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Electron-hole-pair quenching of excited states near a metal
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We present a calculation of the nonradiative damping of a dipole outside a metal surface.
The calculation uses a realistic surface potential for the metal conduction electrons in con-

trast to most earlier studies. A simple experiment is suggested to test the theoretical pre-
dictions.

I. INTRODUCTION

There has been a steadily increasing interest in

dynamical processes at surfaces. Processes involv-

ing chemisorbed molecules, such as dissociation re-
actions' or vibrational damping, are interesting but
complicated. Processes involving molecules located
well away from the surface are simpler because
such molecules can interact with the metal only
through the electromagnetic field. Interesting ex-

amples of this type include the van der Waals in-

teraction between a molecule and a solid ' and the
fluorescence decay of an excited molecule studied as

a function of the distance to the surface.
In this work we will consider problems of the

latter type. We will concentrate on the lifetime of a
vibrating dipole, but the results presented are more

general than this, and can be used to determine, e.g.,
the friction force on a charged particle moving out-

side a metal surface.
Recently, several papers have been published in

which the response of a metal to an external elec-

tromagnetic field has been studied. ' Most of
these works treat the metal crudely, e.g., by using
the infinite barrier model or even more approxi-
mate models. ' ' From the work by Feibelman it
is now known that it is important to use a realistic
surface potential such as the one obtained by Lang
and Kohn. ' Feibelman's calculations indicate that
the simpler models underestimate the probability of
excitation of electron-hole pairs, while overestimat-

ing the probability for excitation of bulk

plasmons. ' However, Feibelman's calculations are
limited to fields that vary slowly in space (k=0)
and rapidly in time (co &co&/2). In this work we

will present results valid for m «co&, which are ex-

pected to be at least as accurate as those of Feibel-
man. We will also use the surface potential ob-
tained by Lang and Kohn. However, the response
of the metal conduction electrons to an external
electric field will not be treated within the random-

phase approximation (RPA) (as Feibelman did) but
more accurately.

In Sec. II, we present the basic model and its
evaluation. In Sec. III, we discuss some numerical
results and suggest an experiment to test the theory.

II. THEORY

Consider a vibrating dipole located at a distance
d above a metal surface. We want to calculate the
damping rate of the vibration due to excitation of
electron-hole pairs in the metal. We treat the metal
within the jellium approximation, i.e., the metal
conduction electrons are assumed to move in a
semi-infinite positive background obtained by
smearing out the positive metal-ion cores (see Fig.
I). Let 0 be the vibration frequency of the dipole
and assume that 0 «mz, where co& is the plasma
frequency of the metal. Since 0 «co&, the metal
conduction electrons can almost respond adiabati-

itive background

on density
rib ution

point dipole

d

FIG. 1. Schematic representation of the density distri-
butions.
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cally to the slowly varying external field and thus
almost adjust to the instantaneous static configura-
tion. Thus to a good approximation, the screened
dipole potential Pd;»], (x,t) is obtained from a static
calculation; for the jellium model such calculations
have been performed by Lang and Kohn. '9

The damping rate 1/~, i.e., the rate at which the
vibrationally excited state (n =1) decays to its vi-

brational ground state (n =0) while an electron is
scattered from a level k below the Fermi surface
(k&kF) to a level k above the Fermi surface
(k' & k~), is obtained from the golden-rule formula:

f d'k d'k'nk(1 —nk, )

and ek =]]1 k /2m. We have calculated f k (x) nu-

merically using the potential V,tt(z) obtained from a
self-consistent local-density calculation. '

Note that the integrals over k and k ', in Eq. (1)
are restricted to k, & 0 and k,' )0 (since k space is
semi-infinite for a semi-infinite crystal when

ek —ep & W, where 8' is- the work function). It is
convenient to introduce new integration variables,
namely, e =]]t'k /2m and k

II
(the projection of k in

the metal surface). Since

f dk= de dk—3 2 m 1

k~&0 0 kll &k II g2 (k2 k2 )]/2
II

we can write

Here

X /(k n',=OJH'J k, n=i) /'

X5(ek —ek —A'Q) .

—= f de f de'n, (1 n,—)

Xf(e,e')5(e' e A—Q )—

H'=egdpo] (x) (2) = f de f de'f (e,e')5 (e' e AQ—)—
and

1 if k&kF,
0 if k)k

(x
~
k) =1( k (x) are the electronic wave functions

I

e~+AQ
= f de'f (e' RQ, e') =—AQf (eF,eF ) ~

where the last equality is valid if f(6',e ) varies

slowly as a function of e and e' in an interval A'Q

near eF. Thus we have

]]1Q f d klld ktl 2 2 ]~ 2 ~ ]~2 /(k', n=0/H'f k,n=1)
/

j

where it is implicitly understood that k=k'=kF.
In what follows we will only consider large d,
namely, d »coF/QkF. For such d the main contri-
bution to the damping rate arises from the momen-
tum supply from the surface, i.e., not from the
momentum distribution of the near field itself. We
must now calculate the screened dipole potential
])}d;»]„which enters the matrix element in Eq. (3).
In the limit Q «cop and d »co~/Qk~ this is easily
obtained as follows. If the metal is treated classi-

cally, then

V Pd;p, ],= —4m cr( xll)5(z),

tional to 5(z) but smoothed out in a way discussed
in detail by Lang and Kohn. ' Thus Eq. (4) is re-
placed by

V /dip, ],———4m o(xll)f(z),

where

f dz f(z)=1.

Since the variation of f(z) with z is much more ra-
pid than the variation of o(xll) with xll (the ratio is
—1/kid « 1), we get

where o( xll) is the surface charge density. For a di-

pole located at z =d (see Fig. 1) and oriented normal
to the surface, o(x II) is easily calculated

o(x )=— f d'qllqlle
)2

pd'po] o.( xll)A(z)

where

dA 4n.f(z) . —
dz2

(8)

A real metal does not have a steplike surface and
the induced charge density is therefore not propor-

Thus the screened dipole potential is obtained from
Eq. (8) with o(xll) given by Eq. (5) and A(z) calcu-



26 ELECTRON-HOLE-PAIR QUENCHING OF EXCITED STATES. . . 5411

lated from Eq. (9}. Note that f(z) entering the
right-hand side of Eq. (9) is known; it is simply the
induced charge-density profile, normalized to unit
area, due to a uniform charged sheet located outside
the metal surface. f(z) has been calculated by Lang
and Kohn in the jellium model. '

We can write the electronic wave functions as

where

' 1/2

( x ) e II lip„(z)
1 2 ik x

2K "Z

P» (z}~sin(k,z+q&») asz~ —ao .

From Eqs. (2), (5), (8), and (10) we get

(10)

( k ' n —0
I

8'
I

k~n 1 ) f d x f d qllqlle
II e' "

ll II+
' "Ilf, (z)A(z)f» (z)

(2m )' k z

",f d'qllqlle II (2~)'5(kll —k II+qll) f dz~» (

I kll —kjlIe II II (p, IA(z) If/J» ),

where IM=(0 I p, I
1) is the matrix element of the

dipole moment operator, and

(g», IA Ig» )= f de», (z)A(z)g» (z) . (12) g(rg ——3)=1.2 . (18)

I

g depends only on the electron gas-density parame-
ter r, ; for r, =3 we have calculated ( numerically

Now note that for large d

—21)k —k
Ie II II N5(kll —k jl),

(13}

It is interesting to compare Eq. (16) (the surface
contribution to the damping rate) with the volume

contribution due to scattering of electrons against

phonons, impurities, etc. The volume damping
is given by

where N is a normalization factor chosen so that
the two functions have the same area:

1 p e —1
2Im

4d A' &+1
(19)

d qNll5( ql)l= N= f d qllql 4d4
where e(co } is the bulk dielectric function. If e(co)
has a Drude form, i.e.,

Using Eqs. (3), (11), (13), and (14) gives

(14) 2

e(a) )= I— Np

co(co+i/r') ' (20)

1 p Q 1 3 kTF

4d & coF kpd 8~ kr

(r, ),1 p, Q 1

4d3$ cop kFd
(16)

x f, d"
k l(A, IAkF'IA, )I'

z

where 1/kTF is the Thomas-Fermi screening length.
Accounting for the electron spin [which introduces
an extra factor of 2 in Eq. (15)j, we can thus write

and if I/r'«Q «co&, one gets from Eqs. (19) and

(20)

2
1 p 0 1

T 4d fj NF kFl

2
p, Q 1

4d3fi a)F kpl

where l =UFO'' is the mean free path, and where the
last equality is valid for r, =3. To summarize, for
r, =3, we have shown that

where

(r, )= 3 kTF

4~2 kF

2

where

Fp2

4d A
(21)

kF
x f dk, „ I(lt» IAkg I @» ) I

(17)

F(surface)= 1.2
0 1

NF kFd

F(volume) =3.0 Q 1

NF kFI

(22)
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These two equations are both linear in Q. On the
other hand, they have a different distance depen-

dence; I/r(surface) -1/d while I/r(bulk) —1/d,
which is known from several earlier works. ' For
large enough d, the volume damping will therefore
always dominate. For d & ~z/QkF, there will be, in
addition to the surface and volume damping pro-
cesses, a contribution where the needed momentum

supply arises from the spatial variation of the dipole
field itself. This contribution will have a more
complicate*, d distance dependence, presumably
-d lnkt;d (Refs. 20, 21, and 17). With respect to
the relative magnitude of F(volume) and F(surface)
it is obvious that for a transition metal as Ni or Pt,
with a large density of levels at the Fermi energy
and thus short mean free path of the electrons (typi-
cally kFl-I) the volume effect will dominate al-

ready for d-1 A. On the other hand, for a noble
metal such as silver, below the onset of d-band tran-
sitions (i.e., A'0 &3.5 eV) one has already at room
temperature a very long mean free path, I -430 A.
Thus the surface damping is expected to dominate
for d &200 A. We will discuss this further in the
next section.

III. DISCUSSION

The calculation presented in Sec. II is very simple
and it is easy to extract some interesting physics
from it. Note first that only electrons within a thin
shell E~ AQ & e—& ez near the Fermi surface can be
excited without violating energy conservation. This
does not mean that electrons in deeper lying levels
are unimportant since they will give a contribution
to the screening of the external potential. Of the
electrons in the vicinity of the Fermi surface, only
those which propagate normal or almost normal to
the metal surface will couple to the screened dipole
field. The reason is that Pd;~i, vanishes very rapid-
ly inside the metal. Thus for a metal electron to
feel this potential, its wave function must penetrate
far enough into the vacuum, and only electrons
with a large velocity normal to the metal surface
can do so. This is illustrated in Figs. 2 and 3. Fig-
ure 2 shows the screened potential
as a function of z. Also shown are two conduction-
electron wave functions, one corresponding to an
electron propagating almost parallel to the surface
(k, =O. 1k~), and the other normal to the surface
(k, =k~), both with E=Ep The latt.er wave func-
tion penetrates much further into the vacuum and
will therefore couple much more strongly to Pd;~,i,
than the former. The coupling strength is given by

kFz

FIG. 2. Screened dipole potential Pd;„,i, and two elec-
tron wave functions Pk (z) (k, =0.1k~ and k, =k~), both

2

with e=ez, are shown as a function of k~z. Electron
density parameter r, =3.

the dimensionless quantity [see Eq. (15)]

P«. )=
k 1&A, IAkF'IWk, &l'

2

I dz
~ Pk (z)

~

A(z)kt;

p =tz(EO+Eimage) ~ (23)

where E;,g, is the electric field from the induced
surface charge density (i.e., from the "image" di-
pole). If the metal could be described classically,
then

200

100-

0 0.5
kzt'kF

1.0

FIG. 3. Relative probability P(k, ) for excitation of an
electron on the Fermi surface (e =eF) as a function of k, .

Figure 3 shows P(k, ), the relative probability for
excitation of an electron on the Fermi surface with
a given k, . Obviously, only those electrons which
propagate normal or almost normal to the surface
have a non-negligible probability of being excited

The damping function F(co ) can be related to the
frequency-dependent image plane position dip(co). '

To show this, let us consider a point particle with
the polarizability a(ro) located a distance d above a
metal surface. Let Eo be an external electric field
(assumed normal to the surface) with the time
dependence exp( icot). This fi—eld will induce a di-
pole moment in the particle given by
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p e(co) —1

4d' ~(co)+ I
(24)

p e(co ) —1

4[d+dgp(co)] e(co)+1
(25)

In general, d&p is a complex number with the ima-

ginary part associated with loss processes (electron-
hole pairs). Substituting (25) in (23) gives

Feibelman has shown that if the metal is treated
microscopically (within the jellium model), then
asymptotically for large d (actually d »cop/coke),
Eq. (24) has to be replaced by'

2. Comparison of (26) with (16) gives

—ImkFd&p(Q )=— g(r, ), Q «cop . (27)
1 0
6 cop

The position of the image plane d~p(co ) can be relat-
ed to two other surface response functions, dz(co)
and d

~~
(co ), also introduced by Feibelman':

&di(co)+d~~(co)
dip(co ) = e+1

For co «cop, we have dip(co) dj(co); thus Eq. (27)
can alternatively be written

Now if

then

Ep=apEp .
a e(co ) —1

4[d +du (co )] e(~ )+ 1

ai
'2

—ImkFdz(Q) =— g(r, ), Q «cop .1 0
6 coF

For co & co&, d„(co) is simply the centroid of the in-

duced charge-density profile (which in general is a
complex number). '

The response function dz(co) [or equivalently, the
damping function F(co)] is very important because
it determines the influence of the metal surface on
practically all processes occurring well away from it
(d »coF/cokF). Here we only mention a few exam-

ples.

ao(co ) =
co a

& e(co) —1

4[d +d ip(co )]3 e(co ) + 1

The pole of ao(co) defines the complex resonance
frequency co =co, thus

2

G e(co )—1—1+ =0
4[d+dgp(co)] e(co)+1

or, if a ~ /d && 1,

e(Q) —1

8[d+d,p(Q)]' ~(Q)+I

With the substitution of a ~ 2p /fiQ we ge——t

p e(Q) —1

~(Q)+1

—3 Re Imd&p(Q )/d
e(Q) —1

(26)

The first term in this expression is identical with

Eq. (19), except for a factor of 2. This difference is
simply a consequence of 1/~ being the rate of ener-

gy transfer from the particle to the metal while
—Imago is the damping rate for the amplitude p.
These two rates are, of course, related by a factor of

(1) Damping of a vibrating dipole as discussed
above;

(2) the friction force on a charged particle mov-

ing above a metal surface
(3) the van der Waals interaction between a parti-

cle and ametal ' ';
(4) surface plasmon dispersion' ';
(5) the surface photoelectric effect.

Thus a large number of phenomena are closely re-
lated and can be expressed in a unified way using
the surface response function dj (co ) [or, equivalent-

ly, the damping function F(co)]. Therefore, a de-

tailed knowledge of dq(co), as a function of co, is
very important. Feibelman has calculated Imdj (co )

for co & cop/2, see Fig. 4. Also shown in this figure
is our own result for co &~co&. It is satisfying to see
that it is possible to smoothly interpolate between
the low- and high-frequency results. Recall that
Feibelman's calculation is done within the RPA
while we treat the screening process more accurate-
ly. Since it is possible to interpolate smoothly be-

tween the two calculations, the RPA might be a
reasonable approximation for the present problem.

To date, the jellium theory for surface screening
has its strongest experimental support in the surface
photoelectric experiment by Levinson, Plummer,
and Feibelman. Here we would like to suggest
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FIG. 5. Curve A is the volume contribution to the
damping function calculated from Eq. (19), using the full

dielectric function e(Q) for silver, as measured by
Johnson and Christy (Ref. 22). Curve B is the surface
contribution to the damping function calculated from Eq.
(16) with k+0 =10 and r, =3, which is the electron gas-
density parameter of silver.

FIG. 4. Imaginary part of the surface response func-

tion di(u) as calculated by Feibelman (co )0.6~~) and

from this work (co (&co~). The dashed line is an interpo-
lation between the two calculations.

another experiment that adds a further test of the
theory, and that is of interest in its own right. We
propose that one should measure the lifetime of an
excited molecule located at various distances d
above a silver surface. Curve A in Fig. 5 shows the
volume contribution to the damping function F(Q)
for silver at room temperature. The strong increase
in F(volume) at irtQ=3. 5 eV is due to the onset of
transitions from the d band that cause strong damp-

ing (incidentally, the sharp peak at A'Q-3. 5 eV is
due to the excitation of surface plasmons).
F(volume) is very small for RQ &3.5 eV, and for
fiQ &2 eV, it is well-approximated by Eq. (21) with
i=430 A. Thus the surface contribution to F will
dominate over the volume damping if d &200 A
and trtQ &2 eV. We therefore suggest that one
should study the variation of the lifetime as a func-
tion of d (e.g., using layers of argon as spacers be-
tween the molecule and the metal ) and determine
whether the lifetime varies as d (volume damping)
or d (surface damping). In case the damping has
the latter distance dependence (as expected), it

would be of great interest to calculate the actual
proportionality constant c,~=cd, and compare it
with the theoretical prediction, Eq. (16).

Finally, let us emphasize that the theory present-
ed in Sec. II is valid only if d »coF/Qkz. Howev-
er, this inequality imposes a negligible restriction on
d in the study of the lifetime of an electronically ex-
cited molecule above a metal surface, because for

0
RQ -2 eV one has roz/Qk~-2 A. Thus there will

0

be a large interval in d (say, 10& d & 100 A) where
the theory is applicable. On the other hand, the
theory cannot be used in discussing, e.g., the dipole
contribution to the damping rate of a vibrationally
excited molecule adsorbed on a metal surface, since
typically RQ-0.25 eV for vibrations and thus
roF/QkF-20 A while for an adsorbed molecule
d-1 A.

Note added in proof This work . is the first in a
proposed series of three concerning the dynamical
properties of metal surfaces. In the second work we
plan to present some powerful sum rules for surface
response functions and illustrate their use. In the
third paper we plan to extend the formalism of this
work by treating the response of a metal surface to
external fields which varies arbitrarily rapidly in
space (i.e., removing the restriction d »coF/cok~).
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