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Electronic theory of binary alloys with face-centered-cubic crystal structure
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An electronic theory of binary alloys with face-centered-cubic crystal structure is
presented. The close-packing effects of the fcc lattice are taken into account by calculating
the local density of states in the Husimi model. It is shown that this formalism can be re-
duced to expressions similar to those in the Bethe-lattice method. By this method a much
richer structure is obtained in the local density of states than that obtained by the Bethe-
lattice method or in the coherent-potential approximation. Results for random alloys are
presented.

I. INTRODUCTION

The cluster-Bethe-lattice method has been suc-
cessfully applied to study properties of alloys with
short- and long-range order. ' This method consists
of substituting the infinite periodic lattice for an in-
finite system of connected atoms, with the same
coordination number z as the lattice under con-
sideration, but without closed rings of bonds. This
lattice has the property that the one-particle Green's
functions at a given site can be expressed in terms
of the Green's functions at the preceding site in the
lattice. In this way, it is possible to write analyti-
cal expressions for the Green's functions in terms of
transfer functions.

The Bethe-lattice approximation is exact in one-
dimensional systems, it is good in low-coordination
three-dimensional lattices, and it is bad in closed-
packed structures. For example, the threefold rings
in fcc lattices originate pure antibonding states that
in the Bethe lattice cannot exist.

A better approximation to treat fcc structures is
the Husimi model. It consists of an infinite system
of connected tetrahedra (see Fig. I), that describe
the local topology in a more exact way. It has been
shown that in one-component systems, this approx-
imation gives the exact position of the high-energy
band edge and that its solution can be obtained by
defining a single transfer function.

Studies of the order-disorder transformation in

ordering alloys have shown that in order to obtain
the observed first-order phase transition, it is neces-
sary to treat the entropy in the tetrahedron approxi-
mation. ' ' Lower approximations, like the Bethe
or Bragg-Williams approximations, give a second-
order phase transition in the ordering Ao 5BO 5 alloy.
Examples of this kind of alloys are (Ref. 8) CuAu,
FeNi, etc. Thus, by calculating the electronic struc-
ture in the Husimi model, one would be able to ob-
tain an expression for the free energy where the
internal energy and the entropy are calculated
within the same approximation.

Here we extend the Husimi model to study the
electronic structure of binary alloys with fcc crystal
structure. In Sec. II we outline our theory and in
Sec. III we present and discuss our results.
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FIG. 1. Portion of the Husimi model, with
tetrahedrons as units. The symbol n denotes the level in
the hierarchy.
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FIG. 2. Configuration showing the notation used in

the Green s functions. A specific example is given.
etc. tc. Q) 3

II. THEORY etc. Z

The binary alloy A„B~ (y =1—x) is represented

by the tight-binding Hamiltonian
Z5 I

H =pe;c; c;+gt jc; cj+H.c.,
i J+i

(2.1)
Bond Prob. Site Prob.

where i and j denote lattice sites, e; and t;J
(ij =A,B) are the on-site and hopping matrix ele-

ments of the Hamiltonian, and c; and c; are the
creation and annihilation operators.

The Dyson equation for this Hamiltonian is given

by
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CA «c. Y, 2
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X,
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(co —e;)GJ(co)=5q+gttIG)~(co) .
I+i

(2.2)

We define Green's functions for each site in the
tetrahedron and for each type of atom. As it is il-

lustrated in Fig. 2, each Green's function depends
on its nearest neighbors and has four upper and two
lower indices,

G QRST
n0

FIG. 3. Different tetrahedron, triangle, pair, and sin-

gle site configurations. The multiplicity is also shown.

x =0.4

where Q denotes the type of atom (A or B) on the
site under consideration on the nth level, R denotes
the type of atom in which the studied tetrahedron is
rooted, i.e., the parent atom in the (n —1)th level,
and S and T denote the atoms at the same level of

Q, i.e., nth level. To simplify our notation we omit

upper indices S and T if they are of the same type
of R. Illustrations are given in Fig. 2.

In general there are 5, 4, 3, and 2 different
tetrahedron, triangle, pair, and site configurations,
respectively (Fig. 3). We denote by z;, w;, y;, and x;
the corresponding probabilities and by a;, P;, and 5;
the multiplicity of the tetrahedron, triangle, and

pair configurations. The probabilities are subject to
the normalization conditions
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ENERGY
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The probabilities m;, y;, and x; can be written in

terms of the z;.
Now by using Eq. (2.2) we obtain for the Green's

functions the expressions

FIG. 4. Local density of electronic states n& and n& at
A and 8 sites, respectively, for a random alloy with

x =0.4 and e& —e~ ——0.75.
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and

(co —EA )600 ——1+12F(1}
(2.4)

(co —EA —2t i )(co EB—)
G G A

(co —EA t—1 )(co EB—) 2t—2

(N E—B )Goo
——1+12H( 1),

depending if at the zeroth site there is an A or B
atom and where the functions F(n) and H(n) are
defined by

F(n}=ti(wig""+2w26„"" +w'6"" )

+t2(w2g +2w g +w igBABB)

t2(N —EB —2t3 )
+ 2 Gnp

(co —
EA

—ti )(N E—B }—2t2

GAABB
(co —EA —2t 1 )(co —EB —t3 )

GAA
np np

(co —EA )(co —EB —t3 ) —2t2

+ 2 Gno
(N —EA )(co —EB —t3 ) —2t2

and

H(n)=t (w g" ""+2w g4 "+w 6'4

(2.5)
2t2(N —EA —2ti )

Gnp —— GAA

(co EA —ti )(—co EB ) —2t2—

(2.9)

+t ( w 2g BBAA +2w 2g BBA +w 2g BB
)

(2.6)
In Eqs. (2.5) and (2.6) t, =t„„,t2 t„B, t——3 tBB, and-—
w; are the conditioned tetrahedron probabilities,

(2.7)

At level n, and if the parent atom is an A atom, the
Green's functions can be of the following six dif-
ferent types:

(co —EA }G„"p——tiG„" 1 p+2tig„"0 +9F(n+1),
(co EA )G»o —t i 6» i,o+ t 1 G»—o——AAB A AAB

+t26„o +9F(n +1),
(co —EA)G„"0 ——tig„" 1 p+2t26»p +9F(n+ I),

(2.8)
(co —EB)G 0 =t2G 1 p+2t2G p +9H(n+1)

(N —EB)G»p =t2G» 1 p+t3G»p
BAB A BAB

g AABB +9H( + 1 )

EB)6»0 =t26» 1,0+2t36—»0 +9H(n +1)

This set of equations can be written in terms of 6„"0
d GBABB

np

+
(co —EA t 1 )(co —E—B —2t3 )

GBABB
np

(N EA—ti }(N —EB )——2t2

t2(co —EA 2ti )
Gnp = 2G„p

(co —EA )(co —EB —t3) —2t2

+
(co —EA )(co —EB —2t3)

G BABB
np ~

(co —EA )(N EB —t3)——2t2

Similar expressions can be written for cases where
the parent atom is of type B. In this case all the
Green's functions can be written in terms of 6„"0""
and 6„0. Then, we write Eqs. (2.4) in terms of the
four independent Green's functions,

(co —EA )600 ——1+12(gi 1 G io +g126 io
(2.10)

(N —EB)Gpp =1+12(g2161p +g22Gip ),B ABAA BB

and

(co —EA —2ti)Gip ti 600+——9(g11620 +g1262p ),AA A AA BABB

(N —EB —2t3 }Gip t2600+9(—g—» G2p
BABB A ABAA

+g'22620 ), (2.11)

2 1 }610 t2600+ 9(g11620
g BABB

)

BB B ABAA BB
(N —EB —2t3 }G10 ——t3Goo+9(g21G20 +g22620 } ~

In Eqs. (2.10) and (2.11),

1 1

1 2W2 W3 2gii ——witi+(A —2ti ) (Bti+t2)+ (Bti t, t3+2t2)—
D1 D2

1 1

1 N2 2W3
g12 t2 w 4+(B ——2t3 )(A + t 1

)—
D1 D2

2 2
'

2 2N3 N4
g21 t2 w2+(A —2ti )(—B—+t3 }

D1 D2

2 2
2 W3 2 2N4 2

g22 —w5t3 +(B—2t3 ) (At3 ti t3 +2t2 ) + (At3 +—t2 )
D1 D2

(2.12)



26 ELECTRONIC THEORY OF BINARY ALLOYS WITH FACE-. . . 5401

and

g =~ —EA, 8 =CO —EB,

Di ——(A t—i )B 2tz—, Dz ——(B t3—)A —2tz .

(2.13)

na

--10

x =0.6

The set of equations (2.11) is similar to the equa-
tions contained in the Bethe-lattice method, where
now the coefficients g,j depend on the probabilities,

hopping terms, and energies. In analogy to that
method we close the set of equations (2.11}by defin-
ing the four transfer functions

AA A ABAA B
Yl = Gn +1, 0~ Gno~ 1 2= Gn+1, 0~ Gn, 0~

(2.14)
BABB A BB B

Y3 Gn—+1,0~Gn, o 1 4 =Gn+1,0~Gn, o ~

ne

- I.O

x=0.6

We obtain then the set of coupled equations

9giiyi +9gizyiy3 —(co EA —2—ti )'yi +ti =0,2

9gi 1 Y11'2+9g izyz Y3
—(~0 —EA —2t 1 )y2+ t2 ——0,

(2.15}

9g211 2Y3+9g22y3Y4 (~ eB 2t3}Y3+ 2
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FIG. 6. Local density of electronic states n~ and n~ at
A and B sites, respectively, for a random alloy with
x =0.6 and e& —e& ——0.75.

III. RESULTS AND DISCUSSION

na x =0.5
In the completely disordered alloy, the probabili-

ties w~ take the values

Wi =Wz=(Xi), Wz=W3 —(Xi) Xz
2

(3.1)
W3 W4=X1(X2) p W4=W3=(X2) 3

ne

-- 1.0

x=0.5

Goo ——[co —eA —12(gii Yi+giz'Y4)]

Goo l~ eB 12(g21yl +g22y4 }]

(3.2)

where xi is the average concentration of element A

and x2 ——1 —x &. Under these circumstances and as-
suming only diagonal disorder, i.e., t~ ——t2 ——t3
we obtain from Eqs. (2.15}that yz ——yl and y3 —y4.
The values for yl and y4 are given by the solution
of a third-order equation. The Green's functions
(2.10) are then given in terms of yl and y4 by

I I I
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In Figs. 4—6 we present the results for the local
density of states (LDS)

FIG. 5. Local density of electronic states n~ and nq at
A and B sites, respectively, for a random alloy with
x =0.5 and eq —e~ ——0.75.

&;(co)=——ImG00(01), i =A,B (3.3)
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for concentrations x=0.4, 0.5, and 0.6. Here we
took ez ———ez ——0.375 and the energy is measured
in units of half of the bandwidth of the pure ele-

1

ments (t = —,).
As it is shown in these figures, the LDS are rich

in structure, showing contributions coming from
specific tetrahedron configurations like AAAA,

AAAB, etc. We observe also that the discontinuity
at high energies present in the pure 8 system does
not disappear under alloying. This is not the case
for the local density of states on atoms of type A.
Here we have taken only diagonal disorder. The in-
troduction of different hopping integrals would
change only the bandwidths.

!t is worth noting that short- and long-range or-
der can be incorporated in a natural way. Thus this
makes the theory most suitable to study order-
disorder transformations. In conclusion, we have

presented a theory for binary alloys with fcc crystal
structure in which short- and long-range-order ef-
fects can be better accounted than in the previously
used Bethe-lattice method.
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