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We report wavelength- (A,-) and size-dependent measurements of the dielectric functions

(e) of macroscopically uniform samples pressed from A1203 powders of different particle

sizes. The data agree with effective medium (mean-field) theories for particle diameters

less than about 0.25K,. For particle diameters larger than about 0.5A, , measured values of e
exceed allowable quasistatic limits for known volume fractions, and finite-wavelength ef-

fects must. be considered. We show that finite-wavelength theories are more sensitive to
microstructural parameters than quasistatic theories, which suggests that finite-wavelength

models should be useful for microstructural or materials characterization and could also

have predictive value. Finally, we show that the recent perturbation model of Bosi,

Girouard, and Truong, that includes dynamic terms as additions to a quasistatic theory,

predicts rates of increase of e with particle size that greatly exceed those of experiment or

other model calculations. Thus dynamic terms cannot in general be incorporated as addi-

tions to quasistatic theories but must be included in the initial formulation of the effective-

medium problem.

I. INTRODUCTION

The description of the dielectric properties of
heterogeneous or composite materials is a historic
problem that has attracted considerable recent atten-
tion. ' In such materials, an externally applied field
causes a screening charge to accumulate at the
boundaries between the separate phases. The
screening charge generates differences in the local
fields and polarizations from their macroscopic
average, or observable, counterparts. Because the
importance of screening depends on a number of
factors such as the difference in polarizability of the
separate phases, their relative volume fractions, the
sizes and shapes of the individual regions, and the
presence or absence of macroscopic isotropy, the
calculation of the dielectric function e of a hetero-

geneous material can be performed accurately only
if the microstructure is known in detail.

This knowledge is typically unavailable analyti-

cally for real systems where the microstructure is
essentially random. Nevertheless, considerable pro-

gress has been made in the limit where the charac-
teristic dimensions of the microstructure are small

compared to A, , the wavelength of the radiation. In
this limit, the time dependence can be ignored and
the local fields and polarizations can be calculated
in principle from the "electrostatic" continuity con-
ditions on local displacement and electric fields
d(r) and e(r), respectively. Numerous effective-
medium or mean-field expressions of varying de-

grees of detail and complexity have been developed
in this approximation, ' and rigorous (and fairly
restrictive) limit theorems have been derived for the
allowed range of e for the special case of two-

component composites. " ' General expressions'
and discussions of the relationships among various
quasistatic theories' ' can be found in the litera-
ture. Within the microstructural size limitation,
these models give a satisfactory account of the ex-

perimental results for a wide range of sys-

tems, ' ' provided that suitable averages are
taken over size and shape distributions; also the de-

crease of the mean free path due to surface scatter-
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ing must be taken into account in systems contain-

ing small metal particles.
In contrast to the quasistatic case, the analytical

and experimental situations where the microstruc-
tural dimensions are comparable to A, are much less
clear. This more difficult problem has received
theoretiml attention only very recently, and
quantitative data on fully characterized samples are
virtually nonexistent. While it is known that quasi-
static theories mn give a reasonable characterization
of the spectral response of composites whose mi-

crostructural dimensions are too large for these
theories to be rigorously applied, it is not clear
that the parameters, such as volume fractions and
particle shapes, that reproduce these spectral
responses are really representative of the samples.
Indeed, there is reason to suspect that the naive ap-
plication of quasistatic models can lead to signifi-

cant systematic errors. It was recently shown that35

refractive indices measured for pressed-powder
composites of known packing fraction exceeded the
maximum values allowed by quasistatic-limit
theorems for samples for which microstructural di-

mensions were of the order of A, . Exact solutions
for laminar microstructures indicated that a

waveguiding effect that favored propagation in the
more dense phase was the responsible mechanism.

In view of the variety of conflicting theories of
limited applicability, there is a clear and pressing
need to obtain quantitative data on samples well
characterized with respect to all relevant parame-
ters: the dielectric functions and volume fractions
of the constituent phases and the sizes and shapes
of the separate composite regions. It has been our
objective to provide such data for composite sys-
tems consisting of A1203 and voids. This choice
was dictated by practical reasons. First, dimension-
ally well-characterized A1203 particles of various
sizes are readily available as abrasives. Second, the
intrinsic dielectric properties of the oxide are essen-
tially determined by intra-atomic electronic transi-
tions between the nonbonding oxygen 2p levels and
the oxygen 3s levels of the lower conduction band
and consequently are little affected by particle size
and shape or by crystalline quality. Third, the ma-
terial is transparent in the visible to the near uv
spectral range, which simplifies calculations by al-
lowing one to work with real variables; more impor-
tantly, the transparency property provides a genuine
test of finite-wavelength theories because the light is

FIG. I. Stereographic SEM micrographs of the front surface of a pressed-powder composite prepared from 0.3-pm
alumina abrasive. The surface can be seen in three dimensions by using a stereo viewer.
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able to sample appreciable distances of the compo-
site. In contrast, surface effects dominate in strong-

ly absorbing materials where the penetration depths
are small. Fourth, the low dispersion of Alz03 al-
lows us to exploit a variable not previously used.
We can parametrically change the particle dimen-
sion to wavelength ratio of a given sample by
changing A, with the certainty that the microstruc-
ture is invariant and the optical properties nearly so.

II. EXPERIMENT

Composite samples were prepared by compress-
ing corundum abrasive powders of nominal particle
sizes of 0.05-, 0.3-, 1.0-, and 3.0-pm diameters be-

tween 13-mm diameter hardened steel dies as
described previously. Particles 3.0 pm in size
were obtained as Microabrasives Microgrit WCA.
The other sizes were obtained as Linde 3, B, and C.
The 0.05-pm particles were 15% a phase and 85%
y phase, and the 0.3-IMm particles were 90% a
phase and 10% y phase as verified by x-ray-
diffraction measurements. The 1.0- and 3.0-pm
particles were entirely a phase. Because of their
great hardness, no shape or phase change of the
particles was expected from compression during
sample preparation.

Packing or volume fractions were determined
from the measured mass and volume of each pellet.
The uniformities of particle size and shape and of
the microstructure of the compressed pellets were
characterized by a combination of scanning electron
microscope (SEM) and sedimentation measure-
ments. An SEM micrograph of a typical sample
prepared from 0.3-pm particles is shown in stereo-
gram form in Fig. 1. The individual particles are in
the form of platelets, but the distribution is com-

pletely random and macroscopically uniform over
the field of view. All samples exhibited this type of
macroscopic homogeneity, not only at the surface
but throughout the bulk as verified by SEM micro-
graphs of fractured samples.

With respect to the other materials, the 0.05-pm
particles were found to be of the specified size, but
they tended to agglomerate into platelet structures.
The 1.0-pm particles were ellipsoidal and also
formed platelet agglomerates. These samples also
appeared to contain a significant amount of fines of
less than 1.0-pm diameter. The nominal 3.0-pm
particles were platelets with less than 1% of fines
less than 1.0 pm or larger than 10 pm in size.

Values of e were calculated from refractive in-

dices measured at wave lengths A, =6328, 6000,
5000, 4000, 2800, and 2000 A using the Brewster-

angle method on the quasispecular large-area sur-
faces of the compressed pellets. The 6328-A obser-
vations were made with a Hewe laser. The remain-
ing data were obtained using tungsten-halogen
(6000,5000,4000 A) and high-pressure HgXe arc
(2800,2000 A) sources together with a modified
Perkin-Elmer model-13U spectrograph and suitable
filters. The wavelength resolution was 0.05 pm.
The illuminated areas were 13-mm diameter, and
13- and 0.8-mm diameter for the laser with and
without beam expander, respectively.

The. measured laser beam divergence was 1.6
mrad, while that for the other illumination systems
was 17 mrad. For the large diameter incident
beams, the aperture stop of the sensor system was
adjusted to accept radiation scattered from a 2-
mm-diameter sample area. The aperture stop was
removed when the direct laser beam was used. The
rationale for the optical geometry will be discussed
in a following section.

III. THEORY

The general concept of a dielectric function has
validity in describing the response of a medium to
an electromagnetic perturbation only in an average
sense. The conditions under which this can be done
are discussed in detai. l by Stroud and Pan and by
Lamb, Wood, and Ashcroft. Difficulties do not
arise in the quasistatic (infinite-wavelength) limit
where the natural length scale 1/

~

k
~

of the elec-
tromagnetic radiation is much larger than the other
two length scales relating to the microstructure and
to the averaging process. Thus difficulties arise
when 1/~ k

~

and the microstructural dimensions
become comparable, and scattering effects cannot
be ignored. A natural method of defining a dielec-
tric function in this context is to consider the wave
vector associated with mean propagation or forward
scattering, whereby if e is properly chosen, the for-
ward scattering should vanish. Under this condi-
tion

I d(r, co)e ' dr=e I e(r, co)e '+dr, (1)

where d(r, co) and e(r, co) are the microscopic dis-
placement and electric fields, respectively, and
e=c k /ro is the scalar dielectric function of the
composite medium. In Eq. (1) propagation is as-
sumed to be in the z direction.

For two-phase composites, the common quasi-
static models and limit theorems can be summa-
rized concisely as'
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(2)

where e„e&and f„ft,are the dielectric functions
and volume or packing fractions of the separate
phases a, b, q (0&q &1) is a screening parameter,
and eI, is a "host" dielectric function that will be as-

signed to one, or the other, or some combination of,
the dielectric functions of the separate phases. The
volume fractions satisfy the conditions
0 &f„ft,& 1, f, +ft, =1. The absolute Wiener lim-
its" to the allowed range of e for arbitrary compo-
sition and microstructure are obtained for q =0 or 1

and 0&f, & 1. The Hashin-Shtrikman limits' for
known macroscopic composition are defined by f,
and 0&q &1. The Bergman-Milton limits' ' for
known composition and two- (q= —,) or three-

dimensional (q = —,) macroscopic isotropy are ob-

tained by fixing f„q,and imposing the Wiener lim-

its on et, . The Maxwell-Garnett expressions follow

by taking e~ ——e, or e~, while the Bruggeman
effective-medium approximation (EMA) is ob-
tained with the self-consistent choice et,

——e. We
shall use the Bruggeman expression to compare
data to quasistatic theory.

A number of approaches have been developed to
deal with finite-wavelength effects. We shall work
with the exact expressions, as well as with their
quadratic expansions in d/A, . The simplest of these
is the two-phase (superlattice) laminar model, i5

which is the finite-wavelength solution of Eq. (1)
for the microstructures that lead to the absolute
Wiener limits in the quasistatic case [Eq. (2)j. This
theory is not expected to apply to our samples,
which have an essentially random microstructure,
but it should provide an estimate of the limiting
theoretical behavior in the finite-wavelength case.
The quadratic expansion of the equations describing
this model microstructure can be written

ir (e, eb) g, (t,d,—dt,
e(d/A, ) =e+

3A, (d, gb+dt, g, )
(3)

where d and d~ are the thicknesses of the lamina-
tions of phases a and b. For the TE mode

g, =gt, =l and e=f, e, +ft,et„while for the TM
mode g, =e„gt,=es, and 1 le =f, /e, +ft, /et,
Note that the quasistatic limits converge to the two
Hashin-Shtrikman limits, which define the allowed
range of e when f, is known.

A similar quadratic expansion can be deve1oped
for spherical inclusions, as given by Stroud and
Pan. Here, Eq. (1) is solved in a dynamic
effective-medium approximation (DEMA) using the

standard Mie coefficients ' for scattering from
spherical particles. From Eq. (3.2) of Ref. 32 we
find

e(d /A, ) =e+
. E' —E'

~ 30K,

3f,e, 3fi,et,

(e, +2m) (et, +2e)

(4)

EI ——E, ,

+ + 3
P=Pii =Pi —— f,b, ,E,

4m.

(5a)

(5b)

where f, is the volume fraction occupied by the
spherical particles of dielectric function e, . The
quantity 6I is defined for dipolar and quadrupolar
interactions in Appendixes A and 8 of Ref. 36.
From Eqs. (5) above and Eqs. (33), (40), and (41) of
Ref. 36, it follows that

2
772 d

e(d /&) =e+ — f,(e+2)'
18

79@,—112@,+36 E, —1

5(e, +2)' 2e. +3

(6)

where the host medium is assumed to be empty

where f; and e; are the volume fractions and dielec-
tric functions of all particles of diameter d;. The
quasistatic limit e in this case is just that of the
self-consistent Bruggeman EMA theory. In Eq. (4),
the correction term arises entirely from magnetic
dipole effects, and it can vary over a considerable
range depending on the relative diameters of the
spherical regions. More general expressions can be
derived from the multipole-modified Maxwell-
Garnett expressions of Lamb et al. However,
these are based on the same principles so we shall
use Eq. (4) as a representative special case.

The laminar and spherical-inclusion expressions
are examples based on DEMA theories. Recently,
Bosi et al. ' proposed another approach, that of
treating finite-wavelength effects as perturbations to
the quasistatic formalism. The expressions given in
Ref. 36 are not directly applicable without some
modification: They were developed for two-
dimensional systems and include self-consistent di-
polar and quadrupolar polarization terms E~ and

Eq that vanish in random three-dimensional sys-
tems. However, the necessary modifications are
straightforward. Equations (34), (38), and (39) of
Ref. 36 are simply replaced with
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d =0.05

f, =0.47
&EMA=1 88

d =0.3
f =0.57
'EMA —2, 13

TABLE I. Measured values of e for vanous compressed pelletllets discussed in text, with cor-
responding physical parameters: particle size d, (pm p

'
g( m) ackin fraction f„e(EMA at 5000 A),

EEMA, index of refraction for A1203 (from Ref. 40), n0, radiation wavelength A, (A).

d =1.0 d =3.0
f, =0.46 f, =0.62

eEMA ——1.86 eEMA ——2.26

A, =6328
A, =6000
A, =5000
A, =4000
A, =2800
A, =2000

n0 =3.335
no =3 341

3, 366
n0 =3.411
n 0 ——3.554
g0 —3, 892

1.918

2.005
1.946
1.907
1.949

2.637
2.931
3.467
3.675
3.591
3.561

1.357

2.190
2.531
2.762
2.654

2.723

2.958
2.979
3.233
3.014

IV. RESULTS AND DISCUSSIONS

Table I lists the packing fractions (volume frac-
tions f, ) of each of the samples discussed in detail

2-

0.05@m

~ o ~o+M ~ ~ ~ ~ e ~ ~ ~

/ Prr)

space (as= 1), d is the diameter of the equivalent
spherical inclusions, and the quasistatic limit e is
calculated in the Maxwell-Garnett approximation
with b (void) being the host phase. In Eq. (6), the
first and second terms in second large parentheses
represent the magnetic dipole and electric quadru-
pole contributions, respectively.

31Another approach was developed by Ruppin to
deal with apparent absorption, that is, the loss of
flux in the forward direction due to scattering. The
theory is intended for transmission measurements
an d thus is not applicable to our measurements.

ofLikewise, the retarded-potential generalization o
the Maxwell-Garnett expression by Granqvist and
Hunderi is valid only for small packing fractions
and cannot be applied here.

in this section. We list in addition the squares of
the ordinary index of refraction no of a-A1203 as

42given from the dispersion equation. The
birefringence (n, —nc) is of the order of 0.01 (Ref.
43) and was ignored since its effect was already
small and would have been reduced to negligible
proportions upon averaging. Moreover, the differ-
ence between the dielectric functions of the a and y
phase is also negligible on our scale and was ig-
nored. Also listed for comparison are the quasi-
static EMA values of e calculated at 5000 A from
Eq. (2) with the packing fractions appropriate to
each sample. In this calculation we take e, =3.366,
f, as given in Table I, Es= 1, e'h=E, and q = 3.
The EMA values change somewhat with wave-

~ ~ 2length owing to the dispersion in e, =no.
fA comparison of the results for the samples o

particle sizes 0.05 and 0.3 pm is shown in Fig. 2.
To eliminate as far as possible the effects of pack-
ing fraction and dispersion in the index of refrac-
tion, and thereby to make the comparison more
meaningful, each datum of Table I was normalized
before display in Fig. 2 by the appropriate EMA
value of e for that packing fraction and wavelength.

P

~ ~
~ ~

~ ~ ~

0
0

I

0.5 1.0 1.5

6
1-

EN)A

1.0)um

h.~~0

FIG. 2. Dielectric functions e vs g =d /A, of
compressed A1~03 pellets of particle sizes 0.05 and 0.3
pm, normalized to the quasistatic EMA values as
described in the text. The quasistatic Hashin-Shtrikman
and Wiener limits are shown as the dashed and dotted
lines, respectively.

0
0

I

10 15

FIG. 3. Same as Fig. 2, but for the compressed
Alz03 pellets of particle sizes 1.0 and 3.0 pm.
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Further rationale for this procedure is that the
Hashin-Shtrikman limits, the absolute bounds to e
within the quasistatic theory for the packing frac-
tions given, become essentially independent of both

f, and A, if this normalization is performed. These
limits are shown in Fig. 2 as the dashed lines. The
upper Wiener limits, corresponding to solid A1203,
are shown as dotted lines for both samples. Lines
are drawn through the experimental points only for
clarity. A similar display for the samples of parti-
cle size 1.0 and 3.0 pm is shown in Fig. 3.

Several conclusions follow immediately from
Figs. 2 and 3. First, the results for the 0.05-pm
particle sample are in good agreement with quasi-
static predictions. The values cluster about the nor-
malized EMA value of 1.00, and to within the ex-

perimental uncertainty also fall between the normal-

ized Bergman-Milton limits (the Maxwell-Garnet
values) of 0.948 and 1.042. The results therefore
favor the EMA value, as expected from an aggre-

gate topology. The second qualitative conclusion is
that for values of d/A, in excess of about 0.5, the
measured values of e are too large from the stand

point of the quasistatic theory. With the exception
of the single 6328-A point for the 1.0-pm particle
samples (see below), all the data lie above the max-

imum value possible for the quasistatic theory.
This is in qualitative agreement with the predictions
of the laminar model which indicates that the waves

tend to become evanescent in the less dense phase
and that the energy tends to concentrate in the more
dense material.

While the trends in Figs. 2 and 3 are clear, there
exist some systematic differences that we thought
might be attributable to the optical-system
geometry. All data show an initial increase fol-
lowed by a decrease for shorter wavelengths for
measurements made with 13-mm beam diameters.
The initial increase is most pronounced for the 0.3-
and 1.0-pm particle sizes, i.e., those whose dimen-
sions are also closest to the wavelength of light.
Since the laser beam diameter without beam ex-
pander was 0.8 mm, an area of this diameter was
delineated for additional Brewster-angle measure-
ments. The lower coherence (incandescent lamp)
system achieved the same delineation area with an
aperture stop on the sensor side, thus assuring the
Brewster-angle determination of the same areas.
Comparisons with measurements using the standard
tungsten-halogen source and corresponding beam-
expanded laser (13 mm) source verified that the low
initial values were not a result of the combination of
the coherence of the laser source and the aperture

2-
I

/ BGT-D BGT-Q

EMA

I

/ g~~gISSSSI+~
a ~~ e ~~aams~~~aZ~ cata

o+

OEMA-1
e

~ ee+

b OEMA 2
+esee e+ W m)~

~e
TM

OEMA-3

0
0

I

0.5
I

1.0
I

1.5

FIG. 4. Variations of e with g =d/A, calculated for
parameters appropriate to the 0.3-pm particle sample at

0
4000 A and normalized to the Bruggeman quasistatic
values, as described in the text. The models are: BGT-
D,BGT-Q: Bosi et al. dipole and quadrupole; TE,TM:
laminar transverse electric and magnetic; DEMA-1, -2,
and -3: dynamic EMA with spherical inclusions, spheri-
cal inclusions and voids, and spherical voids, respective-

ly. Only the quadratic expansion is available for BGT-
D and BGT-Q. Both quadratic and exact calculations
are shown for the laminar model, while only exact cal-
culations are shown for DEMA-1, -2, and -3.

stop on the sensor side of the system. A third set of
measurements involving the smaller illumination

0

areas at 6328 A and no aperture stop on the sensor
side of the system yielded no differences (+0.02) for
samples consisting of 0.05- and 3.0-pm particles.
However, measurements on the 0.3- and 1.0-pm
samples showed dependence on the illumination
area. Repeatable values of e as low as 1.83 (com-
pared to 2.637, Table I) and as high as 1.75 (com-
pared to 1.357, Table I) were observed on 0.3- and
1.0-pm samples, respectively, for the laser spot size
of 0.8-mm diameter, although the 0.1- and 3.0-JLtm

values did not change. If this effect is attributable
to interference effects between the top two layers of
the pressed sample, an analogy could be made to the
Bragg law for interference in uniformly spaced lat-
tices. Thus, as d (the particle size) increases, the
diffraction angle decreases and the complementary
Brewster angle increases as observed for the 1.0-pm
particles; also, conversely for the 3.0-pm particles.
Thus the dips at the onset of the 0.3- and 1.0-IMm

curves do not appear to be caused by an instrumen-
tal effect, but may be an interlayer interference ef-
fect.

We compare next the predictions of the theoreti-
cal models to our experimental results. Figure 4
shows the variations calculated from the laminar,
DEMA, and perturbation models discussed in the
preceding section. These models were evaluated us-



26 FINITE-WAVELENGTH EFFECTS IN COMPOSITE MEDIA 5319

ing the parameters of the 0.3-pm particle-size sam-

ple at 4000 A: e, =3.411, f, =0.57, and eb ——1.
The calculated values were normalized to the
Bruggeman quasistatic value of e to be able to corn-
pare Fig. 4 directly to Fig. 2. The exact solution for
the laminar model ' indicates that the quadratic
terms should provide a reasonable representation
for d/A. &0.5 (Fig. 4: TE, a and TM, b). Beyond
this range the higher-order terms cannot be neglect-
ed. Our purpose is simply to investigate trends in e
with increasing d/A, to see whether the models are
reasonable. Note that the quasistatic limits differ
among the models, as indicated previously.

Comparison with Fig. 2 shows that the variation
predicted by the perturbation model of Bosi,
Girouard, and Truong (BGT) is too rapid to
describe the data. The separate evaluation of mag-
netic dipole (BGT-D) and electric quadrupole
(BGT-Q) terms shows that the magnetic dipole term
is by far the larger and is primarily responsible for
the disagreement between theory and experiment.
The relative unimportance of quadrupole effects
was also recognized in Ref. 36. Nevertheless, the
inability of the formalism to represent the data
shows that the approach is inadequate and that
dynamic effects of this type cannot be treated as
perturbations to quasistatic theories, but must be in-

corporated from the start.
The laminar model is compatible with the 0.3-pm

particle results, but the initial rate of rise is too fast
with respect to the 1.0- and 3.0-pm particle results.
Moreover, the exact calculation shows that e should
essentially reach the Wiener limit for d /A, = 1,
which is clearly incompatible with the 1.0-p,m re-
sults of Fig. 3. This is not surprising, as the mi-

crostructure assumed in this model does not corre-
spond to that of the actual samples.

We consider finally the full DEMA treatment

given by Eq. (3.2) in Ref. 32. Although based on a
spherical geometry, the allowance for regions with

different diameters permits considerable flexibility
in evaluating this expression. We show in Fig. 4 the
results obtained in two limits: spherical polarizable
regions of equal diameters (DEMA-1) and spherical

uoids of equal diameters (DEMA-3). Surprisingly, e
decreases with increasing d/k in the latter case.
This, however, is seen from Eq. (4) to be a natural

consequence whenever e & e; for the dominant

spherical inclusions. Assuming both inclusions and

voids to be spherical with equal diameters (a topo-
logical impossibility, but shown as DEMA-2) pro-
duces a mean value giving a slow increase of e with

d/A, . In fact, the experimental topology should be

appropriate to a variation somewhere between
DEMA-1 and DEMA-2, recognizing that the actual
particles are platelets, not spheres. This appears to
be consistent with the results of both Figs. 2 and 3.
However, our main point is to show that finite-
wavelength theories encompass qualitatively dif-
ferent ranges of behavior depending on the micros-
tructure, and therefore would be expected to have
diagnostic value. Hereto, the quadratic approxima-
tion given by Eq. (4) is inaccurate, predicting too
great a change.

It should be noted that the flexibility of finite-
wavelength formalisms is inherently much greater
than that of their quasistatic limits. Thus attempts
to determine which of these formulations is "best"
will be more difficult and less convincing than simi-
lar efforts applied to quasistatic theories. However,
by deliberately choosing a system where the spectral
dependence is secondary and the independent vari-
able is dlk, we have taken a novel approach and
have succeeded in showing that a perturbative treat-
ment is not adequate. Our results therefore provide
insight towards more general representations of the
dielectric response of composite media at finite fre-
quencies.

V. SUMMARY AND CONCLUSIONS

Our results can be summarized briefly as follows.
For particle diameter to wavelength ratios
q=d/A, &0.25, the mean-field theories ' give an

adequate description of the data. Of the possible
mean-field theories, the Bruggeman effective-
medium approximation (EMA) for the three-
dimension isotropic case most accurately matches
the data, as expected for aggregate configurations.
For larger values of d/A, , e increases in value over

the mean-field value in qualitative agreement with

the focusing or waveguiding effect that is active in
laminar configurations. ' The rate of increase is

consistent with the predictions of' the dynamic
effective-medium approximation (DEMA) of
Stroud and Pan, which is itself a special case of a
more general theoretical treatment by Lamb, Wood,
and Ashcroft. We find that the changes in e with
increasing d/A, are sensitive to microstructure.
Specifically, we find that in theory e can either in-

crease or decrease with increasing d/X according to
whether the voids, the polarizable constituents, or
both are considered spherical. In fact, our Alz03
composites composed of platelets behave by this cri-
terion as if both particles and voids have a basically
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spherical microstructure.
Our results show that the perturbation model of

Bosi, Girouard, and Truong, wherein finite-
wavelength effects are treated as time-dependent di-

polar and quadrupolar corrections to a quasistatic
solution, is not compatible with our experimental
results even though here the microstructure as-
sumed theoretically is consistent with experiment.
The rate of increase of e with d/A, predicted by this

model is considerably larger than that calculated in
the laminar approach and also far larger than ex-
periment. The prediction of more rapid changes
than those obtained for a special microstructure for
which screening was maximized indicates quite
clearly that finite-wavelength effects generally can-
not be incorporated as additions to electrostatic
theories but must be included in the initial formula-
tion of the effective-medium problem.

'See, e.g., for a survey, R. Landauer, in Electrical Trans-
port and Optical Properties of Inhomogeneous
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