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The bonding and spectroscopic properties of graphite are investigated by carrying out
first-principles, self-consistent electronic structure calculations, and by comparing the re-
sults with high-resolution data from recent x-ray diffraction and angle-resolved photoemis-
sion measurements. The theoretical valence-charge density is in excellent agreement with
values derived from experimental x-ray form factors. Unlike other group-IV covalent ma-
terials, the bonding charge exhibits a prominent double-humped structure due to the lack of
p core states. The energy band structure is also in good agreement with experimental mea-
surements and previous calculations.

I. INTRODUCTION

Graphite intercalation compounds and adlayers
of atoms on graphite have generated a great deal of
theoretical and experimental interest in the past
several years. These systems have potentially im-

portant technological applications, and they also
provide realistic situations for the fundamental
study of two-dimensional phenomena. As a conse-
quence, renewed interest in the properties of gra-
phite itself has been stimulated. There is, in fact, a
very large literature on the electronic properties of
graphite, including electron-density maps derived
from x-ray diffraction data' and the energy-band
measurements derived from high-resolution angle-
resolved photoemission techniques. There is also a
very large number of theoretical calculations on the
electronic structure of graphite. However, some
features of the theoretical results are model depen-
dent.

In the present paper we present the results of
first-principles self-consistent calculations of the
electronic structure of graphite, with the use of
density-functional theory in the local-density ap-
proximation and mixed-basis pseudopotential tech-
niques. Our motivation is (I) to provide a deeper
understanding of the bonding and spectroscopic
properties of graphite and (2) to provide a basis of
comparison for a study of graphite intercalation
compounds using the same theoretical framework

and computational techniques. Results for the in-
tercalation compounds are published elsewhere. '

The remainder of the paper is organized as follows.
In Sec. II details of the calculation method are
presented. In Sec. III the calculated distribution of
valence-electron density is presented and compared
with that derived from the analysis of x-ray diffrac-
tion experiments by Chen, Trucano, and Stewart. '

The self-consistent valence density is also compared
with that of superposed spherical atomic charge
densities in order to illustrate aspects of the C—C
bonding. In Sec. IV the calculated band structure is
presented and compared with various spectroscopic
measurements of band energies ' ' and compared
with a few of the previous calculations. " ' We do
not attempt to make a thorough comparison of our
band-structure results with the numerous results
available in the literature, since this has been done
by several other workers. ' ' We are able, howev-
er, to understand how certain band features are
sensitive to calculations methods, to self-
consistency, and to the choice of the exchange-
correlation approximation, as well as to establish
our electronic structure of graphite as a credible
one. Summary and conclusions are presented in
Sec. V.

II. METHODS OF CALCULATION

The self-consistent band-structure calculations
were carried out in the local-density approximation
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and by representing the electron wave functions in
terms of a mixed-basis set consisting of plane waves
and linear combinations of atomic orbitals
(LCAO's) as developed by Louie, Ho, and Cohen.
To take advantage of the numerical efficiency of a
Fourier-space evaluation of the matrix elements, the
calculations were formulated in terms of pseudopo-
tentials and pseudo-wave-functions. The Hedin-
Lundqvist approximation for the exchange-
correlation potential was used throughout this
work.

A. Pseudopotential

%e chose to use the norm-conserving pseudopo-
tentials developed by Ham ann, Schluter, and
Chiang. ' This form of pseudopotential has the fol-
lowing advantages:

(1) the pseudopotential being energy independent
over a reasonable energy range,

(2) the pseudo-wave-functions converging to the
actual wave functions outside spheres of specified
radii about each atom, and

(3) the integrated "pseudocharge" being equal to
the integrated actual charge in the core regions.

Within the framework of the norm-conserving
pseudopotentials of Hamann et al. ,

' there is some
leeway in the choice of the functional form of the
pseudopotentials in the core regions. For reasons of
numerical efficiency, we have chosen a functional
form that would ensure (a) that the Fourier
transform of the pseudopotentials would have
minimal extent as a function of reciprocal-lattice
wave vector and (b) that the radial dependence of
the nonlocal pseudopotential would have approxi-

mately Gaussian form. Since for the elements of
interest in the present work, namely, C and Li, only
s- and p-wave interactions are appreciable, we have
followed the standard practice of approximating the
d-wave and higher angular momenta interactions
with the s-wave pseudopotential. This approxima-
tion has been proven to be reasonable for most
semiconductors.

The s-wave atomic pseudopotentials were gen-
erated from the all-electron atomic potentials Vz(r)
using the following two-step procedure. ' First the
pseudopotential was set equal to the functional
ofm

WI '(r) =y) W("(r)+5(r'exp[ (r/r() ], —(2)

where 1=0 for s wave, and y( and 5( are constants.
The final atomic pseudopotential is then determined

by inverting the Schrodinger equation for the pseu-

dopotential corresponding to the pseudo-wave-
funct1on W( (r)

4 I) (r ) = Vg ( r ) I 1 —exp [( r /r o )]—]
+cpexp[ —(r/ro)2]

Here the constant co was chosen so that the pseudo-
potential 4I)"(r) had a (nodeless) bound-state wave
function WI)"(r) at the all-electron valence energy
Eo. The pseudopotential radii ro and ro were
chosen so that the pseudopotential would converge
to the all-electron potential in the bonding region of
the crystal. In the second step the pseudo-wave-
function was modified so that it converged to the
all-electron wave function for r & r(, using the func-
tional form

1 d 2dr
2m p2 dr dr

g (2)(„)

l(1+1) (2)( )
r

(3)

4 (,"(r)=@I) '(r)+c(exp[ (r/r) ) ] . —(4)

The p-wave pseudopotential was generated by a
similar two-step procedure, except that, for numeri-
cal reasons, in order to simplify the nonlocal poten-
tial contributions, the first-step p pseudopotential
was taken to be of the form

Pseudopotential parameters Carbon Lithium

ro {=ro) [Eq. (1)]
r] [Eq. (4)]

g) [Eq. (11)]

0.7 bohr
0.55 bohr
2.1 bohr 2

1.5 bohr
1.5 bohr
0.35 bohr

TABLE I. Numerical parameters used in computa-
tion.

Once the neutral atomic pseudopotentials were
obtained, the ionic pseudopotentials 4o(r) and

4) (r) were determined' by subtracting the
valence-electron screening potentials due to Hartree
and exchange-correlation interactions. The configu-
ration 2s'p was used to generate the carbon pseu-

Basis-set parameters

Plane waves

Fourier expansion
of localized

orbitals

Q(~k+G~ & 3 bohr 2

Q&
( k+6) &25 bohr
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dopotential, and the configuration 2s' 2p' was
used to generate the lithium pseudopotential; how-

ever, several other atomic configurations yielded
virtually the same ionic pseudopotentials. The
pseudopotential parameters used in the present
work are listed in Table I.

B. Numerical methods of the mixed-basis
band-structure calculations

The numerical methods used in the present work
are for the most part described in Ref. 5. The orbi-
tals used to construct the LCAO components of the
basis set were the valence-electron pseudo-wave-
functions with radial components Wl' '(r) described
above. For both C and Li, LCAO Bloch functions
were constructed for each of the s and p valence or-
bitals. The convergence requirements of the basis
set in the present work were determined primarily
by the C pseudopotentials. Therefore, it was ap-
propriate to check convergence using the diamond
band structure. Using the range of plane waves and
the range of reciprocal-space expansion of the
LCAO wave functions listed in Table I, eigenvalues
were converged to within a maximum error of 0.2
eV. ' It was necessary to permit this relatively large
error in order to keep the computation time within
reason for the high-stage intercalation compounds.
We found our choice of numerical LCAO functions
to be preferable to Gaussian orbitals. In a limited
test using the diamond band structure, we found
that the use of single Gaussian LCAO's required
the inclusion of more plane waves to achieve com-
parable convergence.

Because the local orbitals Wi '(r) extend beyond
a single site, the on-site approximation described in
Ref. 5 could not be used in the present work. Con-
sequently, the most time consuming part of the cal-
culation was the evaluation of matrix elements of
the pseudopotential between LCAO functions. The
matrix elements of the local pseudopotentials (s-
wave part of ionic pseudopotentials plus Hartree
and exchange-correlation contributions of the
valence electrons) were evaluated using the fast-
Fourier-transform technique. This technique is

I

essentially an efficient trapezoidal-rule integration
throughout the unit cell. The integration mesh is
determined by the inverse of the maximum
reciprocal-space range Q,„of the matrix-element
components. The component having the largest
reciprocal-space range in the present work is the C
s-wave ionic pseudopotential with Q,„=8 bohr

The contributions of the nonlocal pseudopotential
(p-wave ionic pseudopotential minus s-wave ionic
pseudopotential) to the matrix elements were
evaluated using a separable-form approximation
described below. The matrix element of the nonlo-
cal pseudopotential between two LCAO basis func-
tions, with Fourier components denoted by W;(q),
is given by

X W| ("+G)VNL("+ '"+G )

G, G'

X W, (k+G'), (5)

where VNi (k+G, k+6') is the plane-wave matrix
element of the nonlocal potential. The idea of the
separable form is that the plane-wave matrix ele-
ment is approximated by

where f,(k+G) are specified functions and Az„are
constant coefficients, so that Eq. (5) becomes

with

M

p, v=O
(7)

FJ = g f,(k+G') W;(k+G') .
G I

(8)

Provided that the number of significant coefficients
are kept small, Eq. (7) is then more efficient to

evaluate than the direct form [Eq. (5)].
The plane-wave matrix element of the nonlocal

potential is given by

VNL(k+G, k+G')
M

y ~i„f/', (k+G)f„(k+G'), (6)
p, , v=O

2

VNi(k+G k+G')= ye ' "4/'(
I
k+G I, I

k+G'
I

) y r/~(kG)rgg(kG ),0 M

where

~'I'(
I
k+G

I I
"+G'

I
) = f ~'«Ji(

I
k+G

I
&)ji(

I
k+G'

I
&)l@'i«)—C"0«)1. (10)
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In Eqs. (9) and (10) 0 is the unit-cell volume, r represents the atomic site, I represents the angular momentum
of the nonlocal potential (l=1 in the present work), and kG =—(k+6)/

~

k+G
~

. It is apparent from Eq. (9)
that the separable approximation need only be made to the function 4&'(q, q'), since the other factors are al-

ready in separable form. The choice of separable functions is not unique. Our choice was

N

&I'(q, q')= g 4„"„[exp[ (q —+q' )/4q, i]jq + "(q')'+ ",
n, n'=0

where
n n'

00

&„'„,—:g g g, „J„l'„„J„Jr drr + + "[4,&(r) 4,o(—r}],
v=0 v'=0

g'„=[n!(4q ~)"] ' and J„=[(—2)"n!(21+2n +1)!!]

This form of the separable function has one adjust-
able parameter for each nonlocal potential, the
range parameter q,~. The expansion (11) is absolute-

ly convergence when the radial part of the nonlocal
potential takes the Gaussian form exp( —q,~r ). ~e
found this choice of separable functions using

q,~ =r,~

' to be adequate for both C and Li, although
care had to be exercised for possible divergences at
large q. Here rI, is the pseudopotential radius de-
fined in Eqs. (1}and (2).

The charge density of the occupied states for
each iteration in the self-consistent process was
evaluated as described in Ref. 5. Because of the ex-
istence of partly filled bands, midpoint sampling al-

gorithms were more appropriate than special point
algorithms, since the latter are heavily dependent
upon the continuity of the integrand and of its
derivatives. For LiC~2 and LiC~8, a 19-point mid-

point sampling was used within the irreducible sec-
tors ( —,) of the Brillouin zones. Equivalent or better

samplings were used for LiC6 and graphite.

I

valence-electron density is presented in comparison
with the density generated by the most refined fit to
the x-ray form factors' [Fig. 1(b}]. The overall

agreement between the two density distributions is
excellent: +0.15e/A throughout the entire unit

cell, close to the experimental accuracy. The exper-
imental density is generally higher than the calcu-
lated density. A contributing factor to this trend is
the fact that the experimental fitting parameters

were not constrained to the total number of elec-

trons. The set of parameters' used to generate

theo

III. VALENCE-ELECTRON-DENSITY
DISTRIBUTION

Graphite has the Bernal' structure with D6g
symmetry and four atoms and two inequivalent
types per unit cell. The atoms are arranged in
layers of hexagonal lattices with lattice constant
a =2.46 A; the separation between layers is
c/2=3. 35 A. Adjacent layers are shifted in an
ABAB stacking such that half of the carbon atoms
(type a) are directly above and below carbon atoms
in the adjacent layers, while half (type b) are direct-
ly above and below centers of carbon hexagons in
the adjacent layers.

Graphite is one of the few materials for which a
detailed analysis of the x-ray diffraction data has
been performed in terms of the valence-electron
density. ' In Fig. 1(a), the results of our self-
consistent electronic structure calculations for the

BXP

a axis= =c axis
FIG. 1. Contour plots of valence-electronic-charge

density for graphite: (a) Present results, and (b) results
from analysis of x-ray data by Chen, Trucano, and
Stewart (Ref. 1). Contour values are given in units of

0

0. 1e/A . Atomic positions are denoted by filled circles.
Two planes are shown —one containing an a axis and the
other containing the c axis and both intersecting at 90'
along a C—C bond. In (a) the dashed circle denotes the
pesudopotential radius. In (b) the authors quote a stand-

0

ard deviation of +0.1e/A .
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Fig. 1(b) overestimates the total density by
0.034e/A. Since ours is a pseudocharge density,
the shape of the density within the pseudopotential
radius [indicated in Fig. 1(a) by a dashed circle] is

not simply related to the real electron density.
However, the integral of the real charged within the
same region. ' The experimental determination of
the valence charge near the core region is also some-
what less accurate since the core contribution has
been assumed to have a particular form and did not
enter into the experimental fit. The difference be-
tween the two distinct carbon sites is very slight—
negligible in the calculated density and smaller than
the standard deviation in the experimentally derived
density. This indicates that the ground-state densi-

ty is rather insensitive to the interlayer structure.
This insensitivity was also shown by Posternak,
Wimmer, and Freeman who reported favorable
agreement of their calculated electron density for a
single graphite layer with the experimental results
of Ref. 1.

Figure 1 illustrates the highly anisotropic struc-
ture of the graphite valence density and the large
concentration of charge that constitutes the C—C
bonds. The density along the bond exhibits a
double-humped feature with peak densities of
roughly 2.1e/A, 10%%uo higher than the density at
the bond center. This distinctive feature of the
C—C bond has al'so been seen in diamond ' and
is very likely to be due to the competing effects of
the s- arid p-wave ionic pseudopotentials. For car-
bon, the p-wave ionic pseudopotential is significant-
ly more attractive than is the s-wave ionic pseudo-
potential. For group IV, materials in the third and
higher rows of the Periodic Table, such as Si, Ge,
and Sn, the existence of p-core states causes the p
and s pseudopotentials to have roughly equal

strength and the covalent bonds do not exhibit a
double-humped feature.

It is informative to consider the formation of the
graphite bonds by comparing the experimental den-

sity with that due to the superposed density of
spherical carbon atoms as shown in Fig. 2. Even
though the atomic configuration has been taken as

sp (sp plus p, ), the superposed density is not near-

ly as concentrated along the bonding directions as is
the actual graphite density. The superposed density
has a peak of 1.8e/A in a nearly spherical region
about each carbon atom in contrast to the higher
peak values along bond directions exhibited in the
actual graphite density. The maximum density at
the midpoint of the C—C bond is 30go smaller for
the superposed density than that of graphite.

From the Coulombic and exchange-correlation
potentials generated from the superposed atomic
valence density of Fig. 2 and the ionic pseudopoten-
tials of the C + ions, one obtained the first-iteration
charge density shown in Fig. 3. From this figure, it
is apparent that the first-iteration charge density is
close to that of the final-iteration density shown in
Fig. 1(a) and within the standard deviation of the
experimental density shown in Fig. 1(b). Within
this point of view, it is apparent that the ionic po-
tentials are the dominant factor which concentrate
charge in the bond region of graphite and that the
precise shape of the screening charge plays a secon-
dary role. On a somewhat finer scale, we can com-
pare the first- (Fig. 3) and last- [Fig. 1(a)] iteration
charge densities to see that the first-iteration density
is overconcentrated in the bond region. The self-
consistent density is slightly more extended into the
nonbonding regions. This behavior is also reflected
in changes in the energy bands as a function of
iteration, as will be discussed in Sec. IV.

to
Ist
iter.

a axis= -c Q xls Q QXIS= =C QX[S

FIG. 2. Contour plot of superposed valence-electron-
charge density of sp carbon atoms in the graphite struc-
ture. Contour values are given in units of 0.1e/A'.
Atomic positions are denoted by filled circles. The two
planes shown are as in Fig. 1.

FIG. 3. Contour plot of first-iteration valence-
0

electronic-charged graphite in units of 0.1e/A . Atomic
positions are denoted by filled circles. The two planes
shown are as in Figs. 1 and 2.
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FIG. 4. Self-consistent band structure of graphite {Hedin-Lundqvist exchange-correlation potential). Dashed lines
denote m bands, solid lines denote 0. bands.

IV. SAND STRUCTURE

The band structure of graphite has been reported

by many authors. Within these reported results,
there are 1 —2-eV variations in the calculated cr-

and n.-band extrema, and in the splitting of the n

bands due to interlayer interactions. It is our
opinion that most of the calculated band dispersions
are generally consistent with the available experi-
mental data. However, as will be discussed below,
we can identify some of the factors which cause
these discrepancies.

TABLE II. Band energies {in eV) for graphite.

Present results
Hedin-Lundqvist Slater Previous calculations Experimental

I -point states
bottom o band'

bottom m band

top o. band

0
0.3

11.7
13.7
17.4
17.5

0
0.2

12.9
14.5

17.2
17.4

ob

O.Sb

12.Sb

14.2

16.1

oc

0.3'

11.3'
13.0'

152
15 2'

od

12.5
13 4d 16 8e

16.0

unoccupied 0 bands

Ep
m bands near E~~

E —E0 0

E3—E)0 0

24.5
29.8
30.1
20.8

0.7
0.8

26.9
30.1
30.4

21.5

0.5
0.6

28.3"
28.0b

28.7b

20 5b

0.44"

o.ss"

26.6'
26.8'
26.8'

19.5'

0.44'

0.61'

27.S'

20.6d 22.5'

0.72'

0.84'

'Lowest o band chosen as zero of energy; all energies in eV.
"Reference 12.
'Reference 13.
Angle-resolved photoemission, Ref. 2.

'Angle-integrated photoemission, Ref. 10.
fReference 8.
NNotation of Slonczewski and Weiss, Ref. 23.
"Reference 11.
'Reference 9.
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The present band-structure results calculated us-

ing the Hedin-Lundqvist exchange and correlation
potentials are given in Fig. 4. Various features of
our results' are compared with some previous cal-
culations and experiments in Table II. In general,
the present results for the occupied bands are con-
sistent with the previous literature. The splitting of
the bands at the K point near the Fermi level is in

good agreement with experiment although the de-

tailed 0.01-eV dispersions of the Fermi-level bands
along the E-H direction' ' are beyond the accura-

cy of the present calculations. The total valence-
band width (20.8 eV), the o-band width (17.3 eV),
and the 0-m. band separations [12.7 eV (bottom) and

4.8 eV (top)] are within a few electron volts of
previous calculations" ' and of angle-resolved
photoemission measurements. In fact, the spread
in previously calculated results, as well as the uncer-
tainties introduced in the photoemission process in
determining these high-binding energy-band
features, are also on the order of a few electron
volts. We find that the bottom of the ~ band is

split by 2.0 eV due to interlayer interactions,
whereas the o bands (which are highly concentrated
near the carbon layers) are being split considerably
less. The present value of the m.-band splitting is
consistent with previous calculations" ' but twice
that inferred from photoemission. The photoemis-
sion value is a lower limit due to the effects of c-

axis dispersion which enter for the geometry of the
experiment.

The most puzzling feature of the present results

is the location of the first unoccupied 0. band. This
band, which has a band minimum of character I &+,

is of particular importance to the Li intercalation

compounds since it would strongly hybridize with

the bottom of the Li2s band. In our results, using

the Hedin-Lundqvist exchange-correlation approxi-
mation, this I &+ band is 2 —4 eV below previously
calculated values. Ho~ever, since this feature is the
minimum of a parabolic band, it may not be experi-

mentally detectable. The band contributes a very
low density of states and is, therefore, not easily
detected in reflectivity measurements. ' More-

over, it would be located below the vacuum level so
as not to be accessible to photoemission measure-

ments. An examination of the electron-density dis-

tribution for this state shows that it has an extra
node near each carbon ion and is highly concentrat-
ed in the region between the two carbon planes. In
LCAO language, one would be tempted to label this
state as the bottom of the carbon 3s band. We find
that the inclusion of plane waves in the mixed-basis

set is essential to the proper description of this
state; their omission significantly shifts its energy
position. The I ~+ state for an inadequate basis set
is forced to have a higher energy than it does in a
converged basis expansion such as used in the
present work. However, basis-set completeness does
not explain the entire discrepancy; a recent
Korringa-Kohn-Rostoker calculation, in which
muffin-tin corrections were included and all expan-
sions were well converged, ' showed this state to be
2 eV higher than in the present results. As will be
discussed below, the remaining discrepancy can be
attributed partly to self-consistency and partly to
the use of different exchange-correlation approxi-
mations.

The effects of self-consistency on the band ener-

gies (at the zone center) are illustrated in Fig. 5.
The diagram on the left of the figure illustrates the
results for graphite using the Hedin-Lundqvist
exchange-correlation approximation. The three di-

agrams on the right of the figure present the analo-
gous results for three stages of Li-intercalated gra-
phite. The extra bands in the Li-intercalated com-
pounds are caused by zone folding due to the Li su-

perlattice. It is interesting to note that the trends
seen in the intercalation compounds are similar to
that seen in graphite itself. This can be understood
since Li only contributes one electron compared
with 24, 48, or 72 carbon electrons, respectively, for
stage-1, -2, and -3 Li-intercalated graphite. Thus

30- '- 30

20.
-EF -EF -EF

e F -=EF
-20

15- 4
— l5

10- - 10

5-

F I RST LAST FIRST L AST
G RAP HITE GRAPHITE

(HL) (SLATER)

C
C 0

FIRST LAST FIRST LAST FIRST LAST
Li C6 LiCip Lt CI8
( HL) (HL) (HL)

FIG. 5. Energy-level diagram showing the effects of
self-consistency on the I -point levels for the first-
iteration (FIRST) and self-consistent (LAST) potentials.
HL denotes Hedin-Lundqvist exchange-correlation ap-
proximation, while SLATER denotes Slater's approxima-
tion. The last three panels of the figure show the results
for three stages of Li-intercalated graphite. Dashed lines

denote a bands, solid lines denote 0. bands.
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FIG. 6. Self-consistent band structure of graphite for Slaters exchange-correlation approximation. Dashed lines
denote m bands, solid hnes denote o. bands.

the major changes in the self-consistency process
are those for the carbon electrons.

The energy shifts between the non-self-consistent
and self-consistent energy-bands result from the
charge-density changes shown in Figs. 1 —3.
Namely, the superposed atomic density (Fig. 2) is
too diffuse to self-consistently screen the ionic po-
tential of the crystal. The resulting first-iteration
charge density (Fig. 3) is overconcentrated in the
bonding regions. (The corresponding energy bands
are shown in the far-left portion of Fig. 5.) By the
final iteration, the charge [Fig. 1(a)] has relaxed

slightly into the nonbonding regions, and the ~
bands become lowered in energy. The unoccupied
I &+ band is lowered by 3 eV in energy during the
self-consistency iteration. The lowering of the ener-

gy of the mand I ~+ st.ates, which have appreciable
extent in the region between the carbon planes, is
affected mainly by the exchange-correlation poten-
tial which becomes more attractive with increasing
electron density. It is important to have a complete
basis set to correctly describe the self-consistent

screening charge.
The effects of the exchange-correlation approxi-

mations on the bands of graphite were studied by
performing a self-consistent calculation using
Slater's exchange approximation. The Hedin-
Lundqvist exchange-correlation potential is general-

ly less attractive than the Slater exchange potential

by a density-dependent factor that varies from —, (at

high density) to 1.2 (at low density). For the densi-
ties appropriate to graphite, the factor varies only
from 0.7 in the bonding region to 0.9 between car-
bon planes. As a result, the Slater exchange-
correlation potential is systematically more attrac-
tive in the bonding region so that the self-consistent
density is more concentrated in the bonding regions
than is the density derivni from the Hedin-
Lundqvist form. The resulting zone-center eigen-
values are illustrated in the second panel of Fig. 5
and the complete band structure is given in Fig. 6.
The band energies are also listed in the second
column of Table II. It is evident that concentration
of the wave functions of the occupied states into the
bonding region causes the splitting of the bottom of
the ~ band to decrease by 0.5 eV and causes the
unoccupied I ~+ band to move up by 2.5 eV in ener-

gy. The splitting of the bands near the Fermi level
for the Slater approximation is in slightly poorer
agreement with experiment than is the splitting for
the Hedin-Lundqvist approximation.

U. SUMMARY

This study has demonstrated that self-consistent
local-density calculations for graphite are capable of
determining electron-charge-density distributions in
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quantitative agreement with experiment. Although
the Hedin-Lundqvist form of the exchange-
correlation function is a more sophisticated approx-
imation than is the Slater function, both results are
consistent with the x-ray data, as is the first-
iteration (non-self-consistent) charge density. The
energy bands are somewhat more sensitive to these
factors, and the self-consistent Hedin-Lundqvist
bands agree best with experimental determination of
the bands near the Fermi level. We have successful-
ly established our results as a reasonable basis of
comparison for intercalation compounds of gra-
phite.
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