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We have investigated the conductivity in a random directed network of ‘‘ohmic’’ diodes, ele-
ments which exhibit ohmic response under a forward-bias voltage. A numerical method is
developed to identify first the correct ‘‘state’’ of the network, the distribution of forward- and
back-biased diodes within the directed backbone, and then calculate the conductivity near the
percolation threshold. Extrapolation of Monte Carlo data on the square lattice by anisotropic
finite-size scaling yields a directed conductivity exponent of ¢, = 0.60.

Directed percolation is a relatively simple generali-
zation of pure percolation in which a lattice is ran-
domly occupied by directed bonds (diodes) which al-
low connectivity to ‘‘flow’’ in only one direction.
This model has attracted considerable attention be-
cause it displays novel critical behavior characterized
by two independent diverging lengths to describe
cluster shapes near the percolation threshold.! Fur-
ther interest stems from the connections that directed
percolation has with Reggeon field theories,? branch-
ing Markov processes,® and strong-field hopping con-
ductivity.*

In this Communication, we study the conductivity
in directed percolation using Monte Carlo simulations
in conjunction with an anisotropic finite-size scaling
method. Our motivation for this investigation is the
understanding of how the anisotropic character of
directed percolation and the directionality constraints
of the diodes manifest themselves in the behavior of
the conductivity. The anisotropy of the phase transi-
tion requires a finite-size scaling that is anisotropic in
nature. For the numerical values of the correlation
length exponents of directed percolation, if the linear
dimension of the lattice perpendicular to the anisotro-
py doubles, the linear dimension parallel to the aniso-
tropy must approximately triple. This novel feature
should arise in finite-size scaling for any model with
more than one critical correlation length. The Lifshitz
point problem,’ and the nematic—to—smectic-4 tran-
sition in liquid crystals® are other examples where
this behavior occurs.

The directionality constraints give rise to an in-
teresting problem of predicting the ‘‘state’ of the
system —the distribution of forward- and back-biased
diodes in a random network. Since the determination
of the network state requires the final distribution of
voltages in the lattice, the problem is inherentaly
nonlinear. We have developed a numerical relaxa-
tion method to find the state and simultaneously cal-
culate the conductivity of a random network. We
have applied this method to directed percolation,
where almost all diodes are forward biased, and we
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hope to apply the method to systems with a larger
fraction of back-biased diodes such as networks with
randomly oriented diodes.

We consider a square lattice which is randomly oc-
cupied, with probability p4, by ‘‘ohmic’’ diodes con-
strained to conduct only to the upper-right or the
upper-left (Fig. 1). Each such diode is defined to al-
low a current flow which is proportional to the vol-
tage under forward-biased conditions, and no current
flow otherwise. Thus a positively biased ohmic diode
behaves like an ideal resistor while a negatively
biased ohmic diode behaves like an open circuit. For
simplicity, we consider only the ‘‘directed’’ conduc-
tivity, obtained by applying the field along the aniso-
tropy axis of directed percolation (Fig. 1).

To calculate the directed conductivity of a given
configuration, we first obtain the underlying directed
““backbone’’ by stripping away all dangling branches
and isolated clusters. All series configurations and all
nonnested parallel configurations are then reduced in
order to save time in the subsequent numerical relax-
ation calculation for the conductivity. In order to in-
troduce our approach for the directed diode network,
we briefly outline relaxation for the random resistor
network.” Starting with an initial guess for the vol-
tages at each node of the network, local current con-
servation is used to update the node voltages. By
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FIG. 1. The directed diode network with the field applied
parallel to the anisotropy axis. Periodic boundary conditions
in the transverse direction are employed. Diodes are indi-
cated by heavy arrows, and the /-V response of one such
element is shown to the right.
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iterating this procedure, the potential at the ith node
at the nth step is

vin=3e; | S M
J J

where g; is the conductivity between / and j, and V;
is the voltage at j when the nth iteration at / is taking
place. Equation (1) is iterated until the voltages
reach equilibrium, from which the conductivity can
be obtained directly.

For directed percolation, relaxation is not adequate
unless the correct state is known. As a first approxi-
mation, the correct state may be searched for in the
relaxation by turning off any diodes which become
back biased, and turning on any previously back-
biased diodes if they become forward biased at a later
stage. Thus the state of the network ‘‘floats’” during
such a calculation. If such abrupt changes in the con-
ductivity of individual diodes are made, however,
long-lived oscillations in the iterative evolution of the
state of the network can occur. The reason for this
oscillatory behavior stems from the potential for neg-
ative feedback between the states of certain ‘‘critical’’
diodes in nested Wheatstone bridge configurations
(Fig. 2). A change in the state of one of these
diodes may lead to a change in the state of the other
diode which can then influence the original diode
again. These oscillations are an artifact of the calcu-
lational procedure, however, as a unique state of the
network exists.?

To reduce the oscillations, we relax the network
more gradually by effectively smoothing out the
break in the /-V response curve at ¥ =0. This is ac-
complished by decreasing the conductivity of each
negatively biased diode by a certain factor at each
iteration. After many iterations, the conductivity of
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FIG. 2. (a) An example of a Wheatstone bridge on the
square lattice in which critical bridge diodes (in series) are
back biased, and (b) a schematic of this configuration. (c)
Two nested Wheatstone bridges with critical diodes e and e’.
The conductivities of the legs of the bridge may be assigned
so that if e is forward biased in the inner bridge, the conduc-
tivity of the upper-left leg of the outer bridge is w’, with
w'z > xy, so that e’ is back biased. On the other hand, if e
is back biased, the conductivity of the upper-left leg is w,
which may be chosen to satisfy wz < xy, so that e’ is for-
ward biased.

such a bond is negligible; it has been removed from
the network gradually. On the other hand, if one of
these apparently back-biased diodes becomes forward
biased again, its conductivity is gradually increased at
each iteration. As long as such a bond remains posi-
tively biased, the conductivity continues to be in-
creased until it is restored to its initial value. This
procedure is continued until convergence to a final
state has occurred. At this point, overrelaxation® is
used to speed convergence in the final stages of itera-
tion.

We have tested this method on judiciously con-
structed Wheatstone bridges with three levels of nest-
ing. These are convenient test systems because of
the feedback between the states of three critical
diodes, and because the exact conductivities can be
easily found in order to check the relaxation results.
Without the smoothing of the diode /-V response,
relaxation gives very-long-lived oscillations,!® while
with the smoothing, many fewer oscillations occur
before the correct state and conductivity are attained.
In actual simulations, only a very small fraction of
realizations failed to converge to a final state even
after 500 iterations, even though the conductivity had
already converged to the correct value.

For obtaining the directed conductivity exponent,
¢+, we use finite-size scaling,!! generalized to account
for the anisotropy of the network near the percolation
threshold. This is accomplished by writing the fol-
lowing generalized homogeneous functional form for
the conductivity, G, in terms of the scaling fields
Ap=p+—p+, Li'and L', the inverse of the

length scales parallel and perpendicular to the aniso-
tropy axis, respectively:

G (Ap,L"_l,Lfl ) = XaGG ()\aAllAp, )\allL "—l’ )\alLJ_—l
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For finite-size scaling, we set Ap =0, and A=L,
This yields

—ty/vy

v /v
G(Ap=0,LiL)=Ly V"GO0, 1,L,* "/Ly) ,

(3)

where ty=—ag/as,, vi=an/asy, and vi=a,/a,,.
Power-law behavior results only if the argument of
the scalir}g function is constant, i.e., L is proportion-
al to L:" vl.

We have obtained data for the conductance

G =GL,/Lat P+=p+ = 0.6447 for three sequences
of lattice/sizes (Fig. 3), scaled up according to

Ly~ L™, with vy/v;=1.58.5"9 On a double loga-
rithmic scale, we estimate the slope of the conduc-
tance data versus L to be approximately

—0.71 £0.05, from which we deduce a directed con-
ductivity exponent of ¢.=0.60 £0.10. This value is
quite different from the current estimates of r =1.30
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FIG. 3. Double logarithmic plot of the conductance vs L
for three sequences of lattice sizes: (@), Ly x Ly=2x1
—48x152; (0), 1 x1—-48x453; and (®), 1 x2—32x478.
Successive points in each sequence are obtained by increas-
ing L by a factor of either 1.5 or 2, and L by a corre-
sponding factor of 1.5!°8=1.90 or 2! =3.0.

for the conductivity exponent of the random resistor
network,!? and our result agrees approximately with
independent estimates of ¢4 by renormalization-group
calculations!? and by analog experiments.!* Further-

more, the value of ¢, is quite close to the estimated
value of the directed percolation backbone ex-
ponent,' and it would be worthwhile to test whether
a general relation holds between these two ex-
ponents.

In summary, we have studied the conductivity in
directed percolation where the presence of back-
biased diodes influences the structure of current-
carrying paths. This aspects of the problem has been
treated by a numerical relaxation method that simul-
taneously finds the correct state and voltages in the
network. Anisotropic finite-size scaling has been
used to extrapolate Monte Carlo data to yield the es-
timate 74+ =0.60 £0.10 for the directed conductivity
exponent on the square lattice.
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