ture of the charge transport have been neglect-
ed. ' Moreover, the criteria that define the mean
free path are often based on the low-field and
steady-state values of the physical parameters,
whereas the calculations are applied to high-field
and transient phenomena. The numerical methods,
Monte Carlo, etc., also have their limitations. In
addition to their high cost, they cannot easily be ap-
plied to complicated device structures.

In this paper we present a new derivation of the
Boltzmann equation for fast electrons scattered by
polar optical phonons (POP). This approach can be
used to obtain closed-form integrations of the
Boltzmann equation even for sophisticated device
structures, provided the electrons are injected at
high energies and the electric fields away from the
injecting barrier can be treated as perturbation. In-
jection of electrons over barriers was proposed re-
cently" to achieve extremely high electron veloci-
ties over large distances. It is important in many
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heterojunction structures' and planar doped bar-
rier devices. 'i Our solution of the Boltzmann equa-
tion is similar in character to the treatment of
Dumke. ' He pointed out that the strong anisotro-

py of the POP relaxation process makes the deriva-
tion of a diffusion equation for highly energetic
electrons possible. His analysis was based on the
fiux conservation in energy space. Our approach
yields similar expressions but is directly derived
from the Boltzmann equation for scattering by POP
at high energies. We use the Fermi golden rule for
the calculation of the rates of phonon emission and

absorption and restrict our analysis to moderate
electric fields and therefore neglect the intracol-
lisional field effect. For GaAs the fields can reach
5&(10 V/cm without modifying appreciably the
electron-phonon transition probability. '

The general features of the theory are discussed
in the next section. Section III treats some applica-

tions of a general nature, and details of the deriva-
tions are left to the Appendix. Discussions of
specific devices are left to planned future publica-
tions. ' '

II. THEORY

Our treatment is applicable to moderately polar
semiconductors such as GaAs, InP, etc. We assume
in this analysis that the conduction band is spheri-
cal and that the dispersion relation between the car-
rier energy and its wave vector is parabolic. How-
ever, we restrict the highest possible velocity to
values smaller than -10 cm/s as dictated by
band-structure considerations. Satellite valleys are
not taken into account. The electron gas is assumed
to be nondegenerate under these high-energy condi-
tions. With these limitations the collision integral
for the POP scattering can be written as follows:

Cpopf= f [W,(k'~k)+ W, (k'~k)]f(k')D(k ')dk' —f(k) f [W, (k~k')+ W, (k~k')]D(k')dk '.

Here D(k) is the density of states at wave vector k, equal to V/(2m ) where Vis the semiconductor volume.
The function W, ,(k '~k) is the transition probability from k' to k for an electron interacting with one
POP. The labels a and e denote absorption and emission processes, respectively. In the framework for the
Frohlich Hamiltonian one obtains'

' 1/2

W, ,(k '~k) =
2mN

(N~+ —,+ —,)5(e' —e+fuu ),
/k' —k/' (3)

where co is the POP frequency, for which any dispersion is neglected, and a is Frolich s electron-phonon cou-
pling constant. Nq is the equilibrium phonon distribution given by

Xq ——exp
B

(4)

where kii is the Boltzmann constant and T is the lattice temperature. By substituting (3) into (2) and distin-
guishing both the absorption and emission term, the collisional integral takes the form

Cpopf =
1 „, , [5(e' e eo)+—y5—(e' e+ruu)]-
a (fico) i dk'f(k')

(2iii)' '
~

k ' —k
~

'
dk'—f(k)f;[5(e' e+Rco)+y—5(e' e fico)]——

where y=exp( fuo/k&T). With —the use of the properties of the 5 function for a'parabolic band the factor de-
pending on the wave-vector difference can be written as

1 5(, ~) i)i 1 5( ee+f1N)
(6)

~

k ' —k
~

i 4iii [e(e+fuu)]'~ [1—1/(2e/fico+I ) ] '~ —cos8

Here e is the angle between k and k. For high energies the scattering probability is strongly anisotropic.
For e &2fico small-angle scattering (cos8=1) is almost 20 times more probable than large-angle scattering
(cos8&0) in the case of emission. For absorption the ratio is more than 2.5 larger (Fig. 1). Therefore, for
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e & 2fico we assume forward scattering to be dominant and write

5 ' fic—o+ =R+(e)5(cos8—1)5(e' e+—fico),
I

k' —k
I

where

2' 1 (e/fico )'~'
R+(e)=

i&2
arcsinh '

~(

Neglecting the azimuthal dependence of the distribution function (azimuthal symmetry), the collision integral
takes the form

2QN
Cpopf =

(1—y)

arcsinhv'e/fico arccoshv'e/fico

1
(arccoshV'e/fico +yarcsinhVE/fico )f(E,COSH)

v'E /fico
(9)

where H is the polar angle of the vector k. For high energy the coefficients of the distribution function in the
right-hand side (rhs} are almost equal, and we may assume

arcsinhv'e/fico arccoshv'e/fico
(10)

v Elf?co v E/fRi)

and we can expand f, which gives

Cpopf = S(e)2''Ii N 1 —p 8 f(e, cosH )+ f(e,cosH )
1+y B

(1—y } fico Be Be

Expression (11) is much easier to handle than the
corresponding integral expression. It gives a useful
differential form to the collisional operator Cpop.
The collisional operator includes two terms: The
first is the drift term in energy space, which is in-
dependent of temperature. It represents the net rate
of phonon emission. The second term (second
derivative) is the diffusion term, which is a function
of temperature through the factor (1+y}/(1 —y).
The above procedure is valid under the condition
that the function f varies very slowly in an energy
interval of width iiico. Generally this condition can
only be verified self-consistently. However, we can
anticipate that the procedure is certainly valid for
large electron energy.

10

io'

10 10

III. APPLICATIONS

2I' B B

fico Be
(12)

where

In this section we derive special solutions of Eq.
(11). In equilibrium we have the following:

FIG. l. Anisotropy Q factor for the transition proba-
bility in POP scattering as a function of the electron ener-
gy. The Q factor is the ratio between the transition pro-
bability for small angle (cose= 1) to the transition proba-
bility for large angle (cos8 =0). The Q factor is calculat-
ed with Eq. (6) and the + and —signs are for the ab-
sorption and the emission, respectively.
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r= 1 —y
1+y

The solution of this equation is

f (e ) =K exp
2I e
Ace

(14)

which is Maxwellian in form. K is a constant of in-
tegration. Moreover, for y~ 1 we obtain
21/fuu=l/k&T. Figure 2 gives the temperature
variation of the factor 1/21. We see that the
equilibrium solution is not Maxwellian at low tern-

perature but approaches a Maxwell distribution for
high temperature in accordance with our approxi-
mations. For GaAs and room temperature the de-

viations from the Maxwellian solution are smaller
than 15%%uo.

A. Time-dependent solution

C

CU 2

/
//p~

0
I

2
kT/hm

FIG. 2. Variation of the inverse of the I factor in

function of the temperature normalized to the phonon
energy.

One of the main interests in reducing device di-

mensions is to achieve a very fast temporal response
to external perturbations. Here we apply our for-
malism to simple relaxation processes. The field-
free energy relaxation of charge carriers is an exam-

ple of temporal evolution of the distribution func-
tion. Specifically, we consider the case of high-

energy injection and neglect the external electric
field. The electron concentration is assumed to be
spatially homogeneous. This particular situation
sheds light on the high-energy relaxation process
when POP scattering is important, and it is also im-

portant for the photoconductivity at high fields. '

With these assumptions and Eq. (11)we arrive at

f(e, t)= —fi ro S(e) — f(e, t)8 a 3 2I a
t

' I" %co ae

a2
f(e, t) . (15)

ac

Using a 5-like energy distribution at t=0, and the
equilibrium distribution of Eq. (14) at t=oo, we

have

f(e, t)= g U„(t)Q,(e)

by separating variables. U„(b) and Q„( t) are,
respectively, solutions of

and

—U„( t)+covU„( t) =0a
at

82

(17a)

(17b)

with

aS(eo)
I

For simplicity, we have assumed that the slowly
varying function S(e) is constant and equal to its
value S(eo) at the injection energy eo. The general
solution is

f(e, t) =exp A„'exp + „'exp
v &PF~

OE
exp( vrot)—

exp( vrot ) ~, —A„exp i +B„exp i—. PE .P6

v&PI 2
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with

&=(r'-v/p)'~',

jtc =(v/p —r')'~' .

(19a)

(19b)

From the boundary conditions one obtains

A„'=0, (20)

and the initial condition yields
' 3/2

5(e —ep}
2 =exp

2m 6'0

Ie
fico

'
r
QB exp + g A„exp +B„exp

p, =0

(21)

If we choose A&
——B&———,C(p, ), a Fourier analysis gives

' 3/2
4C(p)=-

2m

exp(I ep/AN ) pEp'
cos

1 2m
' 3/2

C7

EJ +p
(22)

The coefficients B are determined by requiring that the energy distribution function remain normalized for
any time. However, this procedure is long and tedious; therefore, we use the trial solution

B~=K( t)5~ r,
where K ( t) is a function of time which must satisfy

K(0)=0

(23)

(24a)

' 3/2

K(m)= 4 Xr
1T mco

(24b)

since for t= oo the normalized equilibrium function is
' 3/2

4 fiI 2I efp(e)= exp
mco

I

The expression

(25)

' 3/2

K(t)= 4 fr
mco

r2
1 —exp — Pcot

2
(26)

gives an error of less than S%%uo. Therefore, Eq. (18) becomes

f(e, t)=K(t)exp — +exp — +I Pcot
2I e I e J dp C(p)cos e

0 fico
(27)

where we have replaced the summation by an integral. Finally, after tedious algebra (see Appendix A) a
closed-form expression for the distribution function can be obtained:

2

f(e, t) = K( t }exp
2r 2I e J dz exp — I z—

f2

mp[ep(fico ) ]'scot

' 3/2

exp
(e ep+2rPk—cu t }

4A co pt
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The energy distribution function consists of two
parts. The first term of the rhs is the equilibrium
distribution function which is zero at t=O T. he
second term of the rhs is the diffusion (plus drift)
term in energy space. The "drift velocity" in energy
space is given by the factor 2I piruo and represents
the net rate of POP emission as expected. Thus in

our approach it is independent of the temperature
(I P=const). The broadening factor of the distribu-
tion function is proportional to time and is given by
4A cp pt It is. also proportional to the rate of pho-
non emission and thus, to the drift factor. It is an

increasing function of the temperature (P oc 1/I ).
Typically, the process can be described as follows:
Initially, the distribution function is strongly
peaked at e=ep, then, under the influence of the
POP scattering, mainly emission, it drifts toward
low energy and is broadened (Fig. 3).

I I I I I I

5-
L
O
+- 4
a 3.

+2.

0 1 2 3 4 5 6 7 8 9 10 11 12
&/5u)

FIG. 3. Temporal evolution of the energy distribution
function at T=300 K. The starting energy eo is 9fico.
The 5 function is represented by the vertical line. (1)
Pcot=0 25, (2.) Prot=1, (3) Peat 4, (4) Prat=oo. For
GaAs the pro factor is 7.31 X 10'2 s

B. Space-dependent solution —one-dimensional case

Another problem of importance is the charge
transport in the presence of a spatially inhomogene-
ous carrier concentration in the x direction. In this
case we start from the equation

v'2e/m f(e,x)+eEv'2elm f(e,x)a a
Bx BE

a 3 2I 8
A to—'S(e) f(e,x)+,f(e,x)

8
iso BE

(29)

In order to simplify the calculation we assumed
0=0, i.e., all the electrons are injected in the x
direction with a velocity parallel to the electric
field. As mentioned in Sec. II the scattering does
not change the injection direction for high energy.
Before solving Eq. (29) a general consideration must
be made concerning the field term. If we neglect
the spatial diffusion of the distribution function,
Eq. (29) has no stationary solution for eE &0.
Indeed the field term is proportional to v e and in-

creases with energy whereas the first derivative of
the rhs is approximately constant. This means that
for a certain value of energy the second derivative
of the distribution function changes its sign. A where

=F(e,x ), (30)

more detailed analysis shows that the distribution
decreases with energy and suddenly increases to a
nonzero value for high energy. ' This is the well-
known "runaway effect, " i.e., an unbounded in-
crease in electron thermal and drift velocity in the
presence of POP scattering only. In this work we
will deal with relatively small electric fields and will
not consider this effect which occurs at very high
energy where other scattering mechanisms [inter-
valley scattering (GaAs) or impact ionization
(InAs)] play a more significant role.

As in the preceding section we consider an ideal-
ized monoenergetic distribution function represent-
ed by a 5 function at x=O. Moreover, we set
S(e)=S(ep)=C', a constant, where ep is the initial
electron energy. Equation (29) is too complicated to
be solved exactly; therefore we must proceed with
successive approximations. In the spatial diffusion
term Bf/Bx we approximate v e by a constant value

~ep and treat the deviations as a perturbation.
The electric field is also treated as a perturbation.
This reduces Eq. (29) to a more manageable form,

B~ 2r B &2 /emp

,f(e,x)+ f(e,x) f(e,x)—

F(e,x) = V'2e/m f(e,x)+(v'2e/m —+2ep/m ) f(e,x)eE a l a
(irtt0 )2 pro Be Pco Bx

(31)

is a correction term. With the use of the same procedure as in the preceding section the general solution of
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the homogeneous equation is written as

2
fp(e, x)= ~ exp

Ie r ereJ' do 8 (c7)exp ——J' dz exp — Oz—
0 %co 2%co

2

' 3/2 (e —ep+2I P*fico x)
4P*fi co x

exp
2+ z inmP*[ep(fico ) ]' cox

with p =Qm/2epp. The 8(cr) coefficients are determined from the normalization of the distribution func-
tion. Notice that the normalization factor of the transient term is different from (28). This results from the
fact that the "initial" (x=0) distribution is strongly anisotropic (Appendix C). Again, the distribution func-
tion consists of two parts: the terms of the equilibrium function, which are vanishing at x=O, and the
drifted-diffused distribution function represented by the last term of the rhs. The broadening factor is now
given by 4P~fi co x and is inversely ProPortional to the injection velocity 1/'2ep/m, whereas the "drift veloci-
ty" in energy space is now 2I'p~fico, as expected from kinetic consideration.

According to our procedure the distribution function fp(e, x) is only the zero-order approximation. We
need to use the first-order approximation fi (e,x) to properly include the dependence on the electric field and
the diffusion term of Eq. (30). The corrected distribution function contains both the zero- and first-order
terms,

f(e,x) =fp(e,x)+fi(e,x),
where

(33)

fi(e,x)= I dx' I d eG( e e';x x')F(f—p(e', x'))exp — (e —e') (34)

with

F(fp(e, x))= Qe/ep fp(e, x)+(1/e/ep 1) —fp(e, x)1 eE 1 8

(fico )2 *co Be co Bx
(35)

.Here the electric field E is eventually dependent on the x position. The Green's function G(e —e'~ —x') is
given by the following (see Appendix B):

G(e —e', x —x')=0 if x'yx
—1/2

= —%co 4'(x —x')

g exp +I p*co(x —x') . ifx'(x .
co x —x

(36)

Here several remarks must be made concerning
our derivation: The entire procedure is based on a
one-dimensional calculation because we assumed
cose= 1. This approximation is reasonable for high
energy where the scattering is in the forward direc-
tion but it is a very bad approximation for low ener-

gy e & %co where the POP scattering is quasi-
isotropic. However, Fig. 1 indicates that the onset
of anisotropy occurs already for e ) fico. This
means that only the distribution function near the
equilibrium is affected by the isotropic scattering.
Under this condition we can use Eq. (23) of the

preceding section to scale the equilibrium distribu-
tion function and provide a good normalization fac-
tor for this three-dimensional function. Then the
transient term of the distribution function (32) is to-
tally anisotropic while the equilibrium term is iso-
tropic. Moreover, instead of taking the exact solu-

tion of our differential operator, nonvalid at low en-

ergy, we assume for the asymptotic (equilibrium)
distribution function the exact equilibrium distribu-
tion function, which is Maxwellian at the lattice
temperature. The first term of Eq. (32) can be writ-

ten
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f„(e,x)= K(x)exp
1 %co

ir iiT 8

+p cox Ace
y f dzexp — z0, B

2Acuz

IV. CONCLUSION

The purpose of this paper was to present a gen-
eral method for treating the electron-POP interac-
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FIG. 4. Spatial evolution of the energy distribution
function at T=300 K and for E=O. The starting distri-
bution function (5 function) is represented by the vertical
line at eo ——9fico. (1) P*cox=0.25, (2) P ~cox = 1, (3)
P*cox=4, (4) P*cox=ca. For GaAs the P*co factor is
5.49&(10 cm '. The solid line is for the equilibrium dis-
tribution given by Eq. (14); the dotted line is for the
Maxwell-Boltzmann equilibrium distribution.

where f„(e,x) is asymptotic, IC(x) is given by

E(x)=
2 k T [I—exp( —XI P~cox)],

(38)
and x=0.42 gives the optimum normalization con-
stant. Then we obtain a solution that is good for
high energy and short distance as well as for low
energy and long distance. Within this framework
the equilibrium distribution is not modified by the
first-order perturbation. The corrections introduced
by the field term and the residual diffusion term af-
fect only the transient part of the distribution func-
tion. Figure 4 presents the results for GaAs at zero
field. The space evolution of the distribution func-
tion is very similar to the time evolution except for
a slight shift toward the low energy which comes
from the perturbation term. We have also plotted
the true equilibrium distribution function.

tion in the semiclassical approximation of high-
energy processes. In this framework we have de-
rived a differential expression for the collision
operator of the Boltzmann equation. The differen-
tial nature of the collision operators, which is simi-
lar to a Fokker-Planck expression, is well adapted
to treat the stochastic processes of nonequilibrium
phenomena. In this respect it is a better approxima-
tion than previous theories that exclude statistical
considerations as well as realistic boundary condi-
tions (neglected diffusion current). On the other
hand, this method is less costly than numerical
simulations. Specific simple examples have been
treated, and closed forms for the distribution have
been obtained. In each case, provided the electric
field is considered as a perturbation, the time-
dependent distribution and the space-dependent dis-
tribution have the same form, composed of a tran-
sient term and an asymptotic equilibrium term.
The transient distribution is characterized by two
fundamental parameters: the drift factor and the
broadening factor. The former, given by 2I Pfico
(temporal evolution) and 2I'P~itco (spatial evolu-
tion}, represents the net rate of phonon emission per
unit time and unit distance, respectively. In our ap-
proximation it is independent of the temperature.
The broadening factor is given by 4A co 13t (tem-
poral evolution) and by 4irt co p~x (spatial evolu-
tion). It is proportional to time and distance,
respectively, as expected from the conventional dif-
fusion theory, but it is also proportional to the drift
parameter. The broadening factor is inversely pro-
portional to the injection velocity +2epltti ~ Al-
though the assumptions made to derive the collision
operator are only justified for high-energy
processes —because of the strong anisotropy of the
transition probability of the electron-POP
interaction —the method can be extended to low-

energy situations, provided that the low-energy dis-
tribution function is the asymptotic solution of the
problem. Under these conditions the mixed solu-
tion, including the transient distribution function (a
solution of our high-energy differential operator)
and the true asymptotic distribution function (a
solution of the general low-energy Boltzmann equa-
tion}, described the physical reality in a better way
than the exact solution of our differential equation,
which fails at low energy.

The simplicity of the solutions for the different
problems treated in this paper arises from the as-
sumption of the one-dimensional motion in k space
and initial-energy 5 function. This has the advan-
tage of giving a simple picture of the temporal and
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spatial evolution of the distribution function and a
first-principles theory of the various relaxation
times. The results are directly applicable to trans-
port in novel device structures such as planar dif-
fused barriers and devices involving heterojunction
structures.
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APPENDIX A

We want to evaluate the integral

I= f dp C(p)cos exp( pPco—t)
0 Aco

(Al)

with the expression of C(p)
' 3/2

C(p) = 1

2m

I eo Pro
exp cosp' 2m—2m

fi

3/2

K(t) r
p2+p2

This integral is composed of 2 parts:
' 3/2

I) ——
2m

r

I e'p pe P&o
exp dp cos cos exp( —p Pcot)

fico
(A3a)

I2 —— E( t) z 2
cos exp( —p Pcot) .

2I dp p6'
0 (A3b)

The first integral Ii can be written
' 3/2 r r

1 iit 1 1&p "dp p pexp exp( pPcot) c—os (op+ e) +cos (e —ep)
77 2fll pp fico p 2

(A4)

and evaluated
' 3l2

2 1/3 exp-
4irmP[ep(fico) ]' cot

r

(e+~p)'
4Pftco t

(e —ep)

4Pft co t
(A5)

The second integral I2 has the expression

r

Iq —— exp(I Pcot) f dpcos f ds exp[ —(I +p )s] .
0 0

(A6)

Interchanging the integrals we obtain

I2 —— exp(I @cot) —exp — I s+I K(t), " ds, e

il ti& Vs 2%co

2

(A7)

or setting s =z
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2I E(t) 2 2
I2 —— exp(I' Pcot ) dzexp —I z—

0 0 2ficoz

2

2rIC( t), v ~ &pco~ 2exp(l 13cot) exp( —I e)— dz exp —(I z)—
2I 0 2Acoz

(AS)

and finally

I exp — +I' Pcot
I e
fico

2fi
' 3/2

4mmP[eo(%co) ]'i cot

(e eo+—2rpfm t)

4Pfi co t

2reo (e+e +2rpA co3t)2
+exp

4Ph 'co't

E( t )ex—p — + E( t )exp
2I e 2I 2I e

&p ~ E
X dz exp — I z—

0 2Acoz
(A9)

which yields Eq (28) if we omit the avond te~ in square brackets on the rhs, which is a negligible factor
while e0 &yfuu.

APPENDIX B

Equation (30) can be reduced to

2
'2

a r 1 1 a
2$(e,x)— f(e,x)—

2 3 g(e,x)=e ' F(e,x) (Bl)

after the transformation

f(e,x)=e "'~ P(e,x) .

In terms of Green's functions Eq. (Bl) can be writtena', , r ', , 1 a
G(E e;x —x—)— G(e —e',x —x')— G(e —e';x —x')=5(e —e')5(x —x') .

F0 P+fgco3 c)x
(82)

We can set x'=0 and e'=0; then the "initial" and

boundary conditions are
Substituting the expressions in Eq. (B2), we find

and

G(e,x)=0 if x &0,

G(e,x)=0 if eg0,

(B3a)

(B3b) or

2

s + I
G(s,x)— G(s,x) =5(x)

p*trt~co 3 c)x

(B6)

respectively. By Fourier transforming in energy
space we get

G(s,x)=0 if x ~0

} ce

5(e)=—f ds cos(se),
m'

00

G(e,x)=—f dscos(se)G(s, x) .

(B4)

(BS)

= —P*FPco expI —[(shco) +I ]P~cox J

if x &0, (B7)
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which with Eq. (B5) yields the Green's function
(36).

APPENDIX C

the normalization constant of the distribution func-
tion is

f dk 5(e e—o)5(cos8 —1)5(y)

For the t-dependent solution the normalization
constant of the energy distribution function given

by the initial distribution is with

' 3/2
8

2m
(C2)

f dk k 5(e —eo)

2/3
$2

2m

7r
1f d8 sin8 5(cos8 I)—= f dp5(q) = —, ,

(C3)
(Cl)

with k=v'Zmelfi. For the x-dependent solution
because only half of the 5 function is included in
the integration interval.
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