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Swept-frequency cyclotron-resonance experiments in the two-dimensional electron gas
for intermediate densities (n, &eH/hc, where eH/hc is the degeneracy of the lowest Lan-
dau level) reveal severely distorted and shifted absorption lines. %e show how these data
can be inverted to display directly the holomorphic memory function M(u) which de-

scribes complex frequency-dependent electron scattering in the presence of a strong mag-
netic field. The relaxation time given by the imaginary part of M exhibits a broad reso-

nance at co, while the real part of M which produces effective-mass corrections shows

strong dispersion. By comparing these results with the theory of Gotze and Hajdu, the
strength ( U) and range (ro) of the scattering potential can be extracted. For the particular
Si devices studied, typical values for the strength U are 15—30 K and those for the range

0

are ro-50 A.

INTRODUCTION EXPERIMENTAL RESULTS

Cyclotron resonance (CR) in the two-dimensional
(2D) electron gas in Si inversion layers has been the
focus of numerous experimental' ' and theoreti-
cal' investigations. In principle, CR should
directly reveal the electron mass and scattering rate,
but seldom are the observations free of interesting
complications. Quantum oscillations, subharmonic
structure' and dramatic shifts away from the
cyclotron-resonance frequency, '"' ""' and dis-
torted line shapes are some of the interesting obser-
vations that have inspired much theoretical discus-
sion and some controversy. 's The focus of this pa-
per is on the apparent mass shifts and line-shape
changes that are most dramatic at low densities and
yet not so low as to be in the extreme quantum lim-
it. That is to say, n, )e8/hc where e is the electron
charge, 8 the magnetic field, h Planck's constant,
and c the speed of light. eB/hc is the degeneracy of
the lowest Landau level. Previously, we focused on
the behavior of CR of the 2D electron gas in the ex-
treme quantum limit' ""' while noting that at
intermediate densities the resonance position shifts
to low frequency and the line shape is skewed to
high frequencies. In the following sections we show
how the line shape can be analyzed to display
directly the complex memory function M(co), and
then we compare our analysis with recent theory for
M. The latter yields a measure of the strength and
range of the random potential.

The samples reported here were fabricated on
(100) surfaces of p-type silicon but have substantial-

ly different peak mobility at 4.2 K. Table I outlines
their characteristics.

The device geometry and measurement tech-
niques have been described elsewhere. In essence,
the frequency-dependent conductivity o(co ) is deter-
mined from 10 to 50 cm '

by measuring the frac-
tional change in transmission b, T/T when the elec-
trons are introduced into the inversion layer. The
conductivity is related to the fractional change in
transmission by

b,T 2Reo(co )

~o+ ~sI+ ~G

where Yo, Ys;, and YG are the wave admittances of
free space, silicon, and the gate metallization,
respectively.

Typical experimental results are shown in Fig. 1

for device GKB9-8 and in Fig. 2 for GKS-17-78-1.
1. At the lowest densities a resonance is observed
with the peak shifted substantially below the cyclo-
tron frequency and a severely distorted line shape.
In sample GK5-17-78-1 the line is shifted so low
that if one interpreted the resonance shift as a mass
change it would require a mass nearly twice as
heavy as the bulk mass projected onto the (100) sur-
face. We note that the sample that shows the larger
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TABLE I. Characteristics of samples fabricated on
(100) surfaces ofp-type silicon.

changes has lower peak mobility and hence more
scattering at the interface.

Sample

GKB9-8

GK5-17-78-1

Peak mobility
at 4.2 K

(cm /V sec)
[at n, (cm '}]

12000
(9.3 X 10")

3600
(1.2 x 1O")

Oxide
thickness

(A)

3680

1410

Substrate
dop1Ilg
{cm )

1.2x 1O"

2.5X10"

EXTRACTION OF THE MEMORY FUNCTION

A key concept in the theory of high-frequency
transport is the complex memory function,
M (co ) =M'(co ) +iM" (co ), which describes the com-
plex frequency-dependent scattering. In the absence
of a magnetic field we may write for the conductivi-

ty

o(co)=
nse l

m co+M(co)
' (2)

0

lh
I

O

O. I

ocm ~
where m is the electron mass. In general, M(co)
will exhibit some frequency dependence and the real
and imaginary parts must be related by a Kramers-
Kronig relation in order to satisfy causality.

In a magnetic field we may write

2
nse lo.+(co ) =

m (co+co, )+M(co) '

which implies that M(co) is independent of the
sense of circular polarization. It is not clear wheth-

er this is strictly correct or how it compromises the
analysis that follows.

The experiment measures the real part of cr~(co ):
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N~ 0
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l
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2 m (co+co, )+M (co )

+
(co —co, )+M(co)
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This equation can be algebraically inverted at each
frequency if we know both the real and imaginary
parts of o (co). The imaginary part is deter-
mined by making a piecewise linear Kramers-
Kronig analysis. The input data points are indicat-
ed in each experimental figure by open circles. We
extrapolate to zero frequency and infinite frequency
as follows:

FREQUENCY (crn-&)

FIG. 1. {a) Cyclotron resonance at 6.15 T. Open cir-
cles are the data used for Kramers-Kronig analysis.
Closed circles are the imaginary part of the conductivity
0", deduced by Kramers-Kronig analysis of the real
part of the conductivity cr'. (b) Real and imaginary
parts of the memory function (M' and M") deduced
from o' and cr".

o (co ) = (co /co i )o (co i ), 0 & co & co i

0(co ) = (coiv'/co )0'(coiv ), coiv & co

where co ~ and coN are the first and last data points,
respectively. The resulting imaginary part is shown
as solid points in Figs. 1 and 2.

The memory function can now be extracted by a
simple inversion of Eq. (4). The results are shown
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(o)

Q.05—

both directions of magnetic field. Failing this diffi-
cult goal, high magnetic fields are desirable. The
experiments outlined here only satisfy
tp, /M"(cp, ) & 1 and may suffer some systematic er-
rors. Nonetheless, this study serves as an indicator
of how this analysis can proceed and of what kind
of information results.

lO
I

O

I ~ l MEMORY FUNCTION AND THE
SCATTERING POTENTIAL

0

M'

0
M"

Although there have been numerous theoretical
discussions of the frequency-dependent memory
function to explain results on cyclotron resonance,
few have recognized that there may be resonances
in M(tp) at or near m, . ' ' ' ' The most
transparent discussion from our point of view is by
Gotze and Hajdu ' and we compare with their
theory here.

The random potential is characterized by a
strength U and wave-vector cutoff qp or range
rp =1/qp. If the distribution function is Gaussian,

I

10
I I

20 50 40 SO

FRK4UENCY (cm 1)

~
U(q)

~

=4mrpU exp( qrp) —.
We had taken a different form for

~
U(q)

~

~,

FIG. 2. .(a) Cyclotron resonance at 6.15 T. Open cir-
cles are the data used for Kramers-Kronig analysis.
Closed circles are the imaginary part of the conductivity
o", deduced by Kramers-Kronig analysis of the real
part of the conductivity 0'. (b) Real and imaginary
parts of the memory function (M' and M") deduced
from cr' and 0".

in Figs. 1 and 2. M"(tp), the scattering part of the

memory function exhibits a broad resonance at
-tp„while M', the mass-shift part, exhibits a
strong dispersion. The experiment and analysis
demonstrate in a model independ-ent manner that a
correct microscopic theory of CR must deuelop a res
onance in the complex scattenng function at or near
ec.

We reexamine the assumptions used in the above
analysis. There are basically two assumptions: (i)
M(tp) in (3) and (4) is independent of the sense of
polarization; (ii) the extrapolation formulas (5) are
correct. In the limit that co, /M"(tp, ) &pl, neither
assumption will seriously compromise the analysis.
However, it should be noted that the conductivity
will be dominated by the right-most term in (4), and
the analysis will essentially return M+(cp) in the
event that M(to) is sensitive to polarization. It is
clear that to perform this experiment correctly one
should use circular polarization and obtain data for

where

1/2

Io——U
1+(qpR) /2

1+(qpR) /4
I i ——U

[1+(qpR) /2]

' 1/2

where 8 is the cyclotron radius given by

R =(e/ea)'" .

Then M"(cp) is given by

r',M"(tp ) =co~ bp]Ip&I p+I')

where

(12)

4mU /qp, q&qp='0
q~q (7)

in a previous publication.
The theory of Gotze and Hajdu ' generates spec-

tral widths described by the semielliptical function
first obtained by Ando and Uemura, '

A„(~p) =I'„'
I 1 —[(tp —~p„)/2I'„]'I'
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FIG. 4. Cutoff wave vector qo for the random inter-

face potential determined by comparing experimental

resonance in M"(co ) with theory of Ref. 31.

(qoR) /2

[1+(qoR) /2]
(13)

dN
Ipi = (I p+I 1)A i(Qj )gp(Q) —ro)

hen,

(14)

and f(co } is the Fermi function.
We note that the spin and valley degeneracy re-

quire that only the lowest Landau level is occupied.
If there is no spin-flip or valley-valley scattering,
then the integral in (14) may be simply performed
for the different spin and valley levels occupied to
generate a total Io& and M"(ro ).

Without doing an explicit calculation, Gotze and

Hajdu ' indicate that the peak of M"(ro ) should oc-
cur near co, and should be given by

32 I o (qpR) /4M"(co, ) =
3~ (In+I')) [1+(q R) /2]

(15)

and the halfwidth of M"(ro) should be -(I'0+ I ~).

In Fig. 3 we plot the peak M"(co, ) and the half-

width In+I'~ in units of U against qoR. Also
shown is the ratio of peak to width. As pointed out

by Gotze and Hajdu, in the limit of qoR «1 the
width of the CR given by M"(ro, ) is much smaller

than the frequency scale on which M"(co) changes,

qOR

FIG. 3. Halfwidth and peak height of resonance in
M"(ar) vs qoR. The dashed line is the ratio of peak

height to half-width.

and we expect a Lorentzian line centered at co, .
This case corresponds to long-wavelength potential

scattering and if the cyclotron radius is much less

than this characteristic wavelength, the CR
linewidth will not exhibit features of the density of
states. On the other hand, if qoR & 1, then the CR
linewidth will be sufficiently large so that the line

shape will sample the dispersion in M(co}, and

departures from a simple Lorentzian line shape will

occur.
In Fig. 4 we show the range parameter qo =1/ro

deduced from the ratio of peak M"(ro, ) to the half-

width I 0+I ~. The error bars indicate uncertainty

in determining the ratio from the experimental
M"(rg) and not any systematic errors due to limita-

tions of the theory. The range of the potential fluc-

tuations are of the order of 50 A.
From the strength of the scattering at ro, we can

deduce the strength of the potential fluctuations. In

Fig. 5 we show U for both samples as a function of
density. There is a trend downward with increasing

40

20—
{REF.&I )
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I
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FIG. 5. Amplitude U of the random interface poten-

tial determined by comparing experimental resonance in

M"(co) with theory of Ref. 31.
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FIG. 6. Solid line is the theoretical resonance in
M"(co) calculated with theory from Ref. 31. Open cir-
cles are experimental M"(co) determined by inverting
cyclotron resonance.

n„with considerable error refimting uncertainty in
linking the experiment and the model. The lower
mobility sample has, as expected, a larger U.

In a previous work we had modeled the
temperature- and frequency-dependent conductivity
in the strongly localized regime with U and qp as
adjustable parameters. The sample studied was
similar to GKB9-8 and required U-20 K and

0

gp =0.02 A ', which are consistent with the values
deduced from this inversion of CR.

In Fig. 6 we show M"(co) calculated with Eqs.
(12) and (14). It is in rough agreement with the ex-
perimental M"(co ). By focusing attention on Fig. 6
it is apparent that we cannot demand more than
semiquantitative agreement with experiment. To
compare with experiment we have singled out the
peak in M"(co) at co, . There should be peaks at all
values of neo, including n =0. Considering the
breadth of the resonance shown in Fig. 6, it is clear
that there should be overlap of the resonances in
M(co). Thus the comparison between theory and
experiment can be taken as semiquantitative, yield-

ing rough estimates of the scattering potential.

one can obtain sufficient data to perform a
Kramers-Kronig analysis for the imaginary or reac-
tive part of the conductivity. The frequency-
dependent complex memory function can be ex-
tracted by a straightforward inversion of the experi-
mental o(co). In this manner broad resonances in

M(co) can be displayed. By comparison with the
theory of Gotze and Hajdu ' one concludes that the
length scale for the random potential is smaller
than the cyclotron radius and estimates of both its
strength and cutoff wave vector can be obtained.
These results agree with the observations of Ken-
nedy et al. that the apparent mass shifts seen in

cyclotron resonance may be caused by electron
scattering at the interface. Although this point of
view has remained controversial, the present work
indicates that the length scale for the fluctuations
plays a crucial role. As a result, there will not be a
universal relationship between mass shift and
scattering rate. For a given scattering rate both the
amplitude and length scale of the fluctuations must
be known in order to predict the appearance of a
mass shift in cyclotron resonance.

It is apparent that further refinement of the
theory and experiment will provide a valuable tool
for measuring the interface random potential. To
be a more quantitative test of the theory and/or a
more quantitative measure of the random potential,
the experiments should be performed in the regime
where co, /M"(co, ) »1 in order to avoid ambigui-
ties associated with the inversion of 0(co) for M(co).
This regime is also easier to deal with theoretically
since the resonances in M(co) at neo, should be
widely separated. On the theoretical side, a more
explicit development with formulas for M'(co) as
well as for M"(co ) would be helpful.
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