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Electron removal energies in Kohn-Sham density-functional theory
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Talman and co-workers have presented a realization of the exact Kohn-Sham density-

functional theory, neglecting correlation. From their numerical results we conclude that
the occupied orbital energy eigenvalues of the local-spin-density (LSD) approximation for
exchange and correlation are close to the exact Kohn-Sham orbital energies (apart from a
constant shift), but that the latter do not accurately predict the removal energies of tightly-
bound electrons in atoms, molecules, and solids. For the calculation of these removal ener-

gies, we propose an add-on, single-shot self-interaction correction (SIC) to the LSD orbital

energies, based on a simplification and representation-invariant transformation of the origi-
nal SIC method. This correction s relationship to the Dyson mass operator is briefly dis-

cussed.

I. INTRODUCTION

Self-consistent-field theories of atoms, molecules,
and solids commonly identify the energy needed to
create a hole of quantum numbers —a, —o (where
the spin 0 = t or t} with —e«, where e is the en-

ergy eigenvalue of orbital f (r} This id. entifica-
tion is made, not only in band-structure calculations
for solids, but also in calculations of the local densi-

ty of states

p(r, p)= g ~

l(t (r)
~

5(E—g )

for clusters and disordered systems. The hope is
that a single solution for the ground state will yield
all the electron-removal energies, without recourse
to a separate calculation for each excited state
(which may lack the symmetry of the ground state).

Kohn and Sham' and von Barth and Hedin have

proposed a self-consistent-field theory which in

principle yields the exact ground-state energy E,
electron density n, and spin densities n, and n„
where

n(r)= f dip(r, e)=n, (r)+n, (r) .

The orbitals are solutions of the equation (in atomic
units where ttt'=m =e = I)

[
—

2
V +uetf([n„n,];r)]g«(r}=ra g«(r),

but no theorem identifies the orbital energies e«
with physical removal energies. The effective po-
tential is

u, tt =u,„,( r ) +u ( [n ];r ) + u„,( [n „n,];r ),
(4)

where U,„,is the external or nuclear potential,

(5)

is the direct electrostatic potential, and v„,is the
exchange-correlation potential. In practice the
latter must be approximated, e.g., in the local-spin-
density (LSD) approximationt'

u„,'" =p„,(n, (r),n, (r)},

where p„,(n „,n „)is obtained from calculations for
the uniform electron gas.

In actual calculations for atoms and solids, the
LSD approximation yields rather good total ener-
gies and electron densities. The LSD values of

e«reaals—o good for the removal energies from
valence bands in metals, ' and the LSD errors of
the aforementioned properties are small enough that
one may hope they will be corrected by recent im
provements in the approximate density functionals.
(Some calculations7 for valence and conduction
bands of metals and semiconductors, using im-
proved density functionals, have recently been re-
ported. ) However, the LSD values of —e serious-
ly underestimate the removal energies from tightly-
bound orbitals as well as the energy-band gaps in
crystals.

Recently a self-interaction correction (SIC) to the
LSD approximation has been shown to yield orbital
energies for atoms which may be interpreted as elec-
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tron removal energies. The formal justification for
this interpretation has been presented elsewhere;
here we will simply observe that in SIC (Ref. 8) as
in many other self-consistent-field theories (e.g.,
Kohn-Sham and Hartree Fock )

where E is the total self-consistent-field energy in
eluding relaxation of the other orbitals in response
to the change of occupation f«of orbital ao. But
in SIC, E varies almost linearly with f«(see Fig. 1

of Ref. 10), making the electron removal energy
-hE= —e for b, f = —1.

In SIC the exchange-correlation potential is orbi-
tal dependent. ,

v„,' ' (r)=p„,(n„(r),n, (r)) —u([n~ ];r)
—p„",(n, (r),0),

where n~~ is the orbital density:

(r)=f ~g (r) ~'.

The original SIC calculations were for atoms, but
the method has been extended to rare-gas and ion-
ic" crystals as well.

Since the exact Kohn-Sham exchange-correlation
potential must also, like Eq. (8), be self-interaction
free, the hope has been rekindled that the exact
Kohn-Sham orbital energies might closely approxi-
mate physical removal energies. With regret we
have come to the conclusion that this hope is in
vain, and that the unphysical LSD orbital energies
closely approximate the exact Kohn-Sham values,
apart from an overall constant shift of all the occu-
pied levels (roughly equal to the LSD self-
interaction of the least-bound electron). In other
words, a local effective potential of the Kohn-Sham
type can yield the correct density but not also the
correct removal energies; only an orbital-dependent
(or nonlocal) potential can do both. Our conclusion

is based on the "exchange-only" approximation,
which is justified for tightly bound orbitals where
correlation is negligible compared to exchange.

Talman and co-workers' have constructed an ex-
act realization of the Kohn-Sham potential for
"exchange-only" in atoms, i.e., they have found the
local potential v,ff(r) whose orbitals yield an abso-
lute minimum of the Hartree-Fock total energy
functional. (The Hartree-Fock orbitals, which arise
from a nonlocal effective potential, yield a lower
minimum, but only by less than 50 ppm.

'
) In

Table I we compare the exact Kohn-Sham orbital
energies' e~~ with LSD approximate values and
with removal energies, all calculated for
"exchange-only" in the Ar atom. (Similar results
were found for other open- and closed-shell atoms. )

The removal energies hE
~ „twere taken from

Hartree-Fock total-energy differences, calculated
with relaxed Hartree-Pock orbitals. ' The ground-
state Hartree-Pock orbital energies, ' which by
Koopmans's theorem equal the unrelaxed total ener-

gy differences b, E~
~
„„„,~, are also displayed. Note

that when the LSD orbital energies are all shifted

by the same constant, the results are close to the ex-
act Kohn-Sham orbital energies, but the latter do
not accurately predict the removal energies. From
these results we can conclude in particular that
LSD will give an accurate approximation to the oc-
cupied Kohn-Sham energy bands in solids, but this
band structure will not predict the correct removal
energies.

By construction the Talman' effective potential
tends to zero as r~oo, like the LSD, SIC, and
Hartree-Fock potentials. However, the exact
Kohn-Sham potential whose orbital energies satisfy
Eq. (7) tends to a small positive constant in this lim-
it. ' The exact Kohn-Sham orbital energies e„Iof
Table I were obtained from the Talman' orbital en-

ergies by adding 0.05 hartrees, a value chosen to
make e„l=LE„Ifor t—he least-bound occupied or-
bital. This condition is an exact one' within the

TABLE I. Orbital energies e„~and electron removal energies hE„g
~
„~for the Ar atom.

HF: Hartree-Fock (Ref. 13). KS-X: Exact Kohn-Sham for "exchange only". (Ref. 12).
LSD-X: Local spin-density approximation for exchange only. (All energies in hartrees. )

Orbital
nl

1s
2s

2p
3$

3p

118.60
12.31
9.56
1.28
0.59

HF
~Eni lrei

117.42
11.94
9.15
1.22
0.54

KS-X
nl

114.40
11.10
8.68
1.04
0.54

113.71
10.73
8.38
0,83
0.33

LSD-X
—e„I+0.21

113.92
10.94
8.59
1.04
0.54
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exact Kohn-Sham theory.
The Kohn-Sham formalism with its orbital-

independent local effective potential is very con-
venient for self-consistent calculations. In particu-
lar, if we compare the LSD and original SIC
schemes for a crystal, we find that only in the form-
er scheme do we have a periodic effective potential,
Bloch's theorem, strict orbital orthogonality, etc.
We therefore ask whether there is some simple way
to take the —e of a Kohn-Sham self-consistent
calculation (e.g., in the LSD approximation) and
correct them to yield physical removal energies.

In Sec. II we present a simplification and
transformation of the original SIC method which
does just this, and display the results. Section III
connects our new expression to the Dyson mass
operator and summarizes our conclusions.

II. SIMPLIFICATION OF THE
SELF-INTERACTION CORRECTION

In this section we will consider the self-
interaction correction for an atom, one of the build-

ing blocks of real systems. We will reduce the SIC
method by approximations to its simplest viable
form and then generalize the result to solids and
other extended systems of interest.

We begin by noting that the self-exchange correc-
tion of Eq. (8) is simply

—lM„'(n (r),0)=1.241n ~ (r) .

The self-direct correction is —u ([n ];r) where

u([n];r)= U[n]
5

5n(r)

and

(10)

, n(r)n(r ')
(12)

(13)

(14)

The direct electrostatic energy U[n] also has a
local-density approximation'

U[n]=1.085N f d rn (r),
where N= f d rn(r) Equation (1.3) is exact for
exponential densities n(r}=ae ', and a good ap-
proximation for many other spherically symmetric
densities. The functional derivative from Eq. (11),
applied to Eq. (13), tells us that

u([n];r)= —,(1.085)N r n'r (r)

+ —,(1.085)N ' f d r'n (r ') .

The second term on the right-hand side of Eq. (14)
is just a constant —it represents the attempt of the

local approximation to imitate the long-range
(er. NIr) behavior of u([n];r) .We now evaluate
(14) for the orbital density na (r), for which N= 1,
and combine this with Eq. (10) to estimate the com-

plete self-interaction correction to the potential seen

by orbital co".

—0.206n' '(r) —p,,'(n (r),0}

——,(1.085) f d r'na (r') . (15)

while it leaves each LSD orbital g (r) unchanged.
We have tested Eq. (16) in numerical calculations
for atoms; it works about as well as the full, origi-
nal, self-consistent SIC orbital energy (see Table II).

To see if the self-interaction correction to the
LSD effective potential is really constant in space,
we have plotted it [from Eq. (8)] for the copper
atom in Fig. 1. Over the radial extent of the orbital
to which it belongs, the variation of this potential is
indeed small.

In atoms the LSD and SIC orbitals l(t (r) are
closely similar, but this is not true in crystals, where
the LSD orbitals are extended Bloch functions
while the self-consistent SIC orbitals are localized
on one or a few atoms. In crystals, Eq. (16) may
continue to work for SIC orbital densities, but can-
not work for LSD orbital densities. The latter are
periodically extended over the volume 0 of the
crystal and yield a correction of order 0 ' which
vanishes as Q~ oo.

In order to correct the LSD orbital energies in
both atoms and extended systems, we seek an add-
on correction similar to Eq. (16) with the following
properties: (a) Like Eq. (16), it should scale as an
exchange energy [i.e., as y under the scale transfor-
mation n (r)~y n (yr)], and it should in this

way measure the degree to which orbital g (r) is

The first term here is the small residue of the can-

cellation of two larger terms. It tends to cancel fur-

ther against —lM,"(n (r), 0), the negative of the
correlation potential which is also small. Neglect-

ing these terms, we are left with a self-interaction

correction to the effective potential which is con

stant in space but orbital dependent. This correction
shifts each unphysical LSD eigenvalue into better
agreement with the physical removal energy,

SIC~Eao
l rel eaa

= —e ~0.723 f d rn a(r),
(16)
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SIC—&nl Eq. (17)Eq. (16)

TABLE II. Experimental electr
Ni3

a e ectron removal energies hE
i3d 4s, compared with LSD d ( f. )o

„i
~

«~ (from Ref. 16) in atom'

suits of Eqs. (16) and (17). (All ener ies
'

orbital energies e„land with the re-

ment th
energies in hartrees. To facilitat

A
l io do lre a ivistically usin the ex

ll energies were averaged over the

'
g e expressions summarized in Ref. 19.

over t e magnetic quantum numbers. )

Orbital ~ exeter
nl

~
re)

—E l

1s

2$

2p
3$

3p
3d
4s

306.8
37.63
32.2
4.59
3.01
0.62
0.330

300.2
35.92
30.97
4.05
2.61
0.34
0.215

307.8
37.24
32.64
4.44
2.99
0.68
0.321

306.0
37.21
32.28
4.65
3.11
0.65
0.360

306.1

37.18
32.21
4.45
2.98
0.63
0.313

-9
0

COPPER VS IC

COPPER VS IC

(a)

concentrated close to the nuclei. (b) I.ik
u e a sel~-interaction correction d

mainl oy on the orbital density n (r) =
'

n, epen ent

ao = u

ost on the local density of t (

(1), evaluated at e=e . 0th
s ates p r,e) of E .

t'ies are su ested b
t er desirable proper-

gg y the Dyson mass operator dis-

c. : 'c' he correction should vanishcussed in Sec. III: c T
or an electron as
E. (16 i

gas of uniform density. (d) U 1'k

q. ), it should be expressible as the ex
ni e

1 fo tli o bit 1e or ita g~ (r) of a representation
invariant object such as n(r) or r e .r or p r, e). (Both are
invariant under unitary transformations which mix
degenerate occupied orbitals, such as t

p waves, and free sphericallane

'
ns among traveling plane waves t ds an ing

1

'
a waves in a uniform

e ectron gas. )

A simple expression which realizes th
ties is

ese proper-

-1.0-

R
5

FIGG. 1. Orbital-dependent self-interac
'

units). The radial extent of each orbital ~r'+r, is indicated by a horizontal bar.
(a) Inner core orbitals, (b) Ou
tais.

a s, uter core and valence orbi-

&&f d ~~ ( )~
V'p(r e)

p( l,e) e=&LSD—~a~

(17)

w ere u is a unit vector in the direction of Pn(r).
In this expression all the required in

taken dir
uire inputs may be

en directly from the outputs of an LSD calcula-
tion.

~I«r' belongs to a closed subshellIf the orbital (r
of an isolated atom, then ( ) bp r, e ecomes [apart
from the constant factor (e)=rpe = 6(e —e, )]the
spherical average of thee orbital density
n r =

~ ~ 2)
~

. For practical reasons, all SIC
calculations to date have employed this spherical
average. The constant 0.104 in E .
to m

in q. (17) was chosen
o make (17) identically equal t (16) fua o or the special
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case of hydrogenic ls orbitals.
Equation (17) has in fact only been "derived" for

1s orbitals, just as the LSD approximation is only
derived for an electron gas of slowly varying densi-

ty H. owever, the actual range of validity of each is
far greater. We have tested Eq. (17) in numerical
calculations for 16 atoms ranging from hydrogen to
mercury; in comparison with experimental values'
for the electron removal energies hE

~ „~from all
occupied orbitals, it agrees as well as the full, origi-
nal, self-consistent SIC orbital energy —e~' . Typi-
cal results for the nickel atom are shown in Table
II.

Equation (17) may also be applied to crystals. It
is instructive to consider the deep core orbitals,
which in LSD are tight-binding Bloch orbitals [i.e.,
a=n', k in Eq. (17)]. For these orbitals the orbital
density

is distributed periodically over all X, atoms in the
crystal, so the correction of Eq. (17) is size eon

sistent, i.e. independent of N, . Note that previous
versions of SIC for crystals" have had to appeal
to a special, localized orbital representation in order
to avoid a size-consistency problem. Note further
that if we did decide to use localized Wannier func-
tions (i.e., a=n, l) in Eq. (17), the orbital density
would be ~P„~(r)

~

on one atom and zero else-

where, and we would obtain the same self-

interaction correction that was found in the Bloch
representation. The physical analog of this invari-

ance is the fact that a long-lived deep core hole
would remain localized on one atom for a long time
on the microscopic scale, and yet become delocal-
ized over longer times as it hopped to neighboring
atoms.

Since Eq. (17) clearly works well for deep core
levels, we also expect it to improve the LSD
description of all the occupied bands in rare-gas and
ionic crystals. Indeed, preliminary linearized aug-
mented plane-wave (LAPW) calculations for LiC1
using Eq. (17) display about the same improvement
in the fundamental band gap that was found in a
much more elaborate implementation" of SIC.
However, it is not clear what to expect for the
valence electrons in semiconductors and especially
metals, where the sharp atomic levels have been
smeared out into broad bands. Perhaps p(r, e)
should be replaced by

@+5/2' f dpe(r, )e,

where 6 is the bandwidth. Preliminary estimates

for metallic copper and nickel, using the renormal-
ized-atom orbitals, suggest that Eq. (17) seriously
overshoots the correction needed in the valence
band, and that this overshoot is reduced but not el-
iminated by energy smearing of p(r, e). To clarify
this situation, LAPW band-structure calculations
with realistically delocalized orbitals are currently
being set up.

III. DYSON MASS OPERATOR
AND CONCLUSIONS

1 4
u Vp(r, e)

p(r, e) e=ReE
(19)

for tightly bound electrons in systems built up from
atoms. Thus the mass operator X~ differs from the
LSD effective potential by a negative self-
interaction correction proportional to
u Vp(r, e)/p(r, e), which is roughly constant over
the radial extent of the atomic shell to which it be-
longs (as a consequence of the piecewise exponen-
tial' character of the density in an atom). As a re-

sult, the quasiparticle orbital X (r,E) is about
equal to the LSD orbital g«(r), but their respective
orbital energies are different. Equation (17) then
emerges by regarding X~ —v,(f as a first-order
perturbation on the LSD solution. Equation (17)
also makes sense for a spin-unpolarized electron
gas of uniform density n, where Vp(r, e)/p( r, e) =0
and where the exchange-correlation piece of the
mass operator is known' to be close to
p„,(n/2, n/2)5(r —r ').

We summarize our conclusions as follows: (1)
Apart from a constant shift of all the occupied lev-

Dyson's quasiparticle equation' is

, V X«(—r,E)

+ f d r'X (r, r ',E)g (r ',E)

=e (E)X (r,E), (18)

where E and e«(E) are complex. The real part of
E which minimizes ~F- e(E)

~

is —the energy
separation from the ground state of an approximate
eigenstate of the N 1 particl—e system, ' corre-

sponding to a hole of quantum numbers —a, —0..
Comparison of Eq. (18) with Eqs. (3)—(6) and

(17) suggests the identification

ReX =5(r —r ')
r

)LSD( )
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els, the LSD orbital energies are close to the exact
Kohn-Sham orbital energies. Further refinements
of the Kohn-Sham exchange-correlation potential
can only produce small changes in the orbital ener-

gy differences between occupied levels (2. ) The ex-

act Kohn-Sham orbital energies will not accurately
describe electron removal energies from tightly
bound levels. However, improved removal energies

may be found from an LSD calculation by means of
the add-on correction of Eq. (17). This correction
may be thought of as a size-consistent self-
interaction correction or as an approximation to the
difference between the Dyson mass operator and the

LSD effective potential. It may be applied to all
the orbitals of an atom, and to the more tightly
bound orbitals in molecules and solids, with no need
to appeal to a special, localized orbital representa-
tion.
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