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Valley phase transition of a Si inversion layer in high magnetic fields
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The change of valley degeneracy in a Si(111) inversion layer due to the intravalley ex-

change and correlation at high magnetic fields is mapped out as a function of the density

and of the strength of the interaction compared with the impurity scattering. The calculat-
ed magnetoconductivity is used to explain the observed splitting of the last Landau level in

the Shubnikov —de Haas measurements.

I. INTRODUCTION

Rajagopal' has pointed out the existence of a fer-
romagnetic phase when the density of a two-
dimensional electron gas is sufficiently low. In the
silicon n-channel inversion layer, there are a number
of conduction-band valleys equally populatm1, the
number being 2, 4, and 6 for the (100), (110), and
(111) surfaces, respectively. Bloss, Sham, and
Vinter have shown that, at low densities, the valley
degeneracy may be lifted, and have used this state
to explain a number of electronic properties of the
inversion layer at low densities. The physical
reason for the uneven occupation of the conduction
valleys is the same as for the ferromagnetic phase:
The intravalley exchange and correlation energy
that dominates over the kinetic energy at low densi-
ties favors the concentration of electrons in fewer
valleys.

From qualitative considerations of the Landau
levels when a magnetic field is applied normal to
the interface, Bloss et al. predicted the appearance
of additional Landau levels (and, hence, additional
Shubnikov —de Haas oscillations) at low densities.
An earlier observation was interpreted as the exper-
imental evidence for this. A more direct confirma-
tion is the observation by Englert, Tsui, and
Landwehr of an additional splitting of the lowest
Landau level in the Shubnikov —de Haas oscilla-
tions in an n-channel inversion layer on Si(111)sur-

face. Since the spin splitting in the high magnetic
field has already been accounted for, the additional
splitting, which only occurs at low densities, is in-

terpreted as the valley splitting. Since on the
Si(111) surface, the six conduction valleys are pro-
jected onto different wave vectors parallel to the in-
terface, there is no apparent valley splitting due to
the surface-scattering mechanism and only the in-

travalley exchange and correlation effect remains as
the responsible mechanism.

The valley splitting of the lowest Landau level is
observed not only in samples that have sixfold val-

ley degeneracy in the ground state at high densities,
but also in samples with twofold valley degeneracy.
There are many explanations for the occurrence of
the twofold degeneracy at normal densities. The
origin of the reduction from sixfold to twofold de-

generacy does not concern us here.
We report here a study of the effects of intraval-

ley exchange and correlation in the presence of a
high magnetic field. We restrict our attention to
the limit of such a high magnetic field and low den-

sity that only the lowest spin-split Landau level is

occupied and that excitation to higher levels may be
neglected. The phase transition due to the change
of the valley degeneracy in the lowest Landau level

as a function of the fractional occupation of the
Landau level is investigated. For simplicity, the
model system is limited to having two conduction
valleys. The Landau level has a finite width due to
electron-impurity scatterings, included in a simple
self-consistent Born approximation.

The phase transition is determined by the com-

petition at a density of the kinetic energy, charac-
terized by the Landau level width I due to impurity
scatterings and the exchange and correlation energy,
characterized by the size of the Coulomb interac-
tion 0.. The density N is measured as v =N/D, the
fractional occupation of the Landau level, D being
the single-spin and single-valley density of states in

each Landau level e8/hc. The phase diagram in y
(=—I /a) vs v plane is first calculated in the
Hartree-Pock approximation. Correlation correc-
tion is calculated in the random-phase approxima-
tion (RPA) —plasmon-pole approximation and is

found not to change the phase boundaries qualita-
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II. A MODEL FOR THE INVERSION LAYER

Let the magnetic field 8 be along the z axis nor-
mal to the interface of the inversion layer. As a
basis set, we choose the wave functions of the form

Pk„(r) =e'@q&( x—X)g(z) . (2.1)

The motion of the electron normal to the interface,
being confined on the one side by the insulator bar-
rier and on the other by the gate voltage, is quan-
tized and is represented in the lowest subband by
g(z), with the quantum number understood, since,
in the density range of interest in Si, only the lowest
subband is occupied. For the motion in the x-y
plane, the Landau gauge is used and the states in

tively. At a physically reasonable value of y, the
system changes from a two-valley degeneracy to one
valley as the occupation number v increases from
zero. Since with our approximations, the phase dia-
gram is symmetric about the half-filled case v= 1

there is a one-to-two valley transition as v ap-
proaches 2, the full limit.

The static magnetoconductivity is calculated for
a fixed value of y as a function of the density v.
The density dependence reflects the two-peak struc-
ture of the density of states due to the removal of
the two-valley degeneracy in the appropriate region
of the phase diagram. This explains the observation
of Ref. 4. In addition, the calculation shows struc-
tures in each peak due to the two-valley to one-
valley transition.

In this paper, the possibility of Wigner lattice or
charge-density-wave (CDW) formation is ignored.
Investigation of CDW formation by Yoshioka and
Fukuyama also shows the occurrence of the valley
splitting.

the lowest Landau level have wave functions as
functions of x and y of the form given by Eq. (2.1),
with k being the wave vector of the plane wave in
the y direction and p(x), the ground-state
harmonic-oscillator wave function. The Landau-
level number and spin-up state are also understood
since we are concerned only with the lowest spin-
split Landau level. The harmonic-oscillator wave
function is centered at

X=kR =—kkc/e8,
8 being the cyclotron radius. The only two quan-
tum numbers of interest are k and the valley index
U.

(2.2)

The Hamiltonian for these electrons consists of
three parts:

H =Ho+a +H (2.3)

& = Z ~i, k&k.&k ~ .(i)

k, k', v

(2.5)

H, denotes the electron-electron interaction that
conserves the valley index,

1H =—
C

k1,k1,k2, k2 &

U1, U2

V(k„k'i, k2, k2)ag, „ak „

)(Qkg Qkr
2v2 1vl (2.6)

where the Coulomb matrix element is given by

Ho is the total electron energy in the lowest Landau
level, given by

Ho = g eoakuaku ~ (2.4)
k, v

where ak„ is the annihilation operator of the state
k, u given by Eq. (2.1) and eo is the lowest Landau-
level energy, independent of wave vector k and val-

ley U. H; denotes the intravalley electron-impurity
scattering:

V(k„ki,k2, k2)= fd r fd r'fk, „,(r)g, (r)(e /i r —r'i )gk,„(r')g, (r') . (2.7)

The Coulomb interaction between electrons in dif-
ferent valleys is kept but the Coulomb and impurity
scatterings that transfer an electron from one valley
to another are neglected. This is the same approxi-
mation as adopted in Ref. 2.

tion for the electron-electron interaction and the
self-consistent Born approximation for the impurity
scattering, ' as shown diagrammatically in Fig. 1.
Thus the one-electron self-energy term due to the
impurity scatterings is

Xt(z)= —,I G„(z), (3.1)

III. THE VALLEY PHASE TRANSITION

In this section, we consider the valley degeneracy
of the ground state in the Hartree-Pock approxima-

where I is the square of the impurity-scattering
matrix element in Eq. (2.5) averaged over the im-
purity configuration of the order iii co, /r, co, being
the cyclotron frequency, and r the impurity-



26 VALLEY PHASE TRANSITION OF Si INVERSION LAYER IN. . . 5613

with

(a) Cb)
nu = Eq(1 —Gq ) + +Slil

and
(3.7)

(3.8)

(c)

bare electron propagator
dressed electron propagator

electron- impurity potential

electron-electron interaction

FIG. 1. (a) Impurity contribution to the self-energy.
(b) Hartree-Fock contribution to the self-energy. (c) The
Dyson equation for the electron propagator.

where n is the average Coulomb matrix element

a= Q V(kt, kp, ki, kt)
k), k2

(3.3)

and n„ is the occupation of a Landau level in valley
U and thus, in a model of only one Landau level, the
density in valley v,

n„= rr ' J dE—f(E)ImG„(E), (3.4)

f being the Fermi distribution function at zero tem-
perature.

The Dyson equation (Fig. 1) reduces to a quadrat-
ic equation,

scattering time. G, (z) is the dressed one-electron
Green's function in valley tt.

The self-energy due to the electron-electron in-

teraction in the Hartree-Pock approximation is
given by

(3.2)

eF being the Fermi energy.
There are only two types of solutions. Depending

on the values of the energy ratio y ( =I'/a ) and the
fractional occupation v (=N/D), the electrons are
either confined to one valley or distributed equally
in both valleys. In the two-valley case, the minimi-
zation is simplest to carry out by expressing the to-
tal energy in terms of the energy difference of the
valley minima in units of I', et —cq ——b, . Then it
can be shown from the expression that the lowest

energy is either at 6=0 or 5=1+e&, which means

n~ ——nq or n2 ——0, respectively. We have also nu-

merically verified the conclusion by plotting the to-
tal energy versus ni for a set of values of y and v
sufficient to generate the phase boundary in Fig. 2.

The solid curve in Fig. 2 shows the phase dia-
gram of the two phases for an idealized two-
dimensional electron system. A qualitative under-
standing of the condition for each phase may be
gained from the total energy expression (3.6). If the
positive kinetic energy dominates, the total energy
is minimized by spreading the valley occupation n„
evenly over both valleys. If the negative exchange-
energy term dominates, the total energy is lowered
if one valley gets all the electrons. Thus, when the
impurity broadening is small compared with the

0.5—

(3.5)

—(2r/3n. )(1 F„) / ](L /2mR ),— (3.6)

We have allowed the electron energy in each valley

and, hence the valley occupation n, to be unequal.
Equation (3.5) then yields different single-particle
spectra for the two valleys but it is insufficient to
determine the valley occupation numbers n, . To do
that, we minimize the total energy with the total
number of electrons fixed,

E =
g [(ep —,an„)n„—

0.25—

0 l

I

)

I

1

I

)

l

2 It'

FIG. 2. Phase diagram in I /a vs v plane at T=O K.
I denotes the single-valley phase and II the double-valley

phase. Solid line is the phase boundary in the Hartree-
Fock approximation. Dashed line is when correlation is
added.
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electron-electron interaction (y small), the one-
valley phase occurs almost in the whole density
range 0 & v &2. When I and a are comparable, the
low-density regime for electrons (v small) or for
holes (v close to 2) favors the kinetic energy term
and, hence, the double-valley phase. When the den-

sity for the electrons (or holes) is increased, accord-
ing to (3.6), the exchange energy increases more rap-
idly than the kinetic energy and the transition from
double valley to single valley occurs. This density

dependence of the phases in a high magnetic field is
just the opposite of the zero-field case where, at low
densities, the dominance of the exchange energy
favors the single-valley phase and where, at high
densities, the double-valley phase takes over. The
small dip of the phase boundary at v= 1 and large
I /a appears not to be a result of the rapidly vary-

ing square-root density of states since a Gaussian
density-of-states distribution' leads to the same
feature.

IV. EFFECT ON THE MAGNETOCONDUCTIVITY

Based on the model used to derive the phase diagram in Fig. 2, the static magnetoconductivity is calculated
at T=O, using the formula"

0~=(e /2A'n ) g fdE f(E)[ImG„(E)] /I[ImG„(E)] +[ReG„(E)] ) . (4.1)

For the short-ranged impurity scattering, the vertex correction is negligible. Figure 3 shows u vs v for three
different values of y. The sharp change of o~, when the system undergoes the transition from the double-
valley phase to the single-valley phase or vice versa, is noticeable only when I /a is large. The dip of the con-
ductivity at v= 1 due to the single-valley phase effectively gives the conductivity a two-peak appearance,
which occurs at all values of I /a.

With this result, we are able to explain qualitatively the observation of the Shubnikov —de Haas peaks at
high magnetic fields by Englert et al. Where one would expect the lowest Landau level for two-valley or

~xx
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FIG. 3. Magnetoconductivity cr~ (in units of e /2m A) vs Landau-level occupation v for three different values of y,
the ratio of impurity to electron interaction. v, is where the phase transition occurs.
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six-valley degeneracy, two peaks are observed. For the samples measured, the width of the Landau level I' is
about 3—4 meV. Thus y ( =I /a) is about 0.2. The double- to single-valley transitions occur close to v=0
and v=2. The discontinuity in o„„atthe phase transition is too small to be observable [see Fig. 3(a)] and only
the two-peak structure is seen.

V. EFFECT OF CORRELATION ON THE PHASE DIAGRAM

At zero magnetic field, the correlation-energy term tends to reduce the effect of the exchange energy. In
this section, we examine the effect of correlation in RPA. ' We take the zero-temperature limit T~O of the
coupling-constant integral

1

F, = —(T/2} g I dAA[ ,u(q)II„( qico„)] /[1 —ku(q)II„(q, iso„)], (5.1)
q, u, n

where u (q) is the Fourier transform of the Coulomb potential. The proper polarization part is given by

II„( qico ) = Tg G—,(p,iE)G„(p +q, iE +iso )y„(p +q iE +ico;p,iE),
p E

with the vertex part due to the impurity scattering,

y„(p+q, iE+co;p,iE)=1+(I /4) g G„(p'+q, iE+ico)G„(p',iE)y„(p'+q iE+ico;p', iE} .
p

We have again restricted the electrons to the lowest spin-split Landau level.
Equation (5.3) is solved, yielding

11.(qi)= —2 X I
&k v

I

e"'
I

k' u& I'G.(iE+i~)G.(iE)
E,k, k'

1 (uIR /2—L )
.g I &k, u

I

e' q "
I
k, 'v

& I G„(iE+ico)G„(iE)
k, k'

(5.2)

(5.3}

(5.4)

The evaluation of the coupling-constant integral (5.1) with this polarization expression is rather complex and
we adopt the plasmon-pole approximation' and extend it to high magnetic fields. The polarization is given
then approximately by

11„(q,i~ )=11„(q, )/[~'/I'+11„(q, )/11, (q, O)], (5.5)

where II„(q, oo ) and II„(q,O) are the limiting expressions of (5.4) for co /I' » and « 1, respectively. II„(q, ao )

is of the order q for small q and decays exponentially for large q. II„(q,0) tends to a constant for small q and
also decays exponentially for large q. In this approximation, (5.1) becomes

E, = —(I D/2) g J dx[II„(x, )/II„(x,O)]'~'I I —[1+v(x)II„(x,O)]' (5.6)

When the correlation energy is included, the phase boundary is shown by the dashed curve in Fig. 2. Since
the correlation term reduces the effect of the exchange term, the phase boundary is lowered in y for a fixed oc-
cupation v. There is, however, no qualitative change. The dip at v=1 remains, for example. The explanation
of observations given in the preceding section stands.
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