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Two contributions to the Green’s-function formulation of electronic-structure calcula-
tions are described. We show that a seemingly minor change in the definition of the
relevant perturbed and unperturbed Green’s functions eliminates several problems that
have hampered development of the formalism. Defining the Green’s functions in terms of
matrices, rather than differential operators, substantially simplifies the description of many
systems, including displaced atoms, transition-metal impurities in non-transition-metal
hosts, and chemisorbed atoms. In particular, our methods provide a natural solution to the
so-called cluster-embedding problem. The second development we describe pertains to the
summation over the occupied states of a system that is required in order to construct quan-
tities such as the total energy and the electron density. We show that these summations,
which are an essential part of self-consistent calculations, can be represented as contour in-
tegrals and that certain displacements of the contour lead to a significant simplification of

15 NOVEMBER 1982

the calculations.

I. INTRODUCTION

Electronic-structure calculations allow us to
understand the macroscopic properties of polyatom-
ic systems in terms of the microscopic states avail-
able to the electrons. The approximate treatment of
exchange and correlation provided by the local-
density approximation®? has now been tested on a
variety of systems, and the success of these calcula-
tions for relatively small systems>* (and systems
such as elemental solids™® that are effectively small
because of their high symmetry) justifies the expec-
tation that electronic-structure analysis can be use-
fully applied to more complex problems, such as
atoms”® and small molecules’ interacting with solid
surfaces. For these larger systems it is frequently of
greater interest to know the change in the electronic
structure associated with a change of atomic posi-
tion'® or the presence of additional atom(s)’ than it
is to know the electronic structure per se. This pa-
per is concerned with the development of a theoreti-
cal technique that makes possible the direct calcula-
tion of such changes. Examples of the types of
physical problems for which this kind of analysis is
appropriate are the following: solid surfaces, va-
cancies, voids, and impurity atoms in solids, the
chemisorption of atoms and molecules on solid sur-
faces, the formation of molecules from atoms, and
the effects of atomic displacements in molecules
and solids.

This paper describes contributions to the scat-
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tering-theoretic or Green’s-function method!!—3!

of electronic-structure calculations. This method
permits the study of a complicated system by
representing it as a relatively simple system plus a
difference. Perhaps the simplest example of a sys-
tem to which the Green’s-function approach is well
suited is that of a substitutional impurity in an oth-
erwise perfect crystalline solid. Such a problem
lacks the translational symmetry that underlies the
study (energy-band theory) of perfect crystals. The
Green’s-function approach renders the substitu-
tional-impurity problem tractable by regarding it as
a perfect crystal plus a spatially restricted differ-
ence.

Many important problems are characterized by
the fact that only a small portion of a large system
is relevant to the physical phenomena we are trying
to understand, the region surrounding a substitu-
tional impurity in a crystal, for example. This fact
has led to efforts to study such systems by approxi-
mating them as small finite systems. For example,
crystal surfaces are frequently studied by approxi-
mating the (effectively) semi-infinite crystal as a
“slab” of the material several atomic layers
thick,’2~3* but infinite in both directions parallel to
the surface. Similarly, point defects, such as substi-
tutional impurities, have been studied with the use
of clusters of several atoms to simulate the (effec-
tively) infinite system.*~%’ Such procedures do not
exploit the relative simplicity of the perfect crystal
to which they are related, and they are also hin-
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dered by the fact that individual electronic states

are affected over a much larger range than are

properties, such as the total energy or electron den-
sity, that reflect the combined effect of many indi-
vidual electron states. The Green’s-function ap-
proach exploits this distinction, whereas the cluster
and slab approximations do not. The degree of
symmetry loss associated with different types of
perturbations is of great practical importance here.
A surface destroys translational symmetry in only
one dimension, whereas a point defect destroys it in
all three. This distinction has resulted in the con-
tinued effective use of the slab approximation for
surfaces, whereas it has proven necessary to develop
Green’s-function methods for the application of
density-functional theory to vacancies and other
point defects. For semiconductors, the work of
Pantelides and co-workers?”?® and that of Baraff,
Schliiter, and Kane?®3>%° have already brought this
development to a state of considerable refinement.

A final distinction between the Green’s-function
and cluster (slab) approaches is that perturbation-
induced effects such as surface states, and levels in
the gaps of semiconductors, are referenced to bulk
properties, such as band edges, in the Green’s-
function approach. Only with substantial effort are
such aspects of the electronic structure of the per-
fect crystal regained in the cluster (slab) ap-
proaches.®

II. MATRICES VERSUS DIFFERENTIAL
OPERATORS

This section is concerned with the precise mean-
ing of the term Green’s function as we will use it in
this paper. We begin with a single-particle Hamil-
tonian H such as that appearing in the Schrodinger
equation that must be solved in density-functional
theory,"2

Hy;=¢€9; (1)
or, more explicitly (in atomic units),
[— 3 V2 V(F)—€ 1ey(F)=0 . 2)

We approximate the wave-function solutions of Eq.
(2) by an expansion in a finite set of basis functions

ey (D)},
v=N
Yi(D)= 3 cipp,(T) . (3)
v=1

We use the symbol = in Eq. (3) in order to contrast
Eq. (3) with the formally exact relationships we

derive below. Note, however, that the imprecision
of Eq. (3) is due only to the finiteness of the basis
set {¢,(T)}; the numerical error caused by this fin-
iteness can always be made acceptably small by in-
creasing N. The expansion coefficients c;, indicate
a transformation, but not a unitary transformation,
because the functions {¢,(T)} possess no special
normalization or orthogonality properties. The de-
fining property of the expansion coefficients c;, is
their ability to diagonalize both the normalization
matrix S,,, and the Hamiltonian matrix H,, . That
is,

2 c,-",‘,Sw!cjv1=5,-j 5 (4)
'

where S, is the normalization matrix for the func-
tions {¢, (1)},

Sw= [ dPrgh(Flp D) . 5)
Similarly,
E}c,{,ercjv/ze,-S,-j , (6)
had
where

Hy= [ dreh(@[—3V+V(DlpAT) . ()

We are now in a position to define the particular
Green’s function G,,(€) that we find useful:

> (eS,,»—H,)Gryp(€) =8, , (8)

"

v

where S,,. and H,, are given by Egs. (5) and (7).
The distinguishing feature of our Green’s function
is that it is not defined in terms of the differential
operator ——%V2+ V(T); rather; it is simply the in-
verse of the matrix €S,,,—H,, . A fundamental im-
plication of the matrix approach is that the Green’s
function appropriate to a given physical problem is
not uniquely implied by the physical problem alone;
it also depends on the choice of expansion set
{@,(T)}. In the usual (differential-operator) ap-
proach a uniquely specified Green’s function is ap-
proximated more or less accurately depending on
the expansion set. In the matrix approach, defining
the Green’s functions in terms of the matrices that
arise in a particular calculation permits all the cal-
culational steps connecting the problem statement
(the matrices H,,  and S,,) to the final result to be
performed without approximation,*! thereby isolat-
ing the basis-set expansion of the wave function
[Eq. (3)] as the only approximation made in the
solution of the single-particle equations. In Secs.
III, IV, and V to follow we show that the exact (ma-
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trix) Green’s function for an approximate Hamil-
tonian has several practical advantages over an ap-
proximate Green’s function for the exact Hamil-
tonian (differential operator).

Before proceeding to that discussion, however, we
demonstrate here that the Green’s function defined
in Eq. (8) possesses the essential property of permit-
ting the convenient calculation of quantities such as
the total energy and the electron density. For the
purpose of illustration let us consider as a specific
example the quantity T, where

=3 [ &*r g} @)= 3V W()

XO(er—¢;), 9)

where € is the Fermi energy and the Heaviside
function [O(x)=1 for x >0, zero otherwise] limits
the summation to the occupied states of the system.
The expansion of each eigenstate ¢;(T) in the com-
mon basis set {@,(T)} [Eq. (3)] permits the desired
quantity T to be expressed as a trace over a density
matrix,

T=Tr{pt}= 3 pwtyy (10)
where
tyy= [ d% g}(FN— 5 V)@, (T) an

and the density matrix we want to consider is sim-
ply

Pw = ZC;CW'G(GF—G,') . (12)

Note that the expression for T in Eq. (10) does not
involve any additional approximations; Eq. (10) is
approximate only because the basis set {¢, (1)} used
in Eq. (3) is finite.

Equation (10) relates the desired quantity T to the
density matrix p,, ; what remains is to relate p,, to
the Green’s function defined by Eq. (8). That the
Green’s-function matrix can be written as

civci’:"

Gple)=3 22 (13)

i €€

can be readily verified by substituting this represen-
tation of G,,(€) into Eq. (8), and using the defining
properties of the expansion coefficients c¢;, [Eqgs. (4)
and (6)]. Equation (13) reveals that the required
density matrix is obtained from the Green’s-
function matrix by performing the following con-
tour integration:

1
pw=5= [ dzGnl2), (14)

where the contour C encloses those poles of G,,(z)
[the €; in Eq. (13)] corresponding to the occupied
states of the system. A more conventional represen-
tation of the density matrix results when the con-
tour is collapsed to the real axis.

The density matrix p,,  permits the straightfor-
ward evaluation of all the quantities required to
construct the total energy and to carry out a self-
consistent-field iteration. Note, in particular, that
the fact that the basis set is not orthonormal does
not complicate the analysis.

III. DYSON EQUATION

Many systems of interest can be regarded as only
slightly different from a relatively simple system or
as a combination of systems that are individually
simple. The great virtue of the Green’s-function
approach to electronic-structure theory is that it
permits us to exploit this relative simplicity, both
calculationally and conceptually. The theoretical
construct that provides the link between the system
of interest and the related simple system(s) is the
Dyson equation. In this section we describe the ver-
sion of the Dyson equation appropriate to the ma-
trix Green’s function defined in Sec. II. Perhaps
the simplest type of system illustrating the relative
simplicity that we want to exploit is a substitutional
impurity in an otherwise perfectly crystalline solid.
For such a system we regard the corresponding per-
fect crystal as the related simple system and use the
Dyson equation to describe the effects of replacing
one of the atoms of the perfect crystal by a different
atom. The perfect crystal is enormously easier to
study because the translation symmetry causes the
analysis to decompose into a set of independent and
quite manageable pieces.

Our objective is to construct the Green’s-function
matrix for the perturbed system (e.g., crystal with
impurity). We denote this Green’s-function matrix
by G,,(€). Denoting the Hamiltonian matrix for
the perfect crystal by H>, and that of the imperfect
crystal by H,,, we define the matrix difference
8H,, as follows:

8H,,=H,, —HS, . (15)

Of course, the straightforward subtraction of the
Hamiltonian matrices indicated by Eq. (15) impli-
citly assumes that H,,, and Hf,’vl have the same di-
mension. This one-to-one correspondence of the
matrices H,, and HJ, is the significance of the
substitutional-impurity problem as a generic type.
(We consider the other generic types in Secs. IV and
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V.) Substitutional impurities (of the same chemical
type as the host) do not introduce fundamentally
new atomic states into the system; the perturbed
and unperturbed systems differ only quantitatively,
not qualitatively. Note that the relationship be-
tween the number of atomic states and the number
of basis functions (the dimension of H,, ) is never a
precise one. For a given problem the number of
basis functions depends on the degree of precision
desired, but, for a given level of precision, there is a
general correspondence between the number of
atomic states and the size of the basis set required
for their description. This correspondence is most
explicit when atomic orbitals are used as basis func-
tions.

The subtraction of the perturbed and unperturbed
Hamiltonians in Eq. (15) brings out the first sub-
stantive  implication of the  differential-
operator —matrix distinction, namely, that the in-
dices {v} can refer to different sets of functions
{¢,(T)} in the perturbed and unperturbed prob-
lems. For cases in which the unperturbed problem
is large or infinite, it will, of course, be of great
practical importance that the matrix 86H,,. have
negligible magnitude for all but a small subset of its
indices. Within this subset, however, the functions
referred to by a given value of v can be arbitrarily
different in the perturbed and unperturbed prob-
lems. For example, if we use free-atom eigenfunc-
tions as our basis functions {@,(T)}, then the orbi-
tals associated with the impurity atom will differ
from those of the host crystal. As physically well
motivated as this basis-set freedom might seem, it is
very difficuli to wuse in the conventional
differential-operator approach. In empirical tight-
binding theory this “chemical” adaptation of the
basis set is implicit and automatic; the study of
deep traps in covalent semiconductors by Hjalmar-
son et al.*? illustrates the effectiveness of this adap-
tation in describing chemical trends. In the context
of nonempirical calculations the basis-set freedom
available in the matrix approach carries with it the
necessity of properly accounting for changes 85,
in the normalization matrix

8S,,=S,, —S2, . (16)

The definitions (15) and (16) permit us to proceed
directly to the Dyson equation relating the desired
Green’s-function matrix G,.,/(€) to the correspond-
ing and presumed known matrix G, (e) for the
perfect crystal. We use Egs. (15) and (16) to substi-
tute for €S,,.—H,,- in Eq. (8), obtaining

> [(eSo,—HY,)

+(€8S,yn —8H )]G o (€) =8, . (17)

If we now multiply Eq. (17) by the perfect-crystal
Green’s-function matrix G2, (¢) and use its defining
property

S (eSp —H )Gy (€) =8, (18)

”

v
we obtain our Dyson equation

G(e)=G%e)+G%e)(BH —e8S)G(e),  (19)

where we have suppressed the {v} indices. The
Dyson equation provides a straightforward means
of evaluating the Green’s-function matrix G,,(e)
and the density matrix p,,.. Note, however, that be-
cause the orbitals {¢,(T)} of the perturbed system
are, in general, different from their counterparts for
the unperturbed system, the expectation value of an
operator such as T considered above must be writ-
ten

T =Tr[p"°+(8p)t°+(8p)6t +p°8t] , (20)

where 8t =06t,,, is defined in complete analogy with
S8H and 8S [Egs. (15) and (16)], that is,

8ty =ty —1t0 . ' 21)

As with Eq. (16), the matrix difference 8t,, reflects
a change in the orbitals, not in the fundamental
operator.

We note that it is the fact that our formalism is
based on matrices rather than on differential opera-
tors that permitted us to use different orbitals for
the perturbed systems without complicating the
analysis significantly. In particular, we note that
the freedom to use basis functions adapted indepen-
dently to the perturbed and unperturbed systems
does not increase the dimension of any of the ma-
trices required by the theory.

A closely related and probably more important
advantage of the matrix approach concerns the
description of systems in which one or more of the
atoms is displaced. In the matrix approach the
basis functions are free to move with the atoms, so
that the effect of the atomic displacements is sim-
ply to produce small changes in the numerical value
of some of the matrix elements. The description of
the same physical effect in the usual differential-
operator formalism has two disadvantages relative
to the matrix approach. First, the subtraction of
the perturbed and unperturbed single-particle Ham-
iltonians to form the perturbation potential yields a
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very sharply varying function, due to the strength
of the single-particle potentials (even many pseudo-
potentials*®*}) in the vicinity of each atom. Second,
since, in the differential-operator approach, ma-
trices are formed (by introducing a basis set) after
the Hamiltonians are subtracted, it is not clear
whether the basis functions should be centered on
the displaced or the undisplaced atoms.>* The vir-
tues of describing the effects of atomic displace-
ments in terms of the numerical variation of matrix
elements of the Hamiltonian evaluated with local-
ized orbitals that move with the atoms was ap-
parently first pointed out by Frohlich et al.** and
emphasized later by Mitra* and by Barisic et al.*®
The importance of treating the normalization ma-
trix in the same way has been discussed by Varma
et al.*’ References 44—47 are concerned with
electron-phonon coupling.

IV. ADSPACES: INTERSTITIALS
AND CHEMISORPTION

In the preceding section we considered systems
characterized by perturbations that alter quantita-
tive aspects of the underlying atomic states, but
leave the number of states unchanged. Examples of
such perturbations are substitutional impurities (of
the same chemical type as the host) and displaced
atoms. In this section we introduce the extension of
the formalism required for the description of sys-
tems in which the number of atomic states is in-
creased in a fundamental way. In other words, we
are concerned here with systems in which the per-
turbation introduces atomic states for which there is
no natural analog in the unperturbed system. Inter-
stitial impurities and atoms chemisorbed on a crys-
tal surface are examples of this type of perturba-
tion, but perhaps the simplest example is that of a
substitutional transition-metal impurity in a non-
transition-metal host. We will therefore discuss the
required extension of the formalism as it would be
applied to the transition-metal-impurity problem,
but we ask the reader to keep in mind that the basic
idea applies to a variety of problems.

The significance in the present context of a
transition-metal impurity in a non-transition-metal
host is that, while we can regard the s and p states
of the transition metal as perturbed versions of the s
and p states of the host, there is nothing in the un-
perturbed system that corresponds to the d states.
In the differential-operator approach to this type of
problem we are obliged to synthesize the new d
states out of the high-energy states of the host.
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While this is mathematically possible it is certainly
not incisive and the price that must be paid in com-
putational effort, when this route is followed, is
considerable.’! It is this type of problem that leads
to a discussion of the number of high-energy states
(bands) of the host that must be included in an ac-
curate description of the impurity system. As Lin-
defelt and Zunger®' have correctly emphasized,
merely representing the Green’s function in a basis
set that contains the new states does not eliminate
the need for high-energy states*® of the unperturbed
Hamiltonian in the traditional (differential-
operator) approach. In the matrix approach the un-
perturbed Hamiltonian matrix has relatively few ex-
cited eigenstates, far too few in general to represent
a fundamentally new atomic state. The adspace
idea, which we now describe, permits us to intro-
duce the additional atomic states directly.

Our approach to this type of problem follows
from the demand that the basis-set expansion in Eq.
(3) be the only approximation made in the solution
of the single-particle equations. The fact that the
matrices of the perturbed problem have a greater di-
mension than those of the unperturbed problem is
accommodated by adding additional rows and
columns to the matrices of the unperturbed system.
For the illustrative example of the transition-metal
impurity, the matrix denoted in the preceding sec-
tion by €S°— HO is replaced by eS°— H®, with

(€ —€q )de' 0

o0 70 __
S -H'= 0  eS°—H°

) (22)

where S, and HY, are the normalization and Ham-
iltonian matrices of the host crystal [Egs. (5) and
(7)] and the index d denotes the d states. We can
think of €; as the energy of the atomic d state, but
it is quite arbitrary,*® because whatever we put in
the dd’ block of S° and H® is removed when we
construct the dd’ block of the difference matrices
8S and 8H. The crucial property of eS°—H? is
that it be easily invertible to obtain the unperturbed
Green’s-function matrix for the Dyson equation
[Eq. (19)]. We see that the eS°— H® defined in Eq.
(22) is in fact easily inverted to obtain

de'/(E——Gd) 0

_—
Ge)= 0 G%e)

(23)

We emphasize several points in this context.
First and foremost, the simple and direct inclusion
of new states is only possible in the matrix formula-
tion. In the differential-operator approach the un-
bounded character of the spectrum of the differen-
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tial operator implies that the corresponding Green’s
function contains a complete set of states,® which
in turn implies that the introduction of any new
states, such as the d states in our transition-metal
example, creates a problem of overcomplete-
ness.'>20:222351 OQur approach is based on the obser-
vation that the high-energy portion of the spectrum
of the differential operator does not provide a use-
fully concise description of additional valence
states. Working with linear combination of atomic
orbitals (LCAO) type Hamiltonians, which contain
only low-energy valence states, simultaneously elim-
inates the problems associated with the high-energy
spectrum and permits the direct introduction of ad-
ditional valence states, as required, by the tradition-
al techniques of quantum chemistry. Second, we
point out that the question of how many bands of
the host crystal (the unperturbed system) are re-
quired for an adequate description of the perturbed
system®! simply does not arise in the matrix formu-
lation. Finally, we emphasize that the adspace idea
is not restricted to the particular illustrative exam-
ple considered above; it is equally applicable to in-
terstitial impurities and it is fundamental to our
present efforts to understand molecular chemisorp-
tion (see Sec. VII). The application of the adspace
idea to the specific problem of transition-metal im-
purities in semiconductors was discussed by Pan-
telides and Williams® and is also the subject of a
planned future paper by Pantelides.’® Perhaps the
best example of the use of a Dyson equation to cou-
ple the Green’s functions of two independent sys-
tems is the treatment of crystal interfaces by
Pollmann and Pantelides.”> (The interface study
was performed within the framework of empirical
tight-binding theory, for which the problem of
overcompleteness does not arise.)

V. REDUCED SPACES:
THE “IDEAL” CONCEPT

In the preceding section we considered the appli-
cation of the matrix-Green’s-function approach to a
case in which the perturbed system contained more
atomic states than the unperturbed system. We
consider now the important class of problems
characterized by the perturbed system possessing
fewer atomic states than the unperturbed system.
This class of problems includes crystal surfaces, va-
cancies, and voids. In the preceding section we saw
that an increase in the fundamental number of
states on going to the perturbed system complicates
the analysis at the point where the H and S matrices

of the perturbed and unperturbed systems are sub-
tracted to form the perturbation matrices 8S,,  and
0H,,. In contrast with Sec. IV, when the number
of basis functions required for the description of the
perturbed system is smaller than that required for
the unperturbed system, the construction of 8H and
8S is not complicated. (Some of the elements of
S%, and HC, are simply not used.) The complica-
tion caused by a reduction in the number of states
arises when we attempt to proceed from the defini-
tion of the Green’s-function matrix [Eq. (17)] to the
Dyson equation [Eq. (19)] by multiplying by the
Green’s-function matrix for the unperturbed sys-
tem. The complication is simply that the quantity
we need in order to proceed is not the quantity we
know. We know G2, (¢), the inverse of the entire
matrix €S0, —HY,, whereas what we need is the in-
verse of just the portion of €S2, —HY, used in the
construction of 8H,,, and 8S,,. For the present
discussion let us refer to the matrix eSO, —HY, as
A, and to the unperturbed Green’s-function matrix
G2, (€) as B. In this notation Eq. (18) becomes sim-

ply
Ay Ap
Ay Ay

B, By,
B, By,

0 1y

) (24)

where 1 refers to the subset of the {v} indices used
in the description of both the perturbed and unper-
turbed systems, while 2 refers to the subset of the
{v} indices used only in the description of the un-
perturbed system. For example, in describing a va-
cancy the indices labeled 2 refer to the atom that
was removed to form the vacancy. We obtain what
we need, the inverse of A4,;, from what we know,
the entire B matrix, by regarding Eq. (24) as four
equations and combining two of the four,

A B +A413By =1y, (25a)
A1 By +A41,B5 =0, (25b)

by solving Eq. (25b) for 4, and substituting the re-
sult into Eq. (25a) to obtain>*

Ay (B —B;,B5'By)=1y; . (26)

We identify the quantity in parentheses as the
desired inverse €S9, —H2, in the reduced space.
This quantity is called the “ideal” Green’s-function
matrix G.,(€). [We remind the reader that the in-
dividual quantities (e.g., By,) appearing in Egs.
(24) —(26) are matrices.] For any Green’s-function
matrix G, its ideal counterpart G/ is given by

G'=G,, -G ;,G5'Gy , 27
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where 1 and 2 refer to a partitioning that describes
the removal of some of the functions contained in
the expansion set {¢,(T)}.

There is one remaining aspect of the ideal con-
struction that we wish to clarify. Equation (27) ap-
pears to suggest that the calculation of the ideal
Green’s function requires the inversion of a matrix
G1,, which in the case of surface problems, for ex-
ample, would have infinite dimension. Recall that
the subset of indices indicated by 2 in Egs.
(24)—(27) is the subset corresponding to atomic
sites that are present in the unperturbed problem,
but not present in the perturbed problem. In con-
structing the ideal Green’s function for a surface,
for example, the 2 in Egs. (24)—(27) refers to the
infinite set of atomic sites located in the vacuum re-
gion of the perturbed problem. The inversion of an
infinite portion of G, for a geometry such as a sur-
face would indeed represent a serious obstacle for
this development, if it were, in fact, necessary.
What makes the required inversion of G,, tractable
is the restricted range of the matrix €SO, —HY,,
which, in turn, is a direct result of the restricted
spatial range of the expansion set {¢,(T)}. The
range of €SO, —HY, enters the development at the
point where we solve Eq. (25b) for 4,. The essen-
tial observation here is that the elements of the ma-
trix 4,, are significant in magnitude only for a
small subset of the 2 indices. If we denote this sub-
set of the 2 indices by 3 and the remaining 2 indices
by 4 then Eqgs. (25) can be rewritten

AyBy+AiBy =1y, (28a)
Ay Bi3+A413B33=0, (28b)
A11B14+A13B34=0 . (280)

We see in this way that, although the matrix ele-
ments in Eq. (28c) are not negligible, this equation
is irrelevant to the construction of the ideal
Green’s-function matrix. We can solve Eq. (28b)
for A3, substituting the result into (28a) to obtain
the Dyson-type equation [Eq. (27)] for the ideal
Green’s-function matrix. In other words only a
small portion of the unperturbed Green’s-function
matrix (B33) must be inverted to obtain the ideal
Green’s-function matrix. For example, if all intera-
tomic interactions other than those between nearest
neighbors are assumed negligible, then the ideal
Green’s-function matrix describing the surface of a
group-IV semiconductor, such as Si, requires only
the inversion of 4 X 4 matrices.?

The ideal Green’s function is very useful as both
a conceptual and a calculational tool. Its utility as
a calculational tool has already been demonstrat-
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ed?*? in applications of empirical tight-binding
theory. In the context of self-consistent-field calcu-
lations it plays the additional role of permitting us
to decompose the total effect on the electronic
structure of removing one or more atoms into two
conceptually different components. The ideal
Green’s-function matrix itself describes the “topo-
logical” component of the total effect, that is, the
effect on the state density, etc., of prohibiting prop-
agation through one or more atomic sites. The
remaining component of the total change, that is,
the effect of letting the electron gas self-consistently
respond (relax) to the removal of the atom(s), is cal-
culated with the use of the ideal Green’s-function
matrix. As described for the specific case of molec-
ular chemisorption below (Sec. VII), this “relaxa-
tion” component of the total change in the electron-
ic structure is given by a Dyson equation in which
the ideal Green’s function plays the role of the un-
perturbed Green’s function, and the “scattering po-
tential” is that due to the response of the electron
gas to the removal of atom(s). The ideal construc-
tion therefore makes it possible to examine separate-
ly and directly the two components of the total ef-
fect. The work of Pantelides and co-workers on
semiconductor defects?*?’ and surfaces®® establishes
the important empirical fact that the electronic-
relaxation component of the total change is often
only a small fraction of the total effect.

The fundamental result of the ideal concept, Eq.
(27), was derived by Pantelides and co-workers?*?
in the context of empirical tight-binding theory,
with the use of physical ideas such as bond cutting
and infinite atomic orbital energies. Subsequently,
the validity of the ideal concept was unfortunately
thrown into question.”> We feel that the purely
mathematical derivation provided above, together
with the discussion of the topological and relaxation
components of the total effect, makes both the con-
tent and the validity of the ideal construction com-
pletely unambiguous.

V1. SIMPLIFIED SUMMATION
OVER THE OCCUPIED STATES

In this section we describe a procedure that sub-
stantially simplifies the evaluation of the density
matrix p,,.. We remind the reader that the density
matrix is the fundamental quantity required for the
evaluation of the electron density and the total ener-
gy. The procedure consists of the straightforward
numerical approximation of the contour integral in
Eq. (14). The unperturbed Green’s-function matrix
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GO, (z) is constructed for a set of complex values of
z lying on a convenient contour; the Dyson equation
is then used to obtain the perturbed Green’s-
function matrix G,,(z) for the same set of z values,
and finally, Eq. (14) is approximated by a properly
weighted sum over the z values. As mentioned
above the integral in Eq. (14) has usually been per-
formed by collapsing the contour to the real axis.
Integrating along the real axis is difficult because
the Green’s function almost always varies extremely
rapidly with energy,”® so that an accurate evaluation
of the integral requires a knowledge of G,,(€) on a
very fine mesh of € values. A special example of
the rapid variation of the Green’s function warrants
comment. When the perturbation produces discrete
states (surface states, e.g.) in the gaps of the spec-
trum of the unperturbed Hamiltonian, the contribu-
tion of such states to integrated properties, such as
the electron density, must be properly included. In
the usual procedure of integrating along the real
axis the existence and precise energy position of
such states must be determined by techniques (e.g.,
root finding®’) that are essentially unrelated to the
rest of the calculation. When the contour is dis-
placed away from the real axis these states lose their
discrete character and are automatically included
without their explicit construction.

The crucial fact underlying the procedure we
recommend is provided by Eq. (12), which indicates
that the only aspect of the very complicated €
dependence of the Green’s function that is relevant
to the construction of the density matrix is the dis-
tinction between occupied and unoccupied states.
In other words, the contour integration in Eq. (14)
is nothing more than a particular representation of
the Heaviside step function O(er—¢;) appearing in
Eq. (12):

1 dz
9(61:—&):-2—77[ fC(eF) Z—e , (29)

where the notation C(er) indicates that the only re-
quirement of the contour is that it enclose the ¢;
below the Fermi level. The contour therefore cuts
through the real axis at €x. For example, the con-
tour can be taken to be a rectangle enclosing the oc-
cupied states. A special case of this type of contour
consists of expanding the rectangle so that three of
its sides lie at infinity, with the fourth side of the
rectangle consisting of the vertical line passing
through the real axis at €z.® Each of these choices
of contour has its own numerical advantages and
disadvantages.’’ All such choices share the virtue
of requiring relatively few evaluations of the per-
turbed and unperturbed Green’s-function matrices,

and they all share the disadvantage of providing a
much less detailed picture of state-density changes
than that provided by contour choices lying on or
near the real axis. The density of points along the
contour used in the numerical approximation of the
contour integral [Eq. (29)] can be identified with the
temperature in the finite-temperature Green’s-
function formalism.®® The numerical approxima-
tion to the contour integral therefore has the opera-
tional effect of thermally smearing the Fermi-
occupation function (the greater the numerical pre-
cision, the lower the temperature).

VII. AN EXAMPLE: CHEMISORBED
MOLECULES

In this section we briefly describe an example of
how the ideas of the previous sections can be com-

" bined to solve a problem of current interest. The

problem in question is the chemisorption of mole-
cules on a solid surface, and the approach to this
problem that we now summarize is the one we are
pursuing with detailed numerical calculations. Our
formulation of the problem consists of several al-
most independent steps. In the first step we
describe the formation of the free molecule from
free atoms. (For illustrative purposes, we consider a
diatomic molecule composed of atoms a and b.)
Using the adspace notion of Sec. IV, we form the
Green’s-function matrix G%(z;) representing the
noninteracting free atoms,

aaa’/(zi_fa) 0

A —
G (Z,')— 0 Sbb'/(zi*eb) ’

(30
where a and b denote the states of the two atoms
and z; is a particular point on the contour in Eq.
(14). A Dyson equation in which the free-atom
Green’s function G“(z;) plays the role of the unper-
turbed Green’s function is then used to construct
the Green’s function G™(z;) for the free molecule:

GM(z,)=G(z;)
+G(z;)(8H —2;88)GM(z;) . (31)

Note that, just as in Sec. IV, the definition of G“(z;)
is largely a matter of convenience,* because what-
ever description of the free atom is used for G4(z;)
is subtracted out in the construction of 8H and 8S.
Since the solution of the Dyson equation is exact
(not perturbative) we are not obliged to make G*(z;)
particularly realistic. The detailed description of
both the individual atoms and the coupling between
them is carried by 8H and §8S.
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We now turn to the substrate half of the problem.
Starting with the Green’s-function matrix for the
bulk perfect-crystal substrate G5(z;), we form the
ideal Green’s-function matrix G'(z;) for the surface
with the use of Eq. (27). That is,

Girr=GRr —GRL(GLL)'GlR | (32)

where the partitioning labels L and R are intended
to suggest the left and right half-spaces of the bulk.
The relaxation of the electron gas at the surface of
the substrate is then described by a second Dyson
equation in which the ideal-surface Green’s-
function matrix G! plays the role of the unper-
turbed Green’s function,

GS(z))=G(z))+G(z;)6H'G(z;) . (33)

The quantity 8H' appearing in Eq. (33) is the
change in the Hamiltonian matrix associated with
the electronic relaxation at the bare surface, and
GS(z;) is the full bare-surface Green’s-function ma-
trix (including electronic relaxation).

The chemisorption process itself is represented by
a final Dyson equation that describes the interaction
between the free molecule and the bare surface. In
this Dyson equation the role of the unperturbed
Green’s function is played by GM5(z;), which de-
scribes the free molecule and the bare surface and is
formed by again using the adspace concept of Sec.
1v,

GMz) 0

MS(, )
Gz = 0 G%z)

. (34)

Note that the GM(z;) and the GS(z;) appearing in
Eq. (34) are the solutions of Egs. (31) and (33). The
Dyson equation describing the molecule-surface in-
teraction relates the full Green’s-function matrix
G(z;) to GMS(z;),

G(z;)=GMS(z;)
+GMS(z;)(6H" —2;858")G(z;) .  (35)

The matrices 8H" and 8S" describe both the cou-
pling of the molecule and the substrate and the
changes in the molecule and the surface that result
from the new coupling. Equations (31), (33), and
(35) refer implicitly to self-consistent-field itera-
tions, for which the required electron density is con-
structed by summing the contributions from the z;
(see Sec. VI). We have presented Eq. (33) without a
contribution from the change in the normalization
matrix 8S in order to exhibit the implication of the
surface atoms retaining their bulk positions; the
surface atoms will in general relax and reconstruct,

in which case a contribution from 8S will be
present. '

VIII. SUMMARY AND DISCUSSION

Much of what we have described above can be
summarized by the observation that our formalism
makes available to the detailed self-consistent-field
calculations required by density-functional theory
many of the attractive features of empirical tight-
binding theory. Since the latter never considers
anything beyond matrix elements of the Hamiltoni-
an in a unspecified LCAO basis set, it is, by con-
struction, an example of the matrix approach. For
example, within tight-binding theory the description
of displaced atoms is automatically the one we ad-
vocate. Another useful summary of the approach
described above is that it is based entirely on a sin-
gle approximation, the expansion of the wave func-
tion in a basis set of atomiclike (localized) functions
[Eq. (3)]. Furthermore, the single approximation is
one that has been widely tested’>>°—% and for
which there is considerable chemical intuition and
lore.

The adspace idea, which allows us to study
directly the interaction between constituents of
complicated systems, such as chemisorbed mole-
cules and transition-metal impurities in s and p-
bonded hosts, has a long history and an extensive
literature.!>20:2223,65-67  The Anderson model of
dilute impurities® is perhaps its most renowned
ancestor. Once again, the idea is a natural one
within the framework of tight-binding theory.?*52¢7
In the context of theories employing differential
operators and single-particle potentials, previous
work!320:22.2351 of which we are aware has taken
the eigenvalue spectrum of the host to be unbound-
ed, with the result that the introduction of new
states (e.g., those of the molecule or the d states of
the transition metal) creates a problem of overcom-
pleteness.”®>! The work of Kanamori et al,'® that
of Grimley,’>?>3! and that of Gunnarsson and
Hjelmberg,?? for example, is focused on the correct
treatment of this overcompleteness. Another unfor-
tunate manifestation of the unbounded spectrum of
the differential operator is the difficulty associated
with the determination of the real part of the unper-
turbed Green’s function. Although these difficul-
ties have been successfully dealt with?”?**? in vari-
ous levels of approximation, it seems fair to say that
both the problems associated with the unbounded
spectrum and the solutions to these problems intro-
duce quantities and concepts with rather little

8
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chemical and physical appeal. The principal
motivation for the use of the differential-operator
Green’s function is that it is the most natural embo-
diment of a nearly-free-electron host or substrate.
The work of Singhal and Callaway® on Al, the pro-
totype of nearly-free-electron materials, has clearly
demonstrated, however, that these systems can be
accurately described with the use of localized atom-
ic functions.

The ideal construction plays a particularly impor-
tant role in the study of systems, such as surfaces,
in which the difference in spatial extent between the
perturbed and unperturbed systems is either large or
infinite. Without the ideal construction for such
systems we are forced to rely on some form of
matching. Matching of the wave function it-
self'%26.30 hag the disadvantage of requiring very de-
tailed information about the wave function in re-
gions where we know it least well. Application of
the matching idea to matrices leads to the transfer-
matrix concept, which has been used® to study
tight-binding models of surfaces.

The combined use of the adspace idea and the
ideal construction makes it possible to treat geome-
trical arrangements of atoms that possess no con-
venient overall shape (e.g., spherical®® or
planar*?—34). Molecular chemisorption is an exam-
ple of such a geometry. Combining the ideal and
adspace ideas also permits the implementation of a
treatment of chemisorption discussed by Grimley,
that of the “defective” solid.”®> The idea is to per-
form detailed calculations for a molecular cluster
consisting of a chemisorbed atom (or molecule) and
a small subset of the substrate atoms. The coupling

of this cluster to the defective solid (the remaining
atoms of the substrate) is then considered as a
separate step. The adspace and ideal concepts of
Secs. IV and V permit this procedure to be carried
out without approximation. The defective-solid
idea can be viewed as a difficult decomposition of
the chemisorption process than that considered in
Sec. VII. Viewing a substitutional impurity as a
free atom interacting with a vacancy, as Scheffler
and Pantelides’® have done, exemplifies the same
underlying idea.

The contour-integration technique we use to con-
struct the density matrix makes the calculation in-
terestingly similar to density-matrix methods.” In
these methods individual electronic states of the
system are not explicitly constructed. Rather, the
total-energy functional is minimized with respect to
the elements of the density matrix. The nonlinear
variation required for this minimization is compli-
cated and has been carried out only for relatively
simple systems.
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