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Electron correlations. II. Ground-state results at low and metallic densities
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In this second work in a series of papers the coupled-cluster or exp(S) formalism is ap-
plied to the problem of ground-state correlations in the one-component Fermi plasma.
The main approximation employed is the so-called SUB2 approximation for the two-body

subsystem correlation operator S2 which provides a measure of the two-particle —two-hole

component in the true ground-state wave function, and in which the coupling to larger
subsystems is neglected. The SUB2 equations for Fermi systems are brought into tract-
able form by a "state-averaging" procedure which we develop by analogy with the com-

parable Bose equations, and which is shown by comparison with earlier exact results to be
accurate in the metallic density regime at about the 1/o level. Our final results for metal-

lic densities include the completely integrated and self-consistent effects of the terms

which by themselves generate (i) the random-phase approximation (RPA) and its associat-
ed exact long-range screening effects, (ii) the extra random-phase approximation exchange
terms necessary to keep the RPA explicitly antisymmetric, (iii) the self-consistent

particle-particle ladders (LAD) that describe two-particle scattering within the many-body

medium and which describe the exact short-range behavior, (iv) a class of particle-hole
ladder terms, and (v) the self-consistent hole-potential terms. Particular attention is paid
to the important effects caused by the interference at intermediate separations of the
long-range RPA and the short-range LAD effects. By comparison with recent and essen-

tially exact stochastic simulations of the many-body Schrodinger equation, our results are
seen to be accurate to about l%%uo for metallic densities, and hence to provide what is prob-

ably the currently best microscopic description available for this system. We show also

that even in the low-density limit the SUB2 approximation provides a good
"translationally-invariant-solid" description of both charged Fermi and Bose systems in

this exact Wigner crystal regime.

I. INTRODUCTION

A general discussion of the coupled-cluster for-
malism of quantum many-body theory and its ap-
plication to the properties of the ground state of
the electron gas (otherwise known as the one-
component Fermi plasma or jellium) has already
been given in a previous paper' by the present au-
thors, hereafter referred to as I. In that paper at-
tention was focused on the high-density limit, and
the problem was solved in both the well-known
random-phase approximation (RPA) and the not so
well-known Tamm-Dancoff approximation (TDA).
The solution of the RPA equations in the coupled-
cluster formalism was very considerably more
complicated than in such alternate formalisms as
the Green's-function formulation of time-
dependent perturbation theory, although the solu-
tion also contained much more information about

the system. In the present paper one of our aims
is to show that this initial disadvantage of the
coupled-cluster formalism is much more than com-
pensated for by the fact that the formalism seems
particularly suited for the electron gas problem as
soon as we go beyond RPA, and particularly if we
wish to obtain a realistic description at metallic
densities. In this second paper we therefore intend
to extend the results of I for the ground-state prop-
erties of jellium over the remaining low- and
metallic-density regimes, and we leave it to a third
paper to set up the formalism for excited states
and to apply it to je11ium.

Since we have no wish to repeat the introductory
remarks nor the discussion of the coupled-cluster
formalism already given in I, we content ourselves
here with a brief reminder of the physical content
of the formalism. The linked-cluster theorem for
the exact many-body ground-state wave function
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[i.e., the usual exp(S) ansatz] is employed to
decompose the N-body system into a set of mutual-

ly interacting n-body subsystems (n &1V) that are
described by a set of so-called correlation operators
S„,whose matrix elements thus describe the excita-
tion of n particle-hole pairs from some suitably de-
fined noninteracting X-body reference or model
state. The exact X-body Schrodinger equation for
the ground state is thereby exactly decomposed
into a coupled set of N (nonlinear) microscopic
equations for the matrix elements of the correla-
tion operators S„. The general structure of this set
of equations is that the nth equation in the hierar-

chy for S„ is coupled, in the general case of the
elementary particles comprising the system in-

teracting via up to j-body forces, to the higher am-

plitudes S„+,, with 1 &i &j, as well as to all of the
lower amplitudes S~ with m &n. In our case, of
course, we are interested only in j=2 Coulomb
forces. In order for this exact reformulation of the
many-body ground-state to be useful, this hierar-
chy of coupled equations has to be truncated using
a suitable physically motivated approximation.
The truncation scheme employed in I, and which
we shall mostly, but not wholly, also employ here
is the so-called SUBn scheme in which all S; for
i & n are set equal to zero. The SUB1 approxima-
tion is just the familiar Hartree-Fock approxima-
tion, which itself is trivial for translationally-
invariant systems since in this case S~ =0 by
momentum conservation. Thus the scheme with
which we shall mostly concern ourselves is the
SUB2 approximation which was discussed in great
detail in I. For purposes of preliminary orientation
it is important only to realize that the fermion
SUB2 approximation contains as drastic subap-
proximations to itself such other familiar approxi-
mations as: (i) the RPA which, in the language of
diagrammatic Goldstone perturbation theory, in-
cludes all the so-called ring or bubble diagrams, (ii)
the analogous TDA in which only the "forward-
going" (in time) bubble diagrams are retained, (iii)
the approximation of the Bethe-Goldstone equation
which sums the so-called particle-particle ladder
(LAD) diagrams that describe the scattering of two
particles inside the many-body medium, and (iv)
the analogous Galitskii approximation which sums
all particle-particle (pp), hole-hole (hh), and mixed
pp-hh ladders. We note that the SUB2 approxima-
tion also contains terms which allow to include in
the two-body propagators that describe the inter-
mediate scatterings in cases (iii) and (iv), for exam-
ple, the (self-consistent) hole- and particle-potential

terms that "renormalize" the bare (kinetic) "energy
denominators" of these propagators. Thus, also (v)

the whole of the usual Brueckner-Bethe-Goldstone
theory applied so successfully to nuclear matter
and to finite nuclei, is also embedded in the SUB2
approximation. In fact the SUB2 approximation is
richer even than the fully self-consistent union of
all the above approximations, but for full details
we must refer the reader back to Sec. II of I. We
now state that our main present aim is to apply to
the electron gas, particularly in the interesting
intermediate-coupling regime of metallic densities,
the full SUB2 approximation (and even somewhat

beyond); and hence to apply to this most well stud-

ied of all quantum many-body problems what is
undoubtedly the most ambitious microscopic
description it has yet received.

We stress again that the basic SUB2 approxima-
tion is exact apart from neglecting the interactions
with higher-order subsystems. Otherwise, all two-

body effects are included, and it is not surprising
therefore that the SUB2 equations are complex.
They have the structure for homogeneous, isotropic
systems of a nonlinear integral equation for the
matrix elements of the two-body correlation opera-
tor S2, which are functions of three three-vectors.
In order to gain some insight into these fermion
equations, and to enable us to make physically sen-

sible approximations to obtain their solutions, we
are first motivated to look at the formally much
simpler analogous Bose equations.

Hence in Sec. II the extension to bosons of the
coupled-cluster formalism is outlined and we stress
in particular the most interesting results obtained
in the formally most difficult strong-coupling or
low-density regime. For the Bose one-component
plasma we find that at low densities the asymptotic
analytic form of the ground-state energy is that ap-
propriate for a solid rather than a fluid, even

though our formalism from the outset assumes
that both the reference or model state and the ex-
act ground state are explicitly translationally in-
variant. We argue that the fact that we obtain
such an ("amorphous") translationally-invariant
description of the exact low-density Wigner
crystal —or what one might wryly but aptly refer
to as "set jellium" —is strongly indicative of the
power of the coupled-cluster formalism and its
SUBn hierarchy of approximations. Thus even

though the SUB2 description is constrained not to
be able to describe properly the symmetry breaking
that occurs at the physical phase transition be-
tween the high-density fluid and the low-density
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crystal phases, the formalism still seems able to
describe the essential physics of the low-density re-

gime. Thus what is in essence still a two-body
subsystem approach, seems well able to describe
qualitatively at least a phase that is an archetype
of an N-body system where the N b-ody correla-
tions dominate. We regard this result as one of
several very strong pieces of evidence in favor of
the SUB2 approximation being applicable even in
situations that provide the most stringent tests for
it. Finally, in Sec. II we deal also with the Fermi
one-'component plasma in the low-density limit on
the basis of an approximation to the full SUB2
scheme that we develop later; and similar behavior
is seen also in this case.

Thus motivated by the comparisons between
Bose and Fermi systems, we develop in Sec. III our
first approximations to the Fermi SUB2 scheme by
suitably "state averaging" over the occupied states
inside the Fermi sea, and we apply them first to
the cases where we keep only the RPA terms and
RPA exchange (RPAEX) terms necessary to keep
this subapproximation explicitly antisymmetric. In
the case of pure RPA we can check the validity of
our approximation against the exact (analytical) re-

sults found in I; and a similar check is also made
against the results of an exact (numerical) evalua-

tion which goes beyond RPA by keeping the
RPAEX terms in first order only. In both cases
we find in the metallic-density regime agreement at
the l%%uo level, and we argue that a similar level of
agreement is to be expected in other cases where a
direct check cannot so readily be made.

Encouraged by this excellent agreement we then

go on to include in our state-averaged approxima-
tion scheme further terms from the full SUB2
equations. Thus in Sec. IV we first consider the
very important I.AD term in SUB2 that generates
the particle-particle ladders, and which is vital for
a correct treatment of the short-range behavior, in
the same sense that the RPA terms are vital for a
correct treatment of the long-range behavior. %e
stress in particular that while it is certainly neces-
sary for a good description at metallic densities to
treat both of these limits correctly, this by itself is
not sufficient. It is particularly important also to
treat carefully the intermediate-range region where
the interference of these short- and long-range ef-
fects is important. We see in particular that an ap-
preciation of this point forces us even to go beyond
the SUB2 approximation and to include some ef-
fects of the coupling of the two-body subsystems
to three- and four-body subsystems which are im-

portant for a proper treatment of the ladder term.
Our final results are presented in Sec. V after all

other terms from the full SUB2 approximation
have either been incorporated into our approximate
fermion scheme or reasons have been given for
their neglect at metallic densities. A comparison
of our results in this density regime with other re-
cent essentially exact results (obtained from an ex-
act stochastic simulation of the many-body
Schrodinger equation) indicates agreement at the
1% level, which is at least as good as and probably
better than all other microscopic calculations of
this system of either the perturbative or variational
(or any other) kind. Our final conclusions are
presented in Sec. VI.

II. BOSON RESULTS AND LOW-DENSITY
BEHAVIOR

Before considering the approximations that we

shall develop to enable us to handle the Fermi
SUB2 equation, it is instructive first to consider
the analogous but much simpler equations for a
system of bosons in the expectation that a study of
the Bose equations may provide us with some in-

sight into the structure of the Fermi equations. In
this context it is natural also to consider the low-

density limit since we expect that in this limit the
effect of quantum statistics should become unim-

portant, i.e., that the energy for a system of bosons

should approach that of a system of fermions in-

teracting via the same two-body potential.
Although it seems that a study of the coupled

cluster equations for a many-boson system has not

previously appeared in the literature, the necessary
formalism can be developed in very close analogy
to the fermion case, as has been realized many
times before. In the following discussion the in-

terested reader may compare with I for the analo-

gous Fermi case and for details concerning the no-
tation. In terms of a suitable model or uncorrelat-
ed N-body wave funtion ~4), the (usual linked-
cluster) ansatz for the exact N-body ground-state

(g.s.) wave function ~%),

(2.1)

is made, and we consider
~
4) normalized to ~4)

by (4
~

%') =1. We consider here only model Fer-
mi states of Slater determinant form

(2.2a)
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with ~0) the vacuum state, and where the opera-
tors a, are a set of fermion creation operators for

the orthonormaliz]xl single-particle (s.p.) states

~v; ). For bosons the antisymmetrized product of
s.p. states is replaced by the (symmetric) single-

state condensate,

(2.2b)

where the operator bo creates a boson in state 0,
and, more generally, the operators b~. create bo-

sons in a complete orthonormal s.p. set ~a; ).
Although it is clearly possible to consider more

general s.p. states, it is important for later discus-
sions to realize that for all later results reported we
henceforth deal exclusively with plane-wave s.p.

states. Thus
~

C&F ) represents the usual filled Fer-
mi sea, and ~4]] ) the usual completely occupied
zero-momentum condensate: both isotropic and
homogeneous states of zero total momentum. The
correlation operator S is decomposed into n-body
(n &N) components, such that in the N-particle
configuration space we have,

N N
S = g S2(ij)+ g S3(ijk)+

i &j&k
(2.3)

where each of the operators S„(i] i„) is sym-
metric in its n arguments. Equivalently, and more
conveniently for many purposes, we have in Fock
space,

Ns= gs„, (2.4a)

P~

'(]i]) '
Pi
v)

~ ~ e pn

a~,
~ ~ ~ pn
~ ~ ~ vn

b~ S„(p] p„)(N '~'bo)", bosons

a (p] p„~ S„~v] v„)za„a„,, fermions . (2.4b)

Our notation is such that ~a] a„) represents a direct product state,

CX1 Qn CX1 CXn

and the subscript A on the ket states for fermions indicates explicit antisymmetrization (without normaliza-
tion) of that state,

P„
~
v] ' ' ' v„)g ——y ( —1) "~ v] ' ' ' v„),

P I vI

where the sums extend over all (n!) permutations of the indices v] v„and I', is the signature of the per-
mutation. The n-body matrix elements of S„(1. n) for fermions are given in terms of the one-body wave

functions (i
~
a) =P(i) by—

(p] p„(S„~v, ~ v„)„=(Pz(1) Pz (n) ~S„(1 n)
~ g ( —1) "P„,( ) ]I!)„(n))

PtvI

= (P~ (1) P~ (]])
~
S„(1 ~ ]])

~
det„ I P„(j) j )

=((n!) '~ det„I]I]~ (j)j ~S„(1 n)
~

(n!) '~ det„I]I)„(j)j) .

As in I we use the convention that the integers in
parentheses after an operator whose matrix element
is being taken, refer that operator to the quantum
labels in the associated bra and ket in the corre-
sponding numerical positions (counting in each
case from the left).

The notation employed in Eq. (2.4), and hen-
ceforth, reflects the linked-cluster aspect of the ex-

I

pansion, viz. , s.p. labels v; indicate states normally
occupied in ~4) (i.e., states inside the filled Fermi
sea for fermions, or the zero-momentum conden-
sate, v—:0, for bosons); and s.p. labels p; indicate
normally unoccupied states. %here necessary later,
s.p. labels a; run over all s.p. states (i.e., a com-
plete set). It is important to realize that from the
outset we are assuming that ~%) and ~C]) are
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eigenstates of total momentum (with eigenvalue

zero), and that the sum in Eq. (2.4a) omits the
term n = 1 (since Sl =0) only as a consequence of
this assumption.

We note that whereas in the Fermi case the par-
ticles occupy in the state

I
4 F ) all s.p. states up to

the Fermi momentum, in the Bose case we assume
that only the zero-momentum state is occupied in

Ill ). This would seem to imply that our ansatz
will only be useful if the true Bose system also has
a macroscopic number of particles in the zero-
momentum condensate. In general this restrictive
assumption need not be made, but we do it here
because it simplifies the formalism and because we

are interested in the Bose case primarily as a tool
to gain a better understanding of the Fermi case.

Physically, S„represents the true correlation
operator for an n-body subsystem that remains
after all the factorizable (or unlinked) correlations
have been removed from the (complete) n-body

subsystem amplitude operator 4„, defined by its
matrix elements,

+Sl23[S2(a la2)(N' 5 o)]

+S3(~l~2~3), (2.7)

where S~23 generates the sum of all terms obtained

by cyclic permutation of the labels u&, n2, and n3.
Our choice of factors of N '/ in Eq. (2.4b) is
such that the resulting S„are of order 1, and the
factors N'/ in Eqs. (2.6) and (2.7) reflect the Bose
statistics. For example, Eq. (2.6) gives the ampli-
tude that two particles are in s.p. states a~ and aq
whereas all other particles remain in the zero-
momentum condensate. The Bose statistics then
imply that the situation where o.~ and n2 are also
zero-momentum states is a factor N more likely
in the thermodynamic limit than the situation that

—=(4F I a„, a„a a, I

lP), fermions
(2.5)

%„(al . a„)
—= (@ll I

(N ' bo)"b b, I
q'), bosons .

For bosons the subsystem amplitudes +2 and 43
are given in the thermodynamic limit (N~ oo,
volume 0—+oo, p=N/0 finite) by

q'2(&3&2) =(N' '&, ,o)(N' '&, ,o)+S2(lzl~2),

(2.6)

q/3(~ll22~3) (Nl/2Q )(Nl/2f) - )(Nl/2g )

they are in different states. Except for this differ-
ence the interpretation of amplitudes and equations
is very much the same as that of a fermion system.

An equivalent physical description of S„(for
fermions) is that its matrix elements give the exact
amplitudes that describe the excitation of n

particle-hole pairs; where particles and holes refer,
respectively, to states normally unoccupied and
normally occupied in the model wave function
I4). For bosons the role of the hole states is
played by the condensate. It seems intuitively ap-
parent that in order for our ansatz of Eq. (2.1) to
be useful, the physical system under consideration
ought to share at least qualitatively the features
built into the model state I4). More explicitly we
expect our choices I4F) and I42l) to have
relevance, respectively, only to real fermion sys-
tems in states in which some semblance of the
sharp Fermi surface still remains, and to real Bose
systems which contain a finite fraction of the par-
ticles in a zero-momentum condensate. This would
seem to rule out from the outset for fermions, for
example, an accurate description of "abnormal" or
"super" phases, or indeed of anything but the usual
"liquid" or "Fermi fluid" phase. Later, however,
in discussing the low-density results, we give some
indication that this intuitive feeling may well be
false; or at least that the coupled-cluster formalism
may be much more powerful than this too pessim-
istically narrow interpretation would seem to allow.

The derivation of the coupled-cluster equations
for bosons now proceeds in complete analogy with
that for fermion systems as discussed in I. The
only comments that we make are that if the
derivation of Ref. 3 is used it is important to take
the thermodynamic limit only at the end of the
calculation, and that if the derivation of Ref. 4 is
used one has to shift operators in an appropriate
manner since Wick's theorem can no longer be
used. For spin-zero bosons, the exact two-body
equation for the quantity

S2(9)—=S2( q, —q ) (2.8)

is readily found to be given in the thermodynamic
limit by

f2q 2

2('V) + RPA +TCP +TLAD

+ g [2N'/ $3(q, q ', —q —q ')

+ , NS4( q, —q, q '—,—q ') ]V(q') =0,
(2.9)

where m is the mass of each particle, and
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TRpA =NV(q)[1+S2(q)] (2.10)

Tcp= —4—S2(q» (2.11)

TQAD g V( q —q ')S2(q'), (2.12)

and where the ground-state (g.s.} energy per parti-
cle is given by

E/N= —,NV(0)+ —, g V(q)Sq(q) . (2.13)

We are interested in Eq. (2.9) only in the SUB2 ap-
proximation which is obtained from it by setting
S3 and S4 to zero. This truncated equation may
then be compared with its analog for Fermi sys-
tems which appears in I as Eq. (2.15). It is im-
mediately apparent that not only are there far
fewer terms in the Bose equation but that the indi-

vidual terms are much less complex. In Fig. 1, we
represent the various terms of the Bose SUB2
equation in the same way as was done in I for the
Fermi case. The terms labeled RPA of Eq. (2.10)
are represented pictorially by diagrams 1(a)—1(c}
of Fig. 1, and it is again clear that these generate
by themselves the ring or bubble diagrams of the
RPA. The Bose RPA diagrams are formally iden-

tical to diagrams 1(a)—1(c) of Fig. 1 in I in the
Fermi case. The terms labeled CP (condensate po-
tential) are shown in diagrams 1(d) and 1(e) of Fig.
1, and represent the self-consistent energy inser-

tions on the zero-momentum condensate lines; i.e.,
the (self-consistent) condensate potential. These
terms are the analog of the complete hole-potential

(2.14)

The number density p may be expressed either in
terms of the usual dimensionless coupling constant
r„which is the average interparticle spacing in
units of the Bohr radius ao= fi /me—, or in terms
of a (for bosons, purely fictitious) Fermi wave
number k~ applicable to an unpolarized spin- —,

system,

p=(4~r,'ao/3) '=k~/3+, (2.15)

and which is defined for ease of comparison with
the electron plasma. Henceforth the ground-state
(g.s.) energy per particle is expressed in Rydberg
units

(CHP) terms in the Fermi case, discussed in I. Fi-
nally, diagram 1(f) of Fig. 1 represents the LAD
term that is responsible for scattering two particles
outside the condensate and which hence generates
the two-particle ladder (LAD) diagrams. This
term also occurred in the Fermi case in I as part of
the complete ladder (CLAD) contribution, where it
was represented as diagram (m) of Fig. l.

In the Fermi case it was a nontrivial problem to
derive the already well-known high-density (RPA)
results, and indeed the major part of paper I was
concerned with this derivation. In marked con-
trast, the simplicity of the Bose equations allows us
at once to deal with both the high- and low-density
limits, and we discuss these now for the one-com-
ponent Coulomb plasma. The Coulomb potential
with a uniform, rigid, and neutralizing background
present is

E/N =e(e /2ao), (2.16)

(a)

Ji J(

~Sp

(f)

(b)

(e)

(c)

and any dirnensionless momentum variables that
appear have been scaled against the Fermi mornen-
tum AkF defined by Eq. (2.15).

Inserting the potential from Eq. (2.14) into the
Bose SUB2 equation gives, in dimensionless vari-
ables and in the thermodynamic limit,

q Sq(q)+4ar, (3mq ) '[1+S2(q)]2—2(ar, )~eS2(q)

ar,
+ J dq'q'ln, $2(q') =0, (2.17)

~q q'-q

FIG. 1. Diagrammatic representation of the various
terms in the boson SUB2 equation. Note that the asym-
metric diagrams (b), (d), and (e) each represent two
separate terms; one as shown and another obtained by
mirror refIection.

where the energy is given by

e=2(irar, )
' f dqS2(q)

—= f dq e(q), (2.18)
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and where the parameter e is defined as usual by,

aokp ——(ar, )

which implies

a =(9n/4).

(2.19)

(2.20)

= —~-'(6'") I dx[1+x'—x'(x'+2)' ']
0

The four terms in Eq. (2.17) represent, respectively,
the kinetic energy (KE},RPA, CP, and LAD con-
tributions. Although Eqs. (2.17}and (2.18) are
readily amenable to numerical solution it is more
instructive here to examine them in the high-
density (r, —+0) and low-density (r,~ oo) limits.
For a preliminary discussion we neglect the LAD
term and discuss its influence briefly at the end of
this section. The remaining quadratic equation for
S2 is trivially solved to give, in this SUB2—LAD
approximation,

S2(q) = —1 — [q —2(ar, ) e]
3&/

8ar,

——0.8031, (2.23)

which is the exact result first obtained by Foldy.
We note also for comparison purposes with the
Fermi case, that the Bose equations may also be
solved in this limit in the TDA. Just as in I the
TDA is obtained from the RPA by ignoring the
term quadratic in S2. We find

—3/4
eTDA =QTDA rs

(2.24)

QTDA = —( )' = —0 5533 ~

It is also not difficult to show that the next term
in the high-density Bose expansion is a constant,

e~ Qr, +R,
r 0

(2.25)

3 2
'2

1+ [q —2(ar, ) e] —1
8ur,

1/2

and that both the CP and LAD terms in Eq. (2.17)
now also contribute to R. We find

(2.21)

—3/4e ~ eRPA QRPArs
r 0

(2.22)

where the constant QRPA is given by

where the negative square root has to be discarded
since it gives an unbounded solution [S2(q)~ co as
q~~]

In the high-density limit it is readily shown that
to leading order for the energy only the KE and
RPA terms contribute, and we find trivially,

(2.26)
RsUB2 RcP+RLAD ~

16 32
RCP =

~ RLAD =
15m. 45m

By inspecting Eq. (2.9) and the equivalent relations
for S3 and S4 it can, however, be shown that the
coupling terms to S3 and S4 in the exact Eq. (2.9)
also contribute to the constant R (although not to
Q) in Eq. (2.25). We have also calculated the con-
stant R given by the exact two-body Eq. (2.9),
keeping the complete coupling to three- and four-
body clusters. To this order we find, for example,
that the three-body correlation amplitude S3 need-
ed in Eq. (2.9) may be replaced by

S3(q i q2 q3)~[~(qi )+~(q2)+~(q3 }I 'S123( I ~(qi )[1+S2(qi }I+ ~(q2)[1+S2(q2)]]S2(q3)),

(2.27)

for (qi+ q2+ q3) =0, and where the effective s.p.
energy is

co(q) =A' q /2m +XV(q)[l+S2(q)] . (2.28)

A similar replacement may also be made for S4 by
examining the four-body equation. Equations
(2.9)—(2.13) then lead to

R =RSUB2+R3+R4-0.0280, (2.29)

where both the contributions R3 and R4, from the

I

coupling terms to S3 and S4, respectively, in Eq.
(2.9), are finite. The final result of Eq. (2.29) is ex-
act, and an extremely tedious rearrangement of the
integrations shows it to be in precise agreement
with the first correct result reported of Brueckner.
It is worth pointing out here that by contrast with
most competing methods, each of the terms in Eqs.
(2.26) and (2.29) is finite, and no cancellation of
spurious logarithmic singularities occurs. This
particular point highlights a more general advan-
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where the KE term contributes only to the con-
stant 8 in leading order. In this limit the terms
RPA, CP, and LAD are all necessary for a quanti-
tative evaluation of the constant 2, but they play
distinctly different qualitative roles. Thus, it is vi-

tal to keep the RPA terms to get the correct ana-

lytic behavior because, as expected, these terms
continue to be crucial for the long-range (q~0)
screening of the Coulomb potential. Similarly the
CP plays a crucial role now at higher values of q.
Whereas the inclusion of the LAD term quantita-
tively changes the constants A and 8 in Eq. (2.30),
it may safely be omitted without changing the ana-

lytic form. Dropping the LAD term, and hence
using Eq. (2.21), we find for the SUB2 —LAD ap-
proximation:

3 =(32/3H)'~ =1.03,

a =3'"~ps=0.6g .
(2.31)

We have thus obtained a g.s. energy in the low-

density limit which to leading order seems to be
purely potential energy. This may be verified by
using the following exact relations for a system in-

teracting via two-body Coulomb forces,

d(r, e)

drs

1 d(r, e)
V=

rs drs

(2.32)

where t and v are the expectation values of the ki-
netic and potential energy per particle, respectively,

tage of the coupled-cluster formalism —namely
that terms which tend to cancel each other are au-
tomatically grouped together (or never split apart).

Turning now to the much more revealing lom-

density limit, naively one would not expect the
SUB2 approximation or Eq. (2.21) to give any
reasonable result at all in this strong-coupling re-

gime, since one imagines that the n-body clusters
even with n »2 are still very important. Indeed
we believe that the real Coulomb system undergoes
a phase transition to a Wigner solid in this limit,
and the solid may be thought of as an archetypal
system where the N-body correlations dominate.
At any rate it is clear that the low-density Cou-
lomb systems provide one of the most stringent
tests for our formalism.

It can readily be shown from Eqs. (2.9)—(2.13)
that in the SUB2 approximation we have

(2.30)
oo

~exact ~ —1.792rs +2.65rs
oo

—0.73rs + (2.33)

It is clear that our approximation in Eqs. (2.30)
and (2.31) has the correct analytic form for the en-

ergy of the solid, although the values of the coeffi-
cients are considerably underestimated. What is
more important, however, is that even the lowest
(SUB2) approximation in the coupled-cluster
scheme gives a low-density energy which cannot
possibly represent what is normally understood by
a Quid phase, since the particles are definitely not
free to occupy the whole volume. What is perhaps
most difficult to visualize is how our intrinsically

each expressed in Rydberg units. The relations
(2.32) may be derived either from the quantum
virial theorem or by using the well-known theorem
attributed to Pauli, which connects the energy
with an integral of the potential energy over the
coupling constant. Use of Eqs. (2.30) and (2.32)
furthermore shows that the much more interesting
second term in Eq. (2.30) is exactly one-half each
kinetic and potential energy —which at the very
least is strongly reminiscent of simple harmonic
motion and the behavior expected of a solid

It is well known that in the low-density limit the
kinetic energy of the particles becomes negligibly
small, and the Coulomb interactions dominate in
determining the many-body wave function. As
first pointed out by Wigner, the energy of the sys-
tem in this situation should be minimized by the
particles arranging themselves in a regular periodic
lattice. This then leads to an energy proportional
to r, . Whereas in a fluid phase the particles are
free to occupy the whole volume, which by the un-

certainty principle leads to a kirietic energy propor-
tional to r, , in the Wigner solid phase the parti-
cles are constrained to oscillate about the fixed lat-
tice sites and hence to have a greater kinetic ener-

gy. Elementary considerations of simple harmonic
motion show that the volume available to the par-
ticles is a fraction proportional to (r, Ir, ) =r,
of the total volume. Hence by the uncertainty
principle the kinetic energy is increased by a frac-
tion proportional to (r, Ir, ) =r,', thus leading
to an energy of zero-point motion proportional to
r, . As this Wigner model suggests, the exact
expansion for the energy in the low-density limit is
a power series in r,

' where the terms of order

r, and higher are due to anharmonicities in the
zero-point motion. Based on a bcc lattice, Carr
et al. give
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"fluidlike" and everywhere translationally-invariant

approach can really provide such a good descrip-
tion of the solid phase, as well as the fluid phase.
We attempt to understand this by similar reasoning
to that behind the familiar "floating crystal"
model of Feenberg. ' Thus, while one usually de-
scribes a solid in terms of a fixed set of lattice sites
with respect to some fixed external reference
frame, one can just as well specify a description in
which the wave function obtained from the former
description is averaged with respect both to all pos-
sible orientations of the symmetry axes and to all

translations of the lattice within range of the unit
cell. This latter description is, of course, transla-
tionally invariant, and while all information is lost
on the positions of the lattice sites and on the
orientations of the symmetry axes, it nevertheless
retains complete information on the internal struc-
ture. In our SUB2 approximation, however, all
this information is contained in the amplitude S2
which is related by Eq. (2.6) to the two-body sub-

system amplitude %2. We pointed out already in I
the restrictions which are implied by describing a
many-body system in terms of such an amplitude.
Clearly three-body and higher cluster effects are
treated in an average sense only, and hence we can-
not expect to represent the real detailed internal
structure of a crystal-lattice wave function. What
our SUB2 approximation is describing in the low-

density limit must be some sort of amorphous solid
rather than a real crystal. We can perhaps most
appropriately describe our approximation of this
limit by claiming that our jellium has set.

While we have presented explicit evidence that
this neglect of higher-order correlations is not a
severe limitation at least as far as the qualitative
behavior of the g.s. energy is concerned (and prob-

ably also for matrix elements of some other few-

body operators), the fact remains that for a
charged Bose system in the low-density limit, the
third- and higher-order correlations are still very
strong. Thus, more accurate values of the coeffi-
cients A and B in Eq. (2.30), in comparison with

those of Eq. (2.33), simply cannot be expected. We
note here also that preliminary numerical calcula-
tions of the complete SUB2 equations (2.17) and
(2.18), including the LAD term, do not change this
overall picture. Inclusion of the LAD term gives a
monotonically increasing repulsive contribution to
the g.s. energy as a function of r„starting from
zero at r, =0 and giving about a 20%%uo reduction in

binding at r, ~00, thereby increasing the discrep-
ancy with the Wigner value. (We also note, how-

0.4

0- — RPA"+HP (&8) j

-0 4-

-1.2-

-1.6-

20( i i & i »ill i &X& & i&&&l i & i «»tl
1 10 10~ 10~ 10"

fs

FIG. 2. Fermion ground-state energy per article, e,
shown as (r,e) vs r, in two different approximations:

the RPA*+ HP~((e) ') approximation of Eq.
(2.34), and —.——exact RPA.

ever, that an evaluation of the two-body radial dis-
tribution function within the SUB2 approximation
gives a positive-definite function at all densities
only so long as the LAD term is included. ) Final-
ly we note that although the SUB2 approximation
(and even the algebraic quadratic equation approxi-
mation of SUB2—LAD) works superbly over the
entire density regime for the Bose Coulomb plas-
ma, the g.s. energy is quantitatively unsatisfactory
in the low-density limit. It is clear that higher-
order clusters musl be incorporated for quantita-
tively accurate results in this limit, but due to the
relative simplicity of the Bose coupled-cluster
equations this is quite practicable, as indeed we
have already indicated in the high-density limit.
Since we are primarily interested here in the elec-
tron plasma results, however, we now leave the
Bose problem, and we indicate in the next section
how the experience obtained in this case can be ap-
plied to the Fermi problem.

To conclude this section we discuss briefly the
low-density limit in the case of an electron plasma.
The situation for fermions is much more favorable

in this limit than for bosons, in one sense, since the

Pauli principle very effectively hinders electrons

from clustering in groups of more than two, thus

forcing the higher correlations to be smaller, keep-

ing particles apart from each other, and making

the system more "solidlike" in lower levels of ap-

proximation. Although in the exact Wigner low-

density limit the effects of quantum statistics van-

ish, with the fermion and boson solid both describ-

ed by the same asymptotic expansion (2.33) (and
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the different statistics reflected only in differing
terms which vanish exponentially with r,~ Oo ),
this is by no means true in our translationally-
invariant coupled-cluster description. In the case
of the electron system, exchange terms do not van-

ish and the convergence of the coupled-cluster
hierarchy is thereby much improved from the Bose
case.

Thus, for example, the fermion equation analo-
gous to the SUB2—LAD approximation described
above for bosons, is obtained from Eq. (2.15) of I
by keeping the RPA and hole-potential (HP) terms
only (apart from the kinetic energy terms). Apply-
ing a particular approximation to this resulting
equation, which will be fully developed in the
remaining sections, we obtain the "averaged" Fer-
mi analog of the Bose SUB2—LAD approxima-
tion,

4 1, S2(q)
(ar, )

2
P (q) 1+' q'e Pq

e=(e) ——(ar, ) I dq', S2(q')
4 ~, P(q, q')

S2(q) =—
(2.34)

Fermi (RPA+ HP-averaged approx. ):

3 =1.5845, 8=1.10 . (2.35)

The value of the leading coefficient A is thus seen
to be in much better agreement with the exact
Wigner result (2.33) than for the analogous Bose
result (2.31).

In the remainder of this paper we now discuss

The approximation, as described in Sec. III, basi-

cally involves averaging over momenta inside the
Fermi sea, and S2 and (e ) are known functions
which arise, respectively, from thus state-averaging
the two-particle —two-hole amplitude Sq and its as-
sociated kinetic energy expression in Eq. (2.15) of
I. The functions P(q) and P(q, q') that also arise
are explicitly defined and discussed later in Eqs.
(3.16) and (4.14). For fermions, the g.s. energy is

given by Eqs. (3.5) and (3.6) of I, and it is now the
correlation energy that is given by Eq. (2.18) [with

S2(q) replaced by S2(q)]. We give reasons below

that enable us to expect that the averaging pro-
cedure implied by Eq. (2.34) is accurate to a few

percent for the g.s. energy e. In Fig. 2 we show
the results obtained for the quantity (er, ) as a func-
tion of r, . A very precise numerical solution of
Eq. (2.34), accurate to seven significant figures,
showed that the energy has the same low-density
analytic expansion (2.30), and that the values of
the coefficients are

the application of the coupled-cluster equations (in
SUB2 approximation and beyond) developed in I,
to the electron plasma, with particular emphasis on
the metallic-density or intermediate-coupling
(1(r, (5) regime.

III. THE FERMION APPROXIMATION
SCHEME AND APPLICATIONS TO RPA

AND RPA-EXCHANGE EFFECTS

Armed with the results obtained in Sec. II for
bosons we now return to our exact Fermi SUB2
description defined in detail in I, and attempt to
develop a consistent set of approximations that will
enable us to study in detail the structure of the
equations and which will lead hopefully to an ac-
curate description of the one-component electron
plasma over the entire density range. The SUB2
equations for fermions, although conceptually
similar to those for bosons, are mathematically
vastly more complex due both to the many more
terms required by antisymmetrization, and to the
state- (i.e., momentum-) dependence induced by the
hole states inside the Fermi sea in comparison with
the unique zero-momentum condensate for bosons.
In particular, for electrons the matrix elements

=(k&+q a& k2 q~02 I S2
I
klo'I k202)A ~

(3.1)

depend not only on a momentum transfer q as for
bosons [and see Eq. (2.8)] but also on the two hole
momenta k, and k2, as well as the (up or down)

spin indices o.
~ and o.z. The complete SUB2 equa-

tion for charged Fermi systems has been discussed
in detail in I, and it is clear that a numerical solu-
tion of this nonlinear integral equation for a func-
tion of three three-vectors, while perhaps just feasi-
ble with the most powerful modern computers, is
not to be undertaken lightly. Accordingly we ex-
amine various limits and approximation schemes
for handling the coupled-cluster Fermi equations,
and it is these we now examine.

In the high-density limit, the RPA again gives
the leading contribution to the correlation energy
e„ i.e., the g.s. energy relative to the (uncorrelated)
Hartree-Fock energy. In I the nonlinear integral
equation for Sq in RPA was solved exactly and in
some detail, both confirming the well-known re-
sults of Gell-Mann and Brueckner, " and giving for
the first time exact analytic forms for the four-
point function Sz and the once-integrated three-
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point particle-hole vertex function. The Tamm-
Dancoff approximation (TDA) to the ring summa-
tion was also formulated, and the analogous exact
solutions in TDA were also presented for the elec-
tron gas for the first time.

Turning to the intermediate-coupling (1 & r, & 5)
metallic-density regime, we no longer expect the
RPA plus second-order exchange to be a good ap-
proximation, although it gives the first two terms
in the high-density expansion for e, exactly. Thus,
quite apart from ignoring (a) the simple exchange
effects necessary to antisymmetrize RPA, we have
ignored even in SUB2 approximation: (b} all of
the combined particle-particle and hole-hole ladder
terms, some at least of which are important for the
correct short-range behavior, (c) the generalized
self-energy correction terms which self-consistently
generate both the particle potential and, much
more importantly, the hole potential (which now
for fermions plays a similar crucial role to the CP
for bosons), (d) classes of higher ring-exchange
terms, and (e) a class of additional exchange terms
which includes the particle-hole ladder terms.
These terms have all been described in Sec. II of I,
and in order systematically to deal with these ef-
fects we now propose and implement a further ap-
proximation scheme that enables us to study these
terms much more readily.

Based on the comparison with Bose systems, the
fermion equations should be much simpler if they
could be "state averaged, " and the basic approxi-
mation is thus to average over the initial hole mo-
menta ki and k2 in the elements of Eq. (3.1) but to
keep the important exact property that particle
states (k i+ q), (k2 —q) lie outside the Fermi sea
(i.e., the Pauli principle is implemented exactly).
In this way the exact $2.g z (q) is replaced by an

averaged (S2(q}) and the resulting coupled-cluster
equation considered then still has to be state aver-
aged. Although the procedure for this latter step
is not unique, this works to our advantage for two
reasons: (i) the averaging can be made on physical-
ly motivated grounds rather than being imposed
arbitrarily, and (ii) since we know exact results for
S2 in at least one limit, namely the RPA and TDA
results for r, ~0, the errors induced by the various
averaging schemes can be checked. Before describ-

ing the averaging schemes used in detail, consider
as an illustration carrying out the above procedure
in RPA. This leads to an equation for Sz which
involves only the kinetic energy (KE} and RPA
terms. After the replacement S2~(S2 ) has been
made the only state dependence left is in the KE
term, which for fermions is given by the first term
of Eq. (2.15) of I, and is proportional to

—,(
I

k i+ q I

'+
I kz —q I

' i 'i —i i }S—2 =eS2 .

As two obvious averaging schemes one could imag-
ine (a) replacing e~(e ), or (b) the intuitively and

physically more appealing idea of first dividing
through by e and then averaging the "energy
denominator" e '~(e '). Both of these
schemes are considered in detail below. %'e show
that the former procedure leads precisely to the
mean spherical approximation (which is discussed

by Zabolitzky' for the electron gas, and which his
state-independent, variational, Fermi hypernetted
chain (FHNC) formalism leads to in this r, ~0
limit), which gives an e, in error by 8.4% at
r, —+0. The latter procedure, on the other hand, is
exact at r, ~0.

In order to describe our averaging schemes in
detail it is probably easier and more comprehensi-
ble to perform the necessary approximations indi-
vidually on the various SUB2 terms. In the
remainder of this section we deal with a specific
approximation to the fermion SUB2 equation and
discuss its exact (numerical) solution. We then
describe in detail our approximation scheme which
is basic for the remainder of this paper, and com-
pare the results obtained with it to the exact solu-
tions. In Secs. IV and V we then develop the ap-
proximation to the full SUB2 scheme (and beyond).

The initial subapproximation to the SUB2 equa-
tion that we consider is essentially the lowest-order
one which really makes any sense for the electron
plasma at metallic densities, viz. , keeping only the
RPA and RPAEX terms in Eq. (2.15) of I (apart,
of course, from the KE term}. Measuring all mo-
menta in units of fikF, which is the convention
that we henceforth consistently adopt, Eqs.
(2.15)—(2.20) of I then give us the following cou-
pled equations for the functions Sqi'( —=Sqi ) and
Si'( —=Si' ) in this RPA + RPAEX scheme:

2; k) $2(q}=—(«, } 2 [1+2f& (q)][1+2f z (q)],
1 1

(3.2)
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S".- - (q)= —(ar, ) —[ q '[1+2f-„(q)][1+2f -„(q)]2;k)k~ & 3~pf 1
—"2

—q,„~[1+2f-„(q,„)][1+2f -„(q,„)]J, (3.3)

f„(q)=gS . „-„(q)8(—k&, q),
1 2

k~

and where the following definitions have been

used,

S ~ ~ (q)= —[S~~~ ~ (q)+S~~~ ~ (q)] (3.5)

e(k, q) =e(1—a)e(
I
k+ q I

—1» (3.6)

where 8(x) is the usual unit step function defined

to be one (zero) for x greater (less) than zero,

e—= —,[ I
k +q I'+

I
k~ —q I' —&~ —&~l

=q. (k~ —kq+ q), (3.7)

q,„=k2 —k) —q . (3.8)

We note that the RPA+ RPAEX equations al-
ready display practically the full complexity of the
complete SUB2 equations. In the remaining sec-
tions we will only add more terms to the right-
hand sides of Eqs. (3.2) and (3.3). We note also
that we reobtain the RPA equations discussed fully

I

(3.4)

I

in I simply by ignoring the second (exchange) term
on the right-hand side of Eq. (3.3), which is just
the RPAEX term of I.

The analytic solution obtained in I for the RPA
was made possible only because the RPA equation
could be reduced to a one-dimensional integral
equation. The introduction of the RPAEX terms
destroys this simplicity through the introduction of
the momentum transfer q,„, which in turn intro-
duces a complex dependence on the relative orien-
tations of the vectors k~, k2, and q which was pre-
viously absent. In fact, even a numerical solution
of the set of Eqs. (3.2) —(3A) would not be easy.
Indeed Freeman, ' who was concerned with such a
numerical solution of the coupled-cluster equations
(including exchange), in fact only computed an ex-

change energy which is obtained from Eqs.
(3.2)—(3.4), not by a full solution, but merely by
iterating them once only starting from the RPA
solution. Inserting the result of this single itera-
tion into the exact expression for the correlation
energy [c.f. Eq. (3.7) of I],

1

2X
1 8 f dq g [S,'."-„-„(q)+S,".-„-„(q)]8(k,, q)8( —k, , q)

S k)k~

—:f dye, (q), (3.9)

we obtain

1
C z f dq z g 2Szg -„(q)+(ar)

k)k~
[1+2fp, (q-)]

1 1 g

9'ex

X [1+2f g (q,„) 8(k&, q)8( —kz, q), (3.10)

where the superscript 8 indicates the exact RPA quantity is to be used. A simple shift in the origin of the
q integration in the second term of Eq. (3.10) enables us to write it as
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1

2X ars
2 2fdq y

k)k2
S",.-„-„(q)8(k„q)8(—k, , q)

/k2 —ki —qf

RPA RPAEX{1)
C C

(3.11)

which is precisely the expression used by Free-
man. ' In so far as this approximation expressed

by Eqs. (3.10) and (3.11) contains all ring diagrams

plus those obtained from them by making one and

only one exchange, it is a consistent (manifestly an-

tisymmetric} lowest-order approximation for the
inclusion of exchange effects, and henceforth we
refer to it as the RPA+ RPAEX(1) approxima-
tion.

Before we discuss the further evaluation of the
expression (3.11), it is important to realize the
physical difference between the RPA + RPAEX
and RPA+ RPAEX(1) approximations, and for
this purpose it is most illustrative to consider the
respective contributions to the correlation energy
from large momentum transfers, q »ki, k2. It is
seen from Eq. (3.11) that in the latter version these
contributions are just half that in RPA. This
clearly arises because the contribution from
parallel-spin pairs is just canceled by its exchange,
whereas the contribution from antiparallel-spin
pairs remain unaltered. Actually solving the full
RPA+ RPAEX equations (3.2) —(3 4), the
parallel-spin pair contribution still vanishes for
high q as is seen from Eq. (3.3), but the
antiparallel-spin pair contribution clearly also
changes, and it is this which makes the difference
between the two. The reason that the antiparallel
part of S2 changes in RPA + RPAEX approxima-
tion is because the functions f on the right-hand
side of Eq. (3.2) are the sums of parallel and anti-

parallel parts [see Eqs. (3.4) and (3.5)], and in this

case the parallel contribution now approaches zero
as opposed to the RPA where both are equal.
Iterating once, to obtain RPA+ RPAEX(1) values,
instead of solving the full RPA + RPAEX equa-
tions self-consistently, therefore corresponds to
neglecting the influence on the screening of
antiparallel-spin pairs of the disappearance of the
(high-momentum transfer} correlated parallel-spin
pairs. By solving the equations (3.2) —(3.5) self-

consistently, an additional screening mechanism is
thus introduced which lowers the correlation ener-

gy (i.e., makes it more negative} or decreases the
(positive) exchange energy. We note that by writ-

ing Eqs. (3.2) —(3.5) in their original dimensional

units and by taking the limit of large q, it can
readily be seen that the total S2 [defined in Eq.
(3.5)] just equals the same S2 in RPA but at half
the density. Opposed to that, the RPA+
RPAEX(1) approximation yields an RPA value of
S2 at even lower density. Since exchange can
hardly do more than cause the absence of correlat-

ed parallel-spin pairs, it is clear that iterating the
RPA + RPAEX equations just once about the
RPA solution certainly must overestimate the ef-

fects of exchange.
In order to compare our results with those of

Freeman, ' and in order to test our approximation
schemes later, we have evaluated the exact expres-

sion (3.11) for the correlation energy in the approx-
imation RPA+ RPAEX(1), using the exact RPA
results for S2 from I. Making the simple change
of variables indicated in Eq. (3.20) of I, Eq. (3.11)
here may be written as

f dq f d f d
+1 R(+

r
&

r ' r q. (ir, +„-2)

2

q

RPA i RPAEX( 1 ) (3.12)

in the notation of Eqs. (3.16) and (3.23) of I. Us-
ing Eqs. (3.26) and (3.19) of I, the result for the
(direct) RPA contribution P, is readily shown to
be identical to the final result (3.61) of I. On the
other hand, the (exchange) term P, "' in this
approximation is evaluated numerically after fur-
ther analysis which we relegate to Appendix A. It
is seen there that use of an appropriate coordinate
system (cylindrical polars) reduces the ninefold in-
tegral involved in the (second term of) Eq. (3.12) to
a five-dimensional integration which we perform

. numerically. The values for the g.s. energy that we
find in this approximation are in excellent agree-
ment with those of Freeman'; and these values are
quoted later in Table I.

We have made no "exact" numerical calculations
beyond this "simple" RPA+ RPAEX(1} approxi-
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mation to the complete SUB2 scheme. Although
further calculations would not seem to be wholly
outside the scope of present computers, it is our in-
tent now, however, to develop further approxima-
tions to enable us more readily to solve the full
SUB2 (and beyond), as already discussed above. In
the remainder of this section we wiH derive in de-
tail these approximations (motivated by the much
simpler analogous Bose results) for the RPA and
RPA+ RPAEX equations, and check their accura-
cy by comparing with the known exact RPA and
RPA i RPAEX(1) results. Armed with the excel-
lent agreement that we find, as described below, we
thus proceed with confidence to include systemati-
cally more and more terms of the complete SUB2
in the later sections.

As mentioned earlier in this section, the motiva-
tion is to reduce the complexity of the fermion
equations to basically no more than that of the
corresponding boson equations treated in Sec. II by
state-averaging away the effects of Fermi statistics.
Keeping in mind, however, the important restric-
tion induced by the exclusion principle, we are led
to our basic approximation:

S2.'-„'-„(q) (Sz' '(q) &8(k „q)8(—k2, q),

S,.-„-„(q) (S,(q) }8(k„q)8(—k„q) .

(3.13)

With these replacements, the correlation energy of
Eq. (3.9) becomes

Sq(q)= —(ar, ) (e ')P (q)3' q

)& [1iS,(q)/P(q)]', (3.17)

as the state-averaged Fermi RPA equation, where
the average (X}=(X(q) }of an arbitrary function
X(k&, kz, q) has been defined as

—2

(X}—= g 8(k, q)

&& g X(k„k2,q)8(k~, q)8( —k2, q} .

functions are proportional to corresponding func-
tions e(q), which are defined in Eqs. (2.18) and
(3.9) and which measure the contributions to the

g.s. energy from different values of the momentum
transfer. These two functions are compared at
r, =1 in RPA in Fig. 3. It is seen that the. exact
fermion RPA. curve (from I) is similar to the exact
boson RPA curve (from Sec. II) for large q but
that for small q the curves completely differ. This
latter difference is so dramatic that one may naive-

ly imagine that a useful approximation cannot
arise from these ideas. Fortunately this is simply
not so, as we now explain.

Making the replacement (3.13) into the exact fer-
mion RPA equations [obtained from Eqs.
(3.2)—(3.4) by neglecting the second term on the
right-hand side of Eq. (3.3)], and summing over
the filled Fermi sea for k~ and kz, we obtain

r

J dq S2(q), (3.14)
klk2

(3.18)

with the definitions,

S2' '(q):—P (q)X(S2' '(q) },
Sg(q)—:P (q)X(Sp(q) },

and in terms of the function P(q) defined by

2
P(q) =—g 8(k, q)

N
k

(3.15)

The solution of Eq. (3.17) which remains bounded
at large q is

-0.05

1, q&2 (3.16)

and where the last result is valid in the thermo-
dynamic limit. A comparison of the energy ex-
pression (3.14) with the corresponding Bose expres-
sion (2.18}shows that S2(q) in the fermion case is
the exact counterpart of the boson Sz(q). Both

-0.10

-0.15

I

RPA((e) j

0.5 1.0 1.5 2.0 2.5

FIG. 3. Function e(q) for bosons in RPA, and the
function e,(q) for fermions in exact RPA and our two
state-averaged approximations to it, for r, =1.



5538 R. F. BISHOP AND K. H. LUHQ. MANN 26

S2(q}= P—(q)
3K

8ar, (e —') -0.01

3m. q P(q)
4ar, (e ')

3K g

8ar, (e —')
2 1/2

(3.19)

-0.02

-0.04

e, ~ A lnr, +O(r, ),
r 0

(3.20)

where the value of the constant A depends on
whether we work in the (e ') or (e) ' averaging
scheme. In both cases the values can be found
analytically and are given, respectively, by

A ((e ') ) =2m (1—ln2) =0.0622 (3.21)

in the (e ') scheme, and by

A ((e ) ') = =0.0570
16m.

in the (e) ' scheme. By comparison with I we
note that the RPA*((e ')) approximation is exact

(3.22)

As already pointed out there is a certain remain-

ing arbitrariness in our approximation, since we
might equally multiply both sides of our original
exact equation by an arbitrary function f(kl, kz, q)
before performing the average. In particular,
another possibility would be to multiply both sides
first by e, and in the case of Eqs. (3.17) and (3.19)
the quantity (e ') would have to be replaced by
(e) '. Because there are no a priori suitably com-
pelling reasons to prefer one of these schemes over
the other (although there would seem to be an in-

tuitive preference for the former) we investigate
them both further. The two approximations are
henceforth referred to as RPA~((e ')) and
RPA~((e ) ' },respectively. Both average quanti-
ties (e ') and (e) are evaluated in Appendix B
and are henceforth regarded as known functions.

It is straightforward to show that in the high-
density limit the fermion correlation energy in
RPA~ is given from Eqs. (3.14) and (3.19) by

-0.05
0.5 1.0 1.5 2.0 2.5

&/k,

FIG. 4. As in Fig. 3 for the Fermion function e,(q),
but for r, =6.

in the high-density limit, whereas the
RPA*((e) ') approximation is in error by 8.3%.
Furthermore, from Table I we note that over the
entire density range the (e ') averaging scheme is
never in error by more than 2%. Submitting our
approximations to an even more stringent test we
compare the contributions to e, from various
momentum transfers by comparing the exact e, (q)
from Eq. (3.9) evaluated with the exact RPA S2
with its approximate counterpart from Eqs. (3.14)
and (3.19). The results are shown for values r, =1
and 6 in Figs. 3 and 4, respectively. It is seen that
the relative errors in e, shown in Table I involve
no cancellations at all from different q regions, and
we feel very justified in claiming that both approx-
imation schemes are excellent, particularly the
(e ') scheme. We remark finally that we can, of
course, also write down analogous approximations
for the TDA equations (which were also solved ex-
actly in I}. We find comparable agreement for
TDA for both averaging schemes with exact re-
sults as discussed above for RPA.

From the overall excellent agreement so far ob-
tained for our fermion approximation schemes, we
feel justified in extending it to the full SUB2 ap-
proximation. In the remainder of this section we

apply our fermion approximation (3.13) as a first
step to the set of RPA + RPAEX equations (3.2)
and (3.3) to obtain:

S2 (q}=—(ar ) p'(q), (e ')[1+S (q)/P(q)]2,
g

(3.23)

S" 4
2 (q) =—(arg)

3
& (q) I q (e ') [I+S2(q)/&(q)] —(q,„2e '[1+S ( )/p( )]2) ]

J
(3.24)
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S2(q) =—(ar, } P (q)v(q)(e )
377

X [1+Si(q)/P(q)]', (3.25)
I

We note that in Eq. (3.24), a naive application of
our basic approximation (3.13) leads to a supposed-

ly state-averaged quantity Sz(q,„)which, however,
still depends on the hole-state momenta through
Eq. (3.8). It would seem consistent with our
overall motivation to perform the average in Eq.
(3.24) after the quantity Sx(q,„)has itself been ful-

ly averaged. Again, consistent with the underlying

analogy with Bose systems, we make the simplest
possible choice and replace q,„=k2 —k& —q by q
in the argument of the function S2(q). We test
this further approximation below by comparing the
resulting RPA~ + RPAEX*(1) approximation with
the exact numerical results, and we find it to be ex-
cellent. After making this further approximation
in Eq. (3.24), Eqs. (3.23) and (3.24) may be added

to yield our RPA* + RPAEX* approximation:

with

v(q)=—q
'——,'(q,„'e ')(e (3.26)

Sp', ,'„(q)=(ar, } P (q)(q,„e ')

and hence to a second-order (in powers of the po-
tential) exchange energy ez

' given by inserting Eq.
(3.27) into Eq. (3.14). Using definitions (3.18),
(3.7), and (3.8), we readily find that e'i ' may be
written as

(3.27)

Evaluation of the function (q,„e ') is nontrivial
and is discussed in Appendix C. We remark only
that it must ultimately be evaluated numerically,
and that its evaluation must be handled with great
care (for reasons discussed below}. Henceforth, we

regard it as a known function.
It is interesting to note that the first-order

iterate of Eq. (3.25} in powers of the potential (or
equivalently about the zeroth-order solution S2 ——0
appropriate to the high-density limit r, ~0 so long
as the terms under discussion do not diverge} leads
to a first-order exchange contribution $2,„to S2 ofN&)

dq - - 1 1
e2 ——

5 2 dki f dk2 8(ki, q)8( —k&, q),16~ q ki ql q(ki k2+q
(3.28}

e2 ——ln2 — g(3)(b)

2

=0.048 36 . (3.29}

As a check on our numerical integration of the
function (q,„e ') from Eqs. (C3) we have
evaluated ez

' numerically by inserting Eq. (3.27)
into Eq. (3.14) and performing the integral by nu-

merical quadrature. By comparison with the exact
result (3.29) we find a value e2 '-0.048 34.

Before we proceed with a fuller discussion of the
RPA~ + RPAEX~ equations (3.23)—(3.25), we
point out that the exchange contributions to the
g.s. energy are extremely sensitive to any approxi-
mations made in their evaluation. We have al-

ready seen that our approximation is exact for the
second-order exchange energy ez '. By contrast, in
an earlier discussion of the exchange corrections to
the RPA, Hubbard, ' working in a Green's-

which is the exact result given by Gell-Mann and
Brueckner, " and evaluated analytically by Onsager,
Mittag, and Stephen' as

(q„e ) 3(2ln2 —1)

(e —') q o 8(1—ln2)
(3.30)

whereas the corresponding value in the Hubbard
approximation is unity.

Before evaluating the g.s. energy arising from

function (dielectric) formalism, proposed the ap-
proximation of replacing q,„by a state-averaged
value of (q +1) ', whereas in our scheme the
analogous replacement is clearly

q,„~(q,„e ')/(e ') as may be seen from Eq.
(3.26). Since our approximation is exact for e2 ', it
is of some interest to compare the two expressions,
which we do in Fig. 5. Although the Hubbard ap-
proximation leads to a value of e2 '-0.036 [c.f. the
exact value (3.29)], it is seen that the error in the
momentum distribution is even worse than this
value might suggest. While the Hubbard approxi-
mation underestimates the contribution to the
correlation energy from values of q & 1, it very

seriously overestimates the contributions from very
small values of q. The difference is most drastic at

q —+0, where it can be shown
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(q +1)
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FIG. 5. Present state-averaged approximation

(q,„e ') /(e ') to the exchange Coulomb potential

q,„compared to the corresponding Hubbard approxi-

mation (q +1)

X [1+S2(q)/P(q)]

approximation (3.25) we may make one last check
of our approximation scheme by comparing with
the exact RPA+ RPAEX(1) results of Eq. (3.12}
discussed above. The analogous RPA*
+RPAEX*(1) results obtained in our Fermi-

averaging scheme described above derive from

iterating Eq. (3.25) once, but now about the RPA*
solution Si to Eq. (3.17) as the zeroth-order

iterate. Inserting the resulting first-order iterate

into Eq. (3.14) we obtain the correlation energy in

the RPA~ + RPAEX~(1} scheme as

8
J dq P (q)(e ')v(q}

might imagine iterating this equation further,
around the RPA* solution. Since this doubtlessly
leads to a rapidly converging result, it seems
reasonable that the error involved in the full
RPA* + RPAEX~ solution should be of the same
order as that obtained from Eq. (3.31) discussed
above.

Finally, the correlation energies corresponding to
the full RPA~ + RPAEX~((e ')) scheme of Eq.
(3.25) are given in the last column of Table I, and
in Fig. 6 we show the corresponding momentum
distribution e, (q) in comparison to the same quan-

tity in the RPA*+ RPAEX*(1)((e ')) and
RPA~((e ')) schemes, at a value r, =4. From
Table I we see that the absolute value of the corre-
lation energy in the RPA*+ RPAEX* scheme is
about 8% greater than that of the
RPA~ + RPAEX~(1} scheme. As already pointed
out, the RPA+ RPAEX(1) approximation overes-
timates the effect of exchange, and from Fig. 6 we

see that this overestimation occurs for relatively
small momentum transfers only, in the range
0.3 & q & 1.6 (in units of kz as usual).

We remark finally that the RPA + RPAEX
curves in Fig. 6 have a remarkable form around

q =2, which looks almost like a discontinuity. A
similar behavior is also found for all values of r,
that we have examined, viz. , 0.1&r, &10. This
behavior is certainly not an artifact of our fermion
approximations since it occurs also for the exact
solutions of the RPA + RPAEX(1) approximation
(denoted by crosses in Fig. 6). To examine this
behavior more closely we plot in Fig. 7, for r, =4,
in the RPA~+ RPAEX*((e ')), the solution

S2(q) to Eq. (3.25), together with the separate

ar, f dq q v(q)S2 (q), (3.31) -0.01

-0,02

where S2(q) is given in Eq. (3.19). In Table I we
compare the correlation energy from Eq. (3.31) [us-
ing the RPA~((e ')) result for Sz (q)] with the
exact result from Eq. (3.12). It is seen that in the
range of metallic densities the error induced by our
fermion averaging procedure is very small. Thus
at r, =4, for example, the error is only 0.6% and
in the metallic range 1 & r, &6 it never exceeds
1.4%. In this most interesting region, therefore,
the error is even smaller than that of the
RPA*((e ')) scheme. Finally, we note that in or-
der to gain some idea of the error involved in the
full RPA*+ RPAEX~ scheme of Eq. (3.25), we

-0.03

-0.05

-0.06-

0 0.5 1.0 1.5 2.0 2.5 3.0

&/k,

3.5

FIG. 6. Function e,(q) for r, =4 in various approxi-
mations: RPA~((e ') ); RPA*+ RPAEX~(1)((e ') );
RPA~ + RPAEX*((e ') ). The crosses denote exact
(numerical) results in the RPA+ RPAEX(1} approxima-
tion.
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FIG. 7. State-averaged functions S2 (q) in the
RPA~+ RPAEX~(&e '&) approximation for parallel-

( ) t ) and for antiparallel- ( & l ) spin pairs, and for their

average Sz(q) for r, =4.

antiparallel- and parallel-spin contributions S2'(q)
and S2' obtained from it by Eqs. (3.23)—(3.25) as

S2'(q) =S2(q)/q v(q),

S2'(q) =Sr(q)[2 —1/q v(q)],
(3.32)

and which are themselves proportional to the con-
tributions of antiparallel- and parallel-spin pairs to
e, (q) [c.f. Eqs. (3.5) and (3.9)]. We see that what

appeared to be the peculiar behavior of E,(q) near

q =2 is just due to the maximum of the parallel

spin S2' at q =1.8. Both phenomena are precisely
related to the rapid decrease of the function

& qc„e '& around q =2 which can be seen from
Fig. 5, and, in fact, the slope of this function can
be shown to have a logarithmic singularity at

q =2. This behavior is yet another indication that
the "almost singular" expressions which arise due
to the singular nature of the Coulomb potential
have to be treated with considerable care, as al-

ready pointed out in connection with the Hubbard

approximation. From all that we have said it is
clear that our approximation scheme seems to han-

dle this point extremely well.
In the following sections we turn our attention

to enlarging the approximation developed in this
section, first by incorporating the ladder terms in

Sec. IV, and then in Sec. V to the full SUB2 ap-
proximation and beyond.

within perturbation theory is essential for a proper
treatment of the short-range correlations between
electrons. This is hardly surprising, since for small
distances between two electrons the Coulomb force
is strong, and it is well known in, for example, the
microscopic theory of nuclear matter or of
closed-shell nuclei, that to deal with strong forces
at small distances the closed summation of ladder
diagrams is vital. In the electron gas the impor-
tance of the ladder diagrams is reflected in the ob-
servation that the radial distribution function can
for some densities become negative for small values
of the interparticle distance, if the ladder terms are
not included. Accordingly we turn our attention in
the present section to proceeding beyond the
RPA+ RPAEX scheme discussed in Sec. III by
including the ladder terms. In I we distinguished
between three contributions to the complete ladder
(CLAD) summation [of Eq. (2.23) in I] in the
SUB2 approximation, viz. , the particle-particle
ladders (PPLAD, or simply LAD henceforth), the
hole-hole ladders (HHLAD), and the mixed ladders
(MLAD). In this section we shall deal only with
particle-particle ladders, and we denote by LAD
the corresponding contribution to our equations.

The LAD term of Eqs. (2.23) and (2.15) of I is
seen to arise in Eq. (2.10) of I from the first term
on the right-hand side of this exact equation for
S2. If all other terms on the right-hand side are
neglected, and furthermore the hole energies on the
left-hand side are replaced by their kinetic parts
only [viz. , the first term only in Eq. (2.11) of I], we
obtain the so-called Bethe-Goldstone equation:

&pip2 I
[T(1)+T(2)—&» I

T
I
vi &

& v2 I
~

I v~ & ]S2 I » v2 &A

where we have made the relevant simplifications
for an infinite homogeneous system, by putting

S~ ——0, and considering plane-wave s.p. states. It is
clear that the term in square brackets in Eq. (4.1)

is just proportional to the quantity e defined in Eq.
(3.7). Inserting the operator identity

(4.2)

IV. INCLUSION OF LADDER TERMS

It has been emphasized by many authors' in
the past that the inclusion of ladder diagrams

appropriate for a homogeneous Fermi system [ cf.
Eq. (2.8) of I, with S&

——0] into the right-hand side
of Eq. (4.1) and using plane-wave s.p. states, we
readily find that (4.1) may be written in our by
now familiar dimensionless variables as
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FIG. 8. (a) A schematic representation (for
antiparallel-spin pairs) of the LAD summation, {b) a
comparable schematic representation of the
RPA+ LAD summation, and {c)a particular diagram
that does not arise in the previous iteration scheme.

Iterating Eq. (4.1) as it stands is readily seen to
generate the particle-particle ladder diagrams. The
situation is represented diagramatically in Fig. 8(a}
for the antiparallel-spin pair only, for ease. (For
the parallel-spin pair we get the extra driving term
due to exchange antisymmetry. }

By taking other terms in the exact Eq. (2.10) of
I for S2 into account we may similarly regard
them in an iteration procedure for the resulting
equation as driving terms, generalizing the bare
first-order (direct and exchange) potential term in
Eq. (4.1b},and in this way the LAD term again
builds up ladders between the two external parti-
cles [labeled pi and p2 in Eq. (2.10) of I]. This
procedure is illustrated in Fig. 8(b) where we in-
clude the RPA terms as well as the LAD term.
We point out in passing that the RPA terms are
generated in Eq. (2.10) of I from the first term in
square brackets in each of the second and third

lines of the right-hand side, and from the first two
terms in square brackets on the fourth line. Mere-
ly to remind ouselves of the iteration scheme we
have in mind in Fig. 8(b), the role of the RPA
terms as driving terms is indicated by labeling
them S2 in distinction to the variable S2 in the
LAD term on which we iterate; although other-
wise, of course, S2 =S2 in this equation. Perform-0 ~

ing this iteration it is clear that, since the labels p&

and pz appear in the first and second position in
the bra state of each of the RPA terms, hence
ladders can never be built up from the single rung
corresponding to the potential V(13), V(23), and
V(34) in these terms in Eq. (2.10) of I. Thus a di-
agram such as that in Fig. 8(c) can never arise
from this iteration procedure, and the reader
should have no trouble in convincing himself that
any other iteration procedure of the RPA+ LAD
equation (gained by making another choice for
which terms are first held constant as driving
terms and which varied in the iteration) also does
not lead to its inclusion. However, if as we have
argued, the ladders generated by the LAD term are
important, then we must expect that diagrams
similar to that shown in Fig. 8(c), which also are
contained in a class comprising comparable
ladders, are also important. Furthermore, it is pos-
sible to show not only that the diagram of Fig. 8(c)
is not generated in RPA + I AD approximation,
but that it is contained nowhere in the SUB2 ap-
proximation to Eq. (2.10) of I, where Ss and S4 are
set at zero. It is apparent that such terms are only
included when S3 and S4 are themselves properly
included. Crudely speaking, one effect of the
proper inclusion of the three- and four-body terms
S, and S4 in the full Eq. (2.10) of I will be to re-
place the bare potentials V(13), V(23), and V(34)
in the above-mentioned RPA terms by the
"dressed" quantities V(13)+2(13), V(23)%'z(23),
and V(34)%2(34), respectively. However, an added
complication which arises is that whilst in the
SUB2 approximation only two-body energy denom-
inators [c.f. Eq. (3.7)] appear, the inclusion of S3
and S4 leads to the appearance of real three- and
four-body energy denominators. Thus, for exam-
ple, the horizontal bar marked in Fig. 8(c) cuts
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three particle-hole pairs and leads in the coupled-
cluster formalism, as in the usual Goldstone for-
mulation of perturbation theory in terms of time-
ordered diagrams, to a three-body energy denomi-
nator appearing in this term. We note that this is,
in fact, sufficient reason for this diagram to be
generated only in the three-body equation. (By
contrast we also note that whereas other terms in
Fig. 8(b) involve, for example, the simultaneous ex-

citation of four or more particle-hole pairs, these
arise from a SUB2 approximation, and as such are
automatically included in the coupled-cluster
framework in a "generalized time-ordering" (g.t.o.)
sense for Goldstone perturbation theory. In turn
this always leads to a factorization in terms of
two-body energy denominators only. The interest-

ed reader is referred to Ref. 4 for a fuller discus-

sion of this g.t.o. aspect of the coupled-cluster for-
malism, and how it leads to this so-called
phenomenon of "upward factorization of the ener-

gy denominators" ). Finally we note that it can
rigorously be shown that the inclusion of S3 and

S4 leads to partial diagram summations which jus-
tify the above replacements V—+ V+& in the RPA
terms of SUB2 approximation, but only to the ex-

tent that two further conditions are fulfilled, viz. ,
(i) the complications due to three- and four-body

energy denominators can be neglected, and (ii) the
function S2 implicit in %2 [see Eq. (4.2)] is ob-

tained by solving the Bethe-Goldstone equation
(4.1). It cannot by contrast be shown by perturba-
tion theory arguments that it is legitimate to com-

pute the S2 involved in the replacements V~ V%'2

from the self-consistent solution to the full two-

body approximation.
Summarizing our considerations so far, we have

been led to two versions in which ladders can be
introduced in our formalism. The first version is
dictated precisely by the philosophy behind the
SUB2 approximation (with S3 and S& put to zero),
and has the advantage of being completely sys-

tematic in the sense that it includes all particle-
particle ladder terms which can be computed at a
two-body level (involving no three- or four-body

energy denominators). If ladders are important,
however, then diagrams like that shown in Fig.
8(c) should also be important and it seems incon-
sistent to exclude them. The problem with our

X [1+S,(13)], (4.3)

with our coupled-cluster identity [c.f. Eq. (2.8c) of
I],

qi3(123) = 1+S2(12)+S2(23)

+Si(13)+Si(123), (4.4)

in the case that particle 2 is far from particles 1
and 3 in configuration (r) space. The functions
S2(12) and S2(23) are then both small and we have

3
—[1 +S2( 13 )][1 +S2( 12) +S2(23 )] ~ (4.5}

If we assume that 4'3 is correct in this limit, a
comparison of Eqs. (4.4} and (4.5) leads in this lim-
it to the relation,

S3(123)=Sg(13)S2(12)+S2(13)Si(23).

(4 6)

We now use this result in the term T2, for exam-

ple, which represents the second line of the right-
hand side of Eq. (2.10) of I by first transforming
the whole equation to configuration space, which
just amounts to replacing the particle labels p& and

p2 by the configuration-space labels r i and rz.
This term then becomes

second version described above and which does in-
clude them, is not with condition (i), which ought
to be fulfilled at least to a first degree of approxi-
mation. Rather, it is condition (ii) which leads to
a serious problem in introducing a subsidiary
(Bethe-Goldstone) S2 in which the very important
RPA sceening effects are not included. Finally,
therefore, to address this problem, we present
below a heuristic argument which does not appeal
to higher-order equations, for replacing this subsi-
diary Bethe-Goldstone S2 by one which is the
currently best available self-consistent solution of
our full two-body equation. This final scheme we
then denote as the third version for introducing
ladders.

In order to motivate this third version, we com-
pare the following Jastrow-type cluster expansion
ansatz,

3 ~ P 3 ( 123 ) =[1 +Si(12)][1 +Si(23)]

T2—= g (rir2v
~
V(13)[Si(23)+S2(12)+S3(123)]

~
viviv)~, (4.7)

and we shall consider "proving" our result only in the limit that r& and rz are widely separated. Iri this
case, since V(13) is small unless particle 1 is close to particle 3, the term in square brackets in Eq. (4.7) will
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have relevance only when particle 2 is far from both particles I and 3. We may then use the result (4.6) to
show that in the limit that

~

r i
—r2

~

—+ 00,

T2 Q ( ri~2v
I
V(13)%'2(13)[S2(23)+S2(12)]

I
&i&2v)& (4.8)

which is our desired result for this term. An analogous result clearly also holds for the term Ti, which
represents the third line on the right-hand side of Eq. (2.10) of I, by the obvious symmetry between T2 and

Ti under interchange of particles 1 and 2. Finally, an analogous consideration of S4 in the limit of particles
1 and 2 far apart but with particles 3 and 4 close leads to the relation,

S4(1234)=S2(34)[S2(13)S2(24)+S2(23)S2(14)+Si(123)+Si(124)]

+%'2(34) IS2(13)S2(14}[1+S2(24)+Si(23)]+S2(23)S2(24) I [1+S2(14)+S2(13)]J

+ ISi(34)[Si(13)+S2(14)+S2(23)+S2(24)]—Si(134)—Si(234)] . (4.9}

Whereas the first term in Eq. (4.9}gives precisely the result required for the term T4 which represents the
last two lines of Eq. (2.10) of I, namely in the limit

~

r i —r2
~

~ oo,

T4~ i g ( r ir2»'
I
V(34)%(34)[Si(13)S2(24)+S2(23)S2(14)+Si(123)+Si(124)]

I »v2» )A
VV (4.10)

the second and third terms in Eq. (4.9) gives an extra contribution which we ignore. Having thus motivated
these results in the limit

~

r i
—r2

i
~ ao, we now define our third version of including ladders to be where in

the RPA terms of Eq. (2.10) of I, the three operators V in the second, third, and fourth lines of the right-
hand side are replaced (for all separations) by the respective operators V+2= G, the so-called G matrix. In
this third version the resulting G matrix is thus computed from the self-consistent solution Sz to the full
equation; whereas in the second version G is replaced by Gao, computed from the solution to the Bethe-
Goldstone (BG) equation (4.1).

In the remainder of this section we now derive explicit expressions for our three versions of including
ladders in the state-averaging Fermi approximation of the preceding section. We start with the first version
which is simply the SUB2 equation in the RPA+ RPAEX + LAD approximation. According to Eqs.
(2.15)—(2.20) and (2.23) of I, we have in this approximation

S2.'z'
k (q)= (ar, ) —— [1+2f-„(q)][1+2f k (q)]

[1+2fi, , (q-)1[i+2f i, ,(q..)]
qex

r

—(ar, )(4m) —J 3 S&. i, i, (q ')8(ki, q ')8( —k2, q '),1 dq' 1

2n q —q' (4.11)

where we have used the definitions (3.4)—(3.8).
In order to make fuither progress with Eq. (4.11) it seems almost inevitable that we are led to make the

familiar approximation of replacing in the LAD term the 8 functions of Eq. (3.6) by their angle aueraged-
values,

0, q(1 —k
8(k, q)~8(k, q)=8(1—k)X [(k+q) —1]I4qk, 1 —k &q (1+k

1, q&1+@ .
(4.12)
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Applying now the fermion approximation already described to Eq. (4.11) and carrying out the angular in-

tegrations leads to

S2 (ql= —(ar, ) P (q&(
—))[1+Sz[q]/P[q)] [q —5 (q,, e '][e '] ']

«s 1 ~, , q+q' P (q, q') ~]&&

nq e o q —q' p2(q')

where the function P (q, q') is defined by

P(q, q')= —+8(k,q)8(k, q') .
k

(4.13)

(4.14)

The explicit evaluation of P(q„q2) is straightforward, although tedious, and we quote only the final result.
Since it is clear from the definition (4.14) that p(q „qz)=P(qz, q] ) it is sufficient to consider only the case

qi &q2. We find

P(qi, q2)=p(qi), «q] &qz

where P(q) is given by Eq. (3.16), and

(4.15a)

P(qi qz)= [ ~s +(1——q])A4 + zq2A4++ 3 (q]+q& —6q]+4)A3
16qrq

+ —,qi(3 —q])Ap++(q]+q2 2q])A2 —+2qi(l —qi)&2 1 0&qi &qua&2 (4.15b)

with the functions A„- defined by

~.-'—=~.-'(q],qz) —=q]+(q]+qi —2)"e(q]+qi —2) . (4.15c)

It is readily seen that without making the angle-averaging approximation of Eq. (4.12), it would have been

vs difficult to have brought the LAD te~ into rmdliy computable fo~. Fortunately this approximation

would not seem to introduce much further inaccuracy into our final equations. It has certainly been very

weil tested in its application to the Bethe-Goldstone equation (4.1) for nuclear matter, ~s and there is no

reason to expect it not to be as excellent an approximation here. The fermion approximation itself is also

thought not to introduce a larger error for the LAD term than that found in Sec. III for the RPAEX terms,

where we could explicitly compare with exact results. Henceforth, we refer to Eq. (4.13) as the first version

of our RPA* + RPAEX* + LAD'(],'e ')) approximation.
In order to write the explicit forms of our second and third versions to include ladders, by comparison of

Eqs. (4.1), (4.11), and (4.13) we are led to define a G matrix in our state-averaged scheme by

—2 —]

+ f dq'q'ln ' S ' '( ')
irq o q —q' p2(q')

(4.16)

The equation defining our second version is then given in terms of this G matrix by
2

Si(q) S2(q)
S 2' '(q)= —(e ') G ' '(q)+[G" (q) —& G " (q., )] 2 +n n ]2 ex p( ) p( )

(4.17}

0') 0'2
where GBo (q) is the corresponding Bethe-
Goldstone G matrix, which by comparison of Eqs.
(4.1'},(4.13), and (4.16) is seen to be the solution of
the equation

S2' '(q)=-(e-')G ' '(q), (4.18)

with the G matrix still defined by Eq. (4.16).
Similarly, the equation defining our third version
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of including ladders is identical to Eq. (4.16) but
with the replacement GqG, ~G", aqd in this case
Eqs. (4.16) and (4.17) are solved self-consistently.
Concerning Eq. (4.17) we mention that the
antiparallel-spin Bethe-Goldstone G matrix Gqo
appears even in the equation for parallel-spin pairs
(crt ——o2) since these G matrices replace a direct po-
tential vertex V in the simpler RPA+ RPAEX
Eqs. (3.23) and (3.24). It is also clear from a com-
parison of Eqs. (3.24) and (4.17) that in the ex-

change term of Eq. (4.17) we have been forced to
make the replacement

&e 'q..'& &e '&(q..'& (4.19)

Since no error is then incurred in the leading term,
we are confident that any extra error incurred by
the replacement (4.19) in the derivation of Eq.
(4.17) is very small.

We note, finally, before presenting results ob-
tained from Eqs. (4.13), (4.16), and (4.17) that the
numerical solution of these equations is not entire-

ly trivial, due to the logarithmic singularity in the
integral kernel. We found it convenient to subtract
(and add exactly elsewhere) from both integrals the
quantity

q i
'

S2 (q) dq'ln
P (q, q) ~~&~ ', q+q'
P'(q) q —q'

(4.21)

in order to regularize the integral terms, and where
the upper limit q =100 was used in most of our
numerical work. The momentum-variable meshes
used were typically as follows: 129 points in the
range (10,2.4), 65 points in the range (2.4,6.0), 33
points in the range (6.0,12.0), and 33 points in the
range (12.0,100). In each of these subintervals
Romberg integration was used. Where necessary
for very accurate results, as reported in Sec. II
from solving Eq. (2.34) in the limit r,~ ao, for ex-
ample, we have also made an end-point correction
to take care of the range (100,oo) using the ap-

which is certainly not a very good approximation.
In fact about a 5%%uo error would be incurred in the
correlation energy at a density r, =4 if the same
replacement were made in Eq. (4.16) in evaluating
the first term on the right-hand side of Eq. (4.17).
In order to keep the approximation as accurate as
possible, we insist that at least first-order (in

powers of the potential, or where GaG is replaced
by V) is treated exactly, and hence the exchange-
momentum argument q,„ofthe exchange G matrix
in Eq. (4.17) is chosen to be

(4.20)

propriate asymptotic form for S2(q).
We give results in Table II for the correlation

energy in the metallic density range, using both our
first and third versions of incorporating particle-
particle ladders in this RPA' + RPAEX*+
I AD*((e '

&) approximation, and results are
shown at r, =4 for the state-averaged quantities
S2'(q) and S2'(q) in Figs. 9 and 10 for the first and
third versions, respectively. We do not present re-
sults for the second version since we found that in
this approximation S2 becomes unphysical by tak-
ing complex values at small momenta q (e.g. , for
r, =1 and 6 this occurs, respectively, in the ranges
0&q&0. 1 and 0&q&0.4). This unphysical
behavior clearly confirms our earlier belief that
this version could be seriously in error since (low-
momentum RPA) screening of the additional
ladder interactions is neglected.

A comparison of the entries of Table II with
those for the RPA' + RPAEX*((e '

&) approxi-
mation from the last column in Table I shows that
the first (SUB2) version of incorporating particle-
particle ladders gives a substantial reduction in the
absolute value of the correlation energy, whereas
this effect is somewhat less in our third (self-
consistent G-matrix) version. A more revealing
comparison can be made from Figs. 7, 9, and 10.

—0'l 0'2
Whereas the curves for S2 are virtually identical
in the low-momentum regime for Figs. 7 and 9
only up to q =0.15, the curves of Figs. 7 and 10
are virtually identical for q &0.3. Since
RPA + RPAEX effects dominate in the long-range
limit (and become exact as q~0) it is clear that
the less sophisticated SUB2 version of ladders ar-

tificially obscures the form of Sz' ' for small q.
The general form of the curves in Figs. 7, 9, and
10 shows this same statement to hold for inter-
mediate values of q as well, up to q =1.6. For
values q ) 1.6, the SUB2 and self-consistent G-
matrix versions of ladders give nearly identical
values of S2', and again both are expected to be
essentially exact in this short-range limit.

We have seen that not only our second version
of ladder incorporation has to be discarded, but the
same is also true of our first (SUB2) version. The
inclusion of ladders reduced S2' in magnitude by
about 30%%uo at q =1 (for r, =4), and this very large
effect at what is still a relatively small value of q is
simply not treated adequately in the SUB2 version.
It is clear that both the long-range difficulties (at
small q) and the short-range difficulties (at large q)
are very adequately dealt with (by RPA and any
version of ladders, respectively) insofar as they are
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TABLE II. Comparison of correlation energies in the RPA~ + RPAEX*
+ LADs((e ')) approximation for different versions of including the ladder term.

Version
rs

SUB2 —0.1110 —0.0777 —0.0608 —0.0503 —0.0430 —0.0376
Self-consistent G matrix —0.1132 —0.0810 —0.0646 —0.0543 —0.0471 —0.0417

independent of each other. However, the strong
"interference" of both effects at intermediate mo-
menta forces us to go beyond SUB2 approxima-
tion, to take at least some three- and four-body ef-
fects of Ss and S4, respectively, into account. We
have motivated our self-consistent G-matrix ap-
proach (which henceforth we refer to as the LAD
version, since the first and second versions are now
discarded) by using a Jastrow-type cluster decom-
position of Ss and S4 which, on the one hand,
should be asymptotically exact in the long-range
limit and which, on the other hand, provided us
with the extra terms which obviously allow for a
more complete treatment of the short-range effects.

Before proceeding in the next section to examine
the other terms we have neglected so far in the ex-
act equation for Sz, we finally mention that in this
and following sections we present results only for
values of r, up to 5 or 6 because our numerical
procedures simply failed to find solutions for Sz
for lower densities in these approximations. In
practice we found that the iteration schemes em-

ployed to solve the equations [e.g., Eqs. (4.16) and
(4.17}]no longer converged at these low densities.
At present we simply do not know whether these
(explicitly nonlinear) equations describing the ap-

oos- /r, =s[

proximations do not have (physically acceptable}
solutions in this density range, or whether the
problem lies with a need for a more sophisticated
method of solution.

V. STATE AVERAGING OF THE FULL
SUB2 EQUATION AND FINAL RESULTS

Until now we have studied the fermion SUB2
equations by taking into account only the RPA
and RPAEX terms (in Sec. III), and later incor-

porating the LAD term (in Sec. IV) as well. We
have argued that whereas the RPA term mainly
determines the very important long-range (screen-

ing) behavior of the two-body cluster function S2,
the LAD term is responsible for the short-range
behavior and indeed an accurate description of this
limit even involves us in including some higher-
cluster effects. Having studied these two limiting
cases in some depth we intend now to consider all
of the remaining terms of the SUB2 equations
(2.15) of I that have so far been neglected. We
remind the reader that these remaining terms are
the following: (i) the Fock hole potential (FHP)
and (ii) the (self-consistent) hole-potential (HP)
terms which, in the absence of a Hartree hole-
potential term for the neutral Coulomb system

/
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-0.15-
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FIG. 9. As in Fig. 7, but in the RPA*+ RPAEX*
+ LAD~((e ') ) approximation, and using the first

(SUB2) version of incorporating ladders.

pp5- Ir, =4

ot

0.05
I

Sp ~
-01- I

/

-0.15- /
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FIG. 10. As in Fig. 9, but using the third (se1f-

consistent G-matrix) version of incorporating ladders.
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considered here, together generate the fully self-
consistent complete hole-potential (CHP) insertions
on the hole lines, (iii) a similar complete particle-
potential (CPP) term which generates the fully
self-consistent self-energy for particle states, (iv) a
hole-hole ladder (HHLAD) term, and (v) a mixed
ladder (MLAD) term which, together with the
particle-particle ladder (LAD) term already con-
sidered, generate the complete ladder (CLAD) set
of diagrams for two-particle and two-hole scatter-

ing within the many-body medium, (vi) the PHA

and (vii) the PHB terms which generate two sorts
of particle-hole ladder diagrams, and finally two
extra exchange terms (viii) EE1 and (ix} EE2,
which are required by Fermi statistics to preserve
the overall antisymmetry of S2.

We start by considering the PHB term, given by
Eq. (2.25) of I. Using Eq. (3.13), and summing
over the hole momenta k~ and kz in accord with
our state-averaging approximation, this term be-
comes

rPHB= —2 p X V(k2 —k)(S2 (
I
k+ q k2

I
) ~8(k& k+ q k2)

klk2 k

x8(k), q)6( —k2, q)8{kg—k) . (5.1)

The problem that remains is how to deal with the state-averaged S2 occurring in Eq. (5.1), since there are
clearly many ways of performing this average. In a very similar situation in Sec. III, in connection with the
RPAEX term [and see Eq. (3.24)], we found it a very successful approximation simply to average the vector
argument of the function S2. The success of this approximation seems to be linked to the fact that the sum-
mation (hole-momentum} variables are thereby replaced by just those values where the two-body potential V
occurring in the expression becomes largest, and hence most important. The situation in Eq. (5.1) is seen to
be very similar, in that replacing the vector (k+ q —k2) by its hole-state average value q, yields just the
same result as by substituting in it the value kq ——k where the potential V(kq —k) in Eq. (5.1) becomes
singular. Performing this average yields the simple approximation,

kF

tp~a —2 g, g V(k2 —k)(S ' '(q))8(k~, q)8( —k2, q) ~

k)k2 k

(5 2)

Turning our attention now to the FHP term, from Eq. {2.21) of I, we find that our usual state-averaging fer-
mion approximation yields precisely the same expression as Eq. (5.2) but with the opposite sign. Hence, in
this scheme, the PHB and FHP contributions completely cancel, and the analogy with our treatment of ex-
change terms in Sec. III leads us to believe that this is probably a very good approximation.

The other term belonging to the complete hole potential (CHP) which contributes in the case of the elec-
tron gas, namely the HP term, has already been briefly discussed in Sec. II in connection with the low-
density limit and in analogy with the comparable Bose gas. We saw there that for low densities the HP
term is of major physical significance, whereas for metallic densities it gives only a relatively small effect.
However, we include it in our final expressions for the SUB2 equations given below.

We next turn our attention to the PHA and CPP terms given, respectively, by Eqs. {2.24} and (2.22) of I.
Again, in our basic fermion approximation, and summing over k~ and k2, these two terms are readily
shown to be given by

rp~&—= —2 g V{k,—k)(S,' '(q))6(k„q)6( —1 „q)8(—k, q)
kik2k

(5.3)

k~

tcpp= —2 g g V(k —k2+q)(S2' (p))[1+2f &(k —k2+q}]6(k&,q)6( —k2 q),
k)k~ k

(5.4)
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where the function f has been defined in Eq. (3A).
We see that for both small q and for large q, the
contribution tripp is small compared to tpHA. For
small values of q this follows from the relation,

limf z (q)= ——,
q~0

(5.5)

which is a straightforward consequence of the
RPA equations for Coulomb potentials, and for
large values of q from comparing the arguments of
the potential V in the two expressions. Compared
to the PHA term we therefore expect the CPP
term to give a small contribution for all momen-
tum transfers. The effect of both terms is to in-
crease the binding energy

~
e

~

. Before dealing fur-
ther with these two terms it proves convenient to
turn our attention to the remaining ladder terms in
the complete ladder (CLAD) summation for
particle-particle and hole-hole interactions within
the many-body medium.

The incorporation of the hole-hole ladders
(HHLAD) and the mixed ladders (MLAD) is by no
means trivial; and preliminary investigations indi-
cate a relatively large repulsive contribution arising
from small values of the momentum transfer q.
However, we have already seen in Sec. IV that in
the case of particle-particle ladders (LAD) an ap-
preciable extra effect (i.e., not contained in SUB2
approximation) is obtained by including such
ladders also within the RPA terms themselves [i.e.,
to include diagrams like that of Fig. 8(c)]. These
extra effects are contained in the exact equation
(2.10) of I for S2 by the coupling terms to S3 and

S4, and we have argued that a proper treatment of
this interference between the RPA and LAD terms
for intermediate momentum transfers is important
for good quantitative agreement. However, this in
terference of RPA and ladder effects is expected to
be even stronger for HHLAD (and MLAD) terms
than for the particle-particle ladders. The reason
for this is quite simply that particle-particle
scattering inside the many-body medium must, by
the exclusion principle, lead to virtual intermediate
states outside the Fermi sea, and hence these LAD
terms are important mostly for large-momentum
transfers. Conversely, the HHLAD terms describe
hole-hole scattering for which the intermediate
states are constrained to lie within the Fermi sea,
and hence these terms are important for quite
small-momentum transfers. We thus see that the
HHLAD (and MLAD) terms are of importance

precisely in the same low-q regime where RPA
terms dominate. By analogy with our treatment in
Sec. IV we thus expect it to be of even more im-
portance for these HHLAD and MLAD terms,
than it was for the LAD terms, to include the
respective higher-order ladder effects from the cou-
plings to S3 and S&. Unfortunately, these higher
terms are not able to be incorporated in a similar
fashion to the method used in Sec. IV, but instead
one has exp/icitly to consider three- and four-body
equations. Since this is clearly beyond the scope of
the present study, we shall assume that the "bare"
potential V which appears in the SUB2 terms
HHLAD and MLAD is "screened" by these higher
coupling effects, such that the large repulsive con-
tribution to the g.s. energy from mainly small
values of q, is shifted to a much smaller (still
repulsive) contribution at intermediate values of q.
Furthermore, we take the remaining repulsive
screened HHLAD and MLAD contribution into
account by assuming that it cancels the contribu-
tion of the CPP term discussed above. We stress
that although these considerations seem to us to be
physically well motivated and reasonable, they
remain at present largely untested.

The only terms in the SUB2 equations not so far
discussed are the extra exchange terms EE1 and
EE2 of Eqs. (2.26) and (2.27) of I. Our by now

standard approximation scheme immediately leads
to an exact cancellation in the parallel-spin contri-
butions from both terms. A partial cancellation of
a similar kind also occurs for antiparallel pairs.
Since both EE1 and EE2 terms individually are ex-
pected to be small for metallic densities, we feel
confident in neglecting these terms altogether. We
note, however, that in order adequately to include
these terms, so that this assertion may be rigorous-

ly tested, one must perform a rather complex mul-

tidimensional integration.
From our arguments so far, we therefore con-

clude that our final approximation for the fermion
two-particle two-ho—le function Sz differs from
(our third, self-consistent G-matrix version of in-

corporating particle-particle ladders in) Sec. IV
only by the inclusion of the PHA and HP terms in
addition. In our familiar fermion state-averaging

—EJ )0'p
scheme the final equations for S2 in this
RPA* + RPAEX' + LAD' + PHA' + HP'((e '))
scheme, in which the LAD term is incorporated in

our self-consistent G-matrix version, become

—cT )c72
Sz (q)=—

2

' G ' '(q)+ [G"(q)—5~,~,G "(q,„)] 2 +
e(q)

(5.6)
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with
r

I

e(q)=(e '} ' — —(ar, ) dq' ', S (q')
0 P (g)P(iI')

1 1 k)+kq
(ar, ) f dkiki f dk2kzln — 8(ki, q)8(k2, q) .

0
1 2

(5.7)

We remind the reader that the angle-averaged

quantity 8(k,q) was defined in Eqs. (3.6) and

(4.12},the "energy denominator" e by Eq. (3.7),
and the exchange momentum transfer q,„by Eq.
(3.8). Furthermore, the state averaging implied in
the definition of (e ') and in the averaged quan-

tity q,„defined by Eq. (4.21}was first defined in

Eq. (3.18). The state-averaged quantities S2 (q),
P(q), and P(q, q') were defined, respectively, in

Eqs. (3.15), (3.16), and (4.14). Finally, the state-

averaged G-matrix, G ' '(q) was defined in Eq.
(4.16).

The contributions of the HP and PHA terms are
included wholly in the second and third terms,
respectively, on the right-hand side of Eq. (5.7),
and are hence seen in our approximation to "renor-
rnalize" the "bare kinetic energy denominator" e.
We note that the only additional approximation
made in including these two new terms was to re-

place the 8 functions by their angle-averaged

values 8, just as in the evaluation of the I AD
term. We also mention that the RPA* + HP' ap-
proximation of Eq. (2.34},used in Sec. II, is now
finally explained.

The final results for the correlation energy, ob-
tained by numerical solution of Eqs. (5.6) and (5.7)
in the metallic-density regime, are shown in Table
III, and the corresponding state-averaged St func-
tions are shown for both parallel- and antiparallel-
spin pairs in Fig. 11 at a value r, =4. By way of
comparison we also show in Table III some results
obtained by Ceperley and Alder, using the
Green's-function Monte Carlo (GFMC) method

I

which is believed to give essentially exact results
for the lowest eigenvalue of the many-body
Schrodinger equation. The agreement with our re-
sults is both striking and very gratifying, but the
obvious question presents itself as to whether our
relatively simple calculation (which "only" involves
solving two nonlinear one-dimensional integral
equations) can really be expected to give the exact
eigenvalue of the many-body Schrodinger equation,
in this density regime, with an accuracy of about
1%. In order to attempt to answer this question
we must address ourselves to three separate issues,
viz. , (i) the adequacy and accuracy of the fermion
state-averaging approximation, (ii) the adequacy of
omitting and adding terms to the SUB2 approxi-
mation, and (iii} the adequacy of the SUB2 approx-
imation itself.

Concerning point (i) we may review again the
evidence in favor of our fermion averaging pro-
cedure being very accurate indeed. Thus we point
out again the very striking agreement shown in

Fig. 6, where the crosses, which denote exact nu-

merical solutions in a particular approximation
[RPA + RPAEX(1}],are seen to lie almost exactly
on the corresponding curve which represents the
results of our fermion averaging procedure in this
same case. In Sec. III it became clear that this re-

sult, for the RPA+ RPAEX approximation, is
valid for metallic densities. The corresponding er-

ror for the correlation energy may be seen from
columns 6 and 7 of Table I to be precisely of the
same order as the error we found in Table III for
our final results in comparison with the GFMC re-

TABLE III. Final results for the Fermi correlation energy.

Calculation

CCa
GFMCb

—0.123
—0.121

—0.0917
—0.0902

—0.0751 —0.0644 —0.0568
—0.0563

'From the present coupled-cluster calculation using Eqs. (5.6) and (5.7).
From the Green's-function Monte Carlo calculation of Ceperley and Alder (Ref. 25).
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FIG. 11. As in Fig. 7, but in the RPA*+ RPAEX*
+ LAD*+ PHA~ + HP~((e ') ) approximation of

Eqs. (5.6) and (5.7), using the self-consistent G-matrix
version of incorporating ladders.

suits. However, the approximation in the RPA
+ RPAEX case has been put to a much more

severe test in Fig. 6 as far as point (i) is concerned,
since we test here the adequacy of the averaging
scheme for the entire momentum distribution and

not just for its integrated value, the correlation en-

ergy. We have argued in Secs. IV and V that the
fermion averaging approximation is expected to be
comparably accurate for the additional terms con-
sidered; but it must be admitted we have no de-

tailed checks here, and it could easily happen that
a piling up of various small errors could lead to a
final error appreciably larger than 1%.

Concerning point (ii) above we would only wish

to emphasize that the agreement observed in Table
III was certainly not achieved by a process of
omitting and adding terms until the most favorable
result was obtained. In fact, our final results re-

ported in Table III were obtained (as final results)

before we learned about the GFMC results. The
only other point that we wish to reiterate concern-

ing the adequacy of omitting and adding terms to
the SUB2 equations, is that the omission of the
hole-hole and mixed particle-particle and hole-hole
ladder (HHLAD and MLAD} terms is without

doubt the prime candidate for the largest remain-

ing source of error.
Finally, concerning point (iii) on the adequacy of

the SUB2 approximation itself, we remind the
reader of our previous discussion in Sec. II of I.
We also recall that certain aspects of the coupling
to the three- and four-body clusters described by

S3 and S4, and which goes beyond SUB2, have
also been incorporated in our final results. Thus in

Sec. IV we made explicit use of this coupling in

our third and final self-consistent G-matrix version
of incorporating particle-particle ladder effects,
and in Sec. V we made implicit use of the coupling
in our discussion of the effects of hole-hole and
mixed ladder terms. That other effects of the cou-
pling to S3 and S4 are unimportant in the metallic-
density regime, must also strictly speaking be listed
as a final assumption.

It is clear that too many sources of error are in-
volved for us to answer more quantitatively the
question posed initially. We believe that although
it is possible we may have been fortunate in obtain-
ing. such accurate final results, the actual physics
of the electron gas in the metallic-density regime is
nevertheless very well represented in our calcula-
tion, in that we believe that no important effect
has been neglected. A detailed comparison of Figs.
9—11 shows the corresponding curves to be
asymptotically the same for large q. This clearly
means that for large q, on the one hand, the func-
tions S2 are determined by ladders and exchange
effects only. The influence of the RPA terms
(which themselves dominate at small q, on the oth-
er hand) is in fact seen to become unimportant
somewhere in the range 1.5 & q & 2.0, as indeed is
also seen from Fig. 6 of I. It is precisely this
feature which enables Lowy and Brown ' to inter-
polate quite successfully between the short- and
long-range limits. Our whole treatment aimed to
treat these basic features with some care, and we
dealt separately with RPA and exchange effects in
Sec. III and with ladder effects in Sec. IV. Our
emphasis and motivation here has been first of all
to treat the interference between these effects, in
the intermediate-range region, as accurately as pos-
sible. A measure of this interference was first seen
in Fig. 6 as the difference between the curves la-
belled RPA* + RPAEX* and RPA*+
RPAEX'(l}, and in Sec. IV again the considera-
tions of interference between the short- and long-
range phenomena were instrumental in forcing us
to go beyond SUB2 and to include the relevant
contributions from the coupling to higher clusters.
We finally note that the eventual remarkable suc-
cess of our treatment must properly be placed in
the context of the previous discussion.

VI. CONCLUSIONS

Just as we saw in I that the coupled-cluster for-
malism could most successfully be applied to the
high-density one-component electron plasma, we
have now seen in the present work that the formal-
ism works equally well for both the charged Bose
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plasma and for the electron plasma at low and in-
termediate densities. In particular for metallic
densities we obtained the striking result of about
1% agreement for the correlation energy with re-

cent, essentially exact, calculations of the GFMC
type. Since we do not wish to repeat the discus-
sion of these results already given at the end of
Sec. V, we limit ourselves now to a brief examina-
tion of Secs. II—IV.

Based on an analogy with boson systems, results
were presented in Sec. II for the low-density elec-
tron plasma for a particularly simple approxima-
tion which included only RPA and hole-potential
(HP) effects. We saw explicitly that our intrinsi-
cally fluidlike and everywhere translationally-
invariant approach could nevertheless provide a
good (at least qualitative) description for both bo-
sons and fermions of the low-density solid phase,
as well as for the high-density gaseous phase. We
believe that the coupled-cluster formalism has
hence provided us for the first time with a unified
description of the entire density range at zero tem-
perature. It is interesting to point out that histori-
cally the HP term was essentially included for the
first time by Bethe, Brandow, and Petschek in
the context of a perturbation-theoretic treatment of
the nuclear matter problem. In that context the in-
clusion of the HP term may be thought of as in-

corporating the effect of the phenomenological
single-particle nuclear shell-model potential in a
self-consistent microscopic calculation based on the
two-body potential as input. Similarly, in the
present context we may view' the HP term as tak-
ing into account an average self-consistent one-
body potential, in which the electrons may solidify
as the kinetic energy vanishes. In nuclear matter
calculations the incorporation of HP effects has
often been criticized on the grounds that a similar
average potential for particle states (outside the
Fermi sea) is much harder to calculate and for that
reason usually neglected. Indeed in the present
case also, the consistent inclusion of such an addi-
tional comparable particle potential term would
certainly entail the solution of at least a three-body
equation and hence certainly take us outside the
SUB2 scheme. [As a lengthy aside we note that by
the comparable particle potential here we do not
mean the factorizable SUB2 particle-potential in-
sertions of Eq. (2.22) and diagrams 1(j)—1(1) of
Fig. 1 of I; but rather the one obtained from the
factorizable hole-potential insertions given by Eq.
(2.21) and diagrams 1(g)—1(i) of Fig. 1 of I, by
"time reversing" the external hole lines into parti-

cle lines. We note also that there is no real lack of
symmetry between particles and holes here, since
just as the comparable particle potential to the fac-
torizable SUB2 hole potential is itself a nonfactor-
izable potential that arises only when couplings to
higher subsystems are considered, so the same is
true when the roles of particles and holes are re-
versed. ] To return, this is in fact the main reason
why for the low-density fermion case we did not
try to develop a quantitatively better approxima-
tion than the very simple one considered in Sec. II.
It is clear on all counts that at low densities the
coupling of S2 to S3 and S4 may not be neglected,
but what we wish to stress most is that the simple
RPA+ HP approximation already contains the
essential physics of this region, and gives the
correct qualitative and analytic behavior expected
of a solid.

The state-averaging approximation developed for
the case of Fermi statistics in Sec. III has also
proved to be very successful. In essence it reduces
the complexity of the fermion equations to that of
the corresponding boson system. We estimate that
in the range of metallic densities where its accura-
cy seems to be of the order of 1%, it allows a
reduction in computing time of a factor of at least
100. Furthermore, it even becomes asymptotically
exact in the most interesting physical limit, namely
as q approaches zero.

In Sec. IV one feature of central importance
which was stressed was the interference at inter-
mediate separations of the long-range RPA screen-
ing effect with the effects of the short-range
particle-particle ladders. It was this feature which
f&rst forced us to go beyond the SUB2 approxima-
tion and to take into account some important ef-
fects of the coupling of Sz to S3 and S4. We
adopted the viewpoint that within our SU82 ap-
proximation scheme, S3 and S4 may be regarded as
essentially free functions, and we determined them
by a comparison of our three- and four-body sub-
system wave functions with a wave function of the
Jastrow cluster type. This latter cluster wave func-
tion was assumed to be of the correct form in cer-
tain asymptotic cases, namely for large distances
between various particles in the subsystem under
consideration. Although this procedure seems to
be entirely legitimate, it is nevertheless not entirely
satisfactory since it ought to be possible to make
the needed connection wholly within the coupled-
cluster formalism. Attempts to prove the neces-
sary relations about various asymptotic properties
of the subsystem amplitudes S„as exact statements
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have so far only been partially successful. For the
interested reader we add only that the required
theorems are related to a well-known theorem con-
cerning the asymptotic behavior of the liquid-
structure function, which is itself difficult to prove
formally. We hope to be able to report elsewhere
on this matter at a later date.

In conclusion we add only that we have reported
here on a microscopic calculation of the one-
component electron plasma which seems to our
minds to be more ambitious than any previous cal-
culation in that it incorporates more (and indeed if
pressed we would go further and say all) of the
relevant physics of the problem. At the same time
it is clearly also more successful than any compet-
ing calculation, insofar as the high-density limit is
exact; the agreement in the metallic-density regime
with the essentially exact GFMC results is second
to none, and the low-density limit is at least

analytically that of a solid and not a fluid. All in
all, we could hardly wish for a more satisfactory
outcome. It would seem likely that a careful appli-
cation of the method employed here to fermion
systems other than the one-component plasma
might also offer equally promising results.
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APPENDIX A EVALUATION OF P,

From Eq. (3~ 12) we have

RPAEx(1) 3 d q d
gg 1 gR 2

&c
q2 r r

~

)~)+zz
~

~(q a)+q a'2)

where

[)r —2ql &I
(A2)

It is now useful to specify the vectors a 1 and )c2 in a cylindrical polar coordinate system with axis along the
diction of q and origin at the center of the two Fermi spheres implied by the integration region I . Writ-

ing thus ~; =(x;,p;, g; ) with i = 1,2 and )r. =p; sin9;, a;~ =p; cos8;, )r;, =x;, we may rewrite Eq. (A2) as

RPAEx(1) f ~f d g ( )f d-g~( )( + )

X [(x)+x~) +p)+p2+2p)p2cos(()) —t12)1 (A3)

It is straightforward to show that the integrations over the region r can be expressed as

f d~) f de, f+dx, .fp, dp. , +e(2—q) f d8; f . dx; f p;dp;, (A4)

where

p-+, =[1—( —,q+x;) ]'~

and

g, —=
i

—,q+ I
i

(A5)

(A6)

With the use of Eqs. (A4) and (A5) the two angular integrals in Eq. (A3) can now trivially be performed,
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since from I the function gR(a. ) =gR (x;q) does not depend on the coordinates p or 8. Making the trivial
substitution p; =—y; leads to the final results

PPAEx(1) f d Z (
4 0

where

1 + + ~1 "2 gR(x1 q)g'R(x2 q} 1Z(q)= f— dx, f dx, f dy, f dy,
' ', q&2

(A7)

(Aga)

] & &i+ &+ &+i

Z(q)= —f dx( f dy +f dx( f dy(
Q ~2+ Q+ x2+f dx2 f dy2+ f dx2 f dy2

where

gR(x(;q}gR(x2;q)X,q&2
X1+X2 F' (A8b)

and

+
( +)2

F:(x1+x2)—+2(x1+x2) (y(+y2)+(y1 —y2)

(A9)

(A10)

From Eqs. (3.56e), (3.57), and (3.19) of I, we also have

gR(x;q) =exp —— dt
x " lnE(t;q)

t +X

where

(Al 1}

2urs
E(t;q)=1+ G(t;q) (A12)

and

r

G(t;q)=1+ (1—4q +t )ln, +t tan
( —,q —1)'+t'

—,q+1—tan-' (A13)

Further evaluation of Eqs. (A7) —(A13) is performed by numerical integration.

APPENDIX B: EVALUATION OF (e) and (e

(Bl)

we have
' —2

Using Eqs. (3.7), (3.16), and (3.18}and proceeding to the usual thermodynamic limit wherein sums over
momentum states may be replaced by corresponding (dimensionless) integrals,

k

(e) = P(q}
3

By writing e in the form

fdk, fdk2 q (k( —k2+ q)e(k„q)e( —k2, q) . (B2)
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e = —,[(k,+q) —kl+(k2 —q) —k2], (83)

the integral in Eq. (82) can be written as the sum of two terms in each of which the integrations on k| and

k2 are decoupled. Furthermore, by the substitution k1 m —k2 in the second term, both terms are seen to be
identical, and hence we find

4m

3 fdkl[(k|+q)' —k f]e(1—k|)e(
~
k)+ q ~

—1)fdk28( —kg, q) . (84)

(85)

In Eq. (84) the integral on kz can be immediately performed using Eqs. (81) and (3.16). The integral on k 1

in Eq. (84) is most easily performed by writing the product of e functions as

e(1—k, )e(
~
k, +q ~

—1)=e(1—k&) —e(1—k&)e(1—
~
k|+q

~
) .

Under the substitution k|—+k|———k& —q it is.clear that the second term on the right-hand side of Eq.
(85) is even, whereas the remainder of the integrand in the k& integral in Eq. (84) is odd. Hence we find,

—1

(e)= P(q)
4m'

3 fdk, (q'+2k, q)e(1 —k )

and trivial evaluation leads to the final result

(e) =q2/P(q) .

Again from Eqs. (3.7), (3.16), and (3.18) we have
—2

(86)

(e ') = P(q)
3 fdk) fdk2 e(ki, q)e( —k2, 'q) .

q (k, —k, +q)
(87)

Making the simple change of variables,

1k1= K1—
2 i~ k2 K2+ 2 q

enables us to rewrite Eq. (87) as
—2

(e ')= P(q)
3

(88)

(89)

where I is the integration region indicated in Eq. (A2). Choosing the same cylindrical polar coordinate sys-
tem as in Appendix A, and using Eq. (A4), readily enables us to rewrite Eq. (89) as

P(q) f 2mqN(x&)dx& f 2nqN(x2)dx2
L L X&+Xp)

(810)

where the integration region L is specified by

0&x & —,q+1, q &2x&L~' )

2q —~ &x & 2q+1, q&2
(811)

and in this region, the function N(x) is given by

1

x, 0&x &1——,q, q &2

N(x) = ~ [1—( —,q —x)2]/2q, 1 ——,q (x (1+—,q, q (2
[1—( —,q —x) ]/2q, —,q —1(x( , q+1, q)2. —

(812)
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The integrals in Eq. (810}can be further simplified by using the trivial identity,

oo 2X ) 2X2

xi+x2 ' (xi+y') (x2+y')

to rewrite Eq. (810) as
—2

(813)

P(q) 2irq f dy 6'(y;q), (814)

where

G(y;q}=f dxN(x}
X +y

(815)

Direct evaluation of Eq. (815), using Eqs. (811) and {812}gives the explicit result for the function 6 (y;q)
quoted already in Eq. (A13), and which is valid for all values of q. Equation (814) is not susceptible to fur-
ther analytic reduction, but is readily evaluated numerically.

APPENDIX C: EVALUATION OF (q, e ')

In Sec. III where we considered the inclusion of exchange effects we found it necessary to evaluate the
average (q,„e ') of the expression

q,„'e '= t(k, —k, +q)'[q (k, —k, +q)]I (Cl)

where the average is to be taken according to definition (3.18). Passing to the thermodynamic limit by use
of Eq. (81) and making the same change of variables as in Eq. (88) readily yields the expression,

(q,„'e ')=- P(q) 1 1-dK ) -dK2 (C2}

where the integration region I has been defined in Eq. (A2). Comparing Eq. (C2) with Eq. (Al) enables us
to use the same procedure for the evaluation of Eq. (C2} as already developed in Appendix A. We quote
only the final result,

and

Q+ Q+ yi' y2 p
(q,„e ') =[—', P(q)] —f dxi f dx2 f dyi f dye, q &2

q &- &- o o xi+x2

r

(q,„e ') = [—', P(q)] —f dxi f dyi+ f +dxi f dyi

(C3a)

(C3b)
Q y2+ Q y2+ p —1/2

X f dx2 f dye+ f dx2 f dye, q)2
0 y2- (xi+x2) '

where Q+, y;+-, and F are defined in Eqs. (A6), (A9), and (A10). The further evaluation of Eqs. {C3) is per-
formed numerically.
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