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Pinning transitions in d-dimensional Ising ferromagnets
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The pinning of a domain wall by an external potential is studied in the solid-on-solid limit of
the d-dimensional inhomogeneous Ising ferromagnet. Analyzing a field theoretic generalization
of this model, we show that, if the pinning potential is applied near the edge of the system, a

localization-delocalization transition occurs for all —& d ~ 3. Results for singular behavior of
3

the surface tension, correlation length, and interface moments are derived.

An interesting new type of domain-wall pinning
transition in inhomogeneous two-dimensional Ising
ferromagnets has recently been reported by Abra-
ham. ' In his model it is energetically favorable for
the domain wall to pass through a row of weakened
bonds located near one edge of the system. At suffi-
ciently low temperatures the interface is found to be
"pinned" to this row of defect bonds. The magneti-
zation profile has a zero at a finite distance from the
free surface and its width is finite. However, at a
temperature T~ less than the two-dimensional Ising
critical temperature he found a sharp delocalization
transition. The zero intercept of the magnetization
profile was found to diverge as (T~ —T) ' as T~ is
approached from below. Above T~ the interface is no
longer localized and simple random-walk arguments
for the interface profile were found to apply. Associ-
ated with this transition he found a jump discontinui-
ty in the second derivative of the interface tension
(domain-wall specific heat).

Subsequently, several authors have studied the pin-

ning of one-dimensional interfaces using a variety of
solid-on-solid (SOS) models. 2 7 The canonical form
of the configuration energy in these models is

In this Communication we present results for inter-
face pinning transitions induced by short-range pin-
ning potentials in inhomogeneous Ising ferromagnets
in arbitrary dimension. The model we consider is a
field theoretic generalization of the SOS model
described above. The Lagrangian (5) for this model
proves to be remarkably simple to handle and is fully
renormalized by normal ordering. This allows us to
derive essentially exact results for the system's criti-
cal behavior. As far as we know, ours are the first
quantitative results concerning the pinning transition
of a D-dimensional interface embedded in a
d (=D + 1)-dimensional inhomogeneous Ising fer-
romagnet. '

Our starting point is the D-dimensional continuum
generalization of (I):

pH =
J d x[—('7f) + pV (f/Jp)]

where a factor WP has been absorbed in f. The parti-
tion function for this model is

where the functional integration is restricted to

where f, ~ 0 denotes the perpendicular distance of
the interface from point i on the edge of the system,

P ' = ks T, and V(f) ( 0 is a short-range pinning po-
tential localized near f =0. The partition function is
obtained by summing e } over configurations
tf}. It has been found that it is not necessary to re-
strict the height variables f; to discrete values when
evaluating the partition function; in fact, pinning
transitions belonging to the same universality class
have been obtained when the f; vary continuously in
the interval 0 ~ f, (~."' A typical pinning poten-
tial P V tf} is shown by the broken curve in Fig. l.
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FIG. 1. Pinning potentials for various solid-on-solid
models. Dashed curve: potential PV{f) of Eq. (1). Full
curve: potential P V(f) + U (f) of Eq. (4).
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{f (x)] ~ 0. In other words, at f = 0 there is an in-
finite repulsive (temperature-independent) barrier
which restricts the height variables to positive values.

Explicit calculations for D = 1 show, however, that
the character of the pinning transition is not changed
if this infinite repulsive barrier is replaced by a finite
one. o The restriction f (x) ~ 0 in (3) may therefore
be dropped if, instead of (2), we consider the Lagran-
gian

4=PH+ U

=
J~ d x [—,('7f)'+PV(f/JP)+ U(f/WP)]

(4)

where U(f ) ) 0 is a temperature indepe-ndent potential
with support in {f (x)] ( 0. The total potential

P V (f ) + U (f ) is indicated by the full curve in Fig. I
where we have denoted the depth of the well P V (f)
by Pgo and the height of U(f) by gt.

As the temperature is varied, the depth of the well

changes while the height of the barrier remains con-
stant. Exact results for D = 1 show that for each
value of gt there is a critical value (Pgo)" where the
model (4) exhibits a pinning transition. This line of
critical points persists down to infinitesimal potential
strenghts and, furthermore, the universal features of
the transition —the critical exponents, for example-
are the same along the entire critical line.

It is therefore sufficient to analyze the critical
behavior of a model defined by the Lagrangian

L' = „d x {—('7f) +g)exp[ —Xp(f/JP+(r) ]

-Pgoexp[-Zo(f/JP —(r)']}, (5)

where gp and g~ are infinitesimal. The potentials

P V(f) and U(f) have been taken here to be Gauss-
ians. This choice proves to be the most convenient;
however, the choice of other short-range potentials
leads to similar results.

It is well known that for D = (d —1) ) 2 the inter-

face between coexisting phases in an Ising ferromag-
net is always sharp. ' For D ~ 2, however, long-
wavelength interface fluctuations have sufficient den-

sity to destroy a sharp interface. In a field theory
such as (5) this effect manifests itself as infrared
divergences in massless graphs that contain closed
loops consisting of a single internal line —the so-
called tadpole graphs. These divergences appear first
in D =2.

We are therefore interested in the critical behavior
of the Lagrangian (5) for D ~ 2. Since gp and gt are
infinitesimal we have employed a renormalization-
group (RG) analysis of this model based on a cumu-
lant expansion in gp and g~.

In performing a perturbation expansion with (5),
we are faced with the problem of regularizing the
previously mentioned infrared divergences for D ~ 2.
There are various methods of dealing with this prob-
lem. Here we have found the following procedure to
be the most convenient. " We add a mass term
-mp2f to the free part of the Lagrangian

Z, = J/d x [—,'('7f)'+ —,m~f'],

and subtract it from the perturbative part

2t= J d x {gtexp[—Zp(f/JP+o)']

—Pgo exp[ —) p(f/ JP rr)'] ——,mo f'—]

The mass mp W 0 is arbitrary and the total Lagrangian
remains unchanged by this procedure.

A convenient ultraviolet (uv) regularization is in-
troduced by defining the free propagator in real space
to be

d D el'G(mpx) = ~

(2m. ) p'+ mo

where a is a short-distance cutoff. This regulariza-
tion is preferable to the usual sharp momentum cut-
off since the required calculations are most easily per-
formed in coordinate space.

Since explicit calculations to second order in 4 ~

show no uv divergences in momentum-dependent
graphs, it suffices to consider the effective potential
U(f) here. To first order in' t we find

U(f) =
2 Jl ln(mp +q ) —

~
mpGp(mp)—

)o(f/~P- )'
, 2

exp-
(2m) o [I+2XpGp(mp)/p]' I +2XpGp(mo)/P

)o(fHP+ )'
+ )2 exp[I + 2ltoGo(mo)/P] t 2, I + 2&oGo(mo)/P

(6)

where Gp(mp) = G (mp, x = 0).
The interaction part of the effective potential can

be renormalized by introducing one renormalization
function Z. Introducing an arbitrary momentum
scale ~, the renormalization of this term is uniquely
defined by introducing dimensionless renormalized

coupling constants ~, up, and u& via

Ap= K'ZA,

g, =~ Z'iu; (i =0, 1)

(7a)
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where the Z function is given by

Z ' = 1 —2K')).Gp(K)/P (7c)

p
d)E bA,

/3 ]

(8a)

and e = 2 —D. mo and cr require no renormalization,
and, furthermore, no wave-function renormalization
is necessary. The above procedure is equivalent to
normal ordering the Lagrangian (resumming all tad-
pole graphs) at mass K. Luckily, (5) exhibits none of
the pathologies of the sine-Gordon theory, "and this
procedure appears to renormalize the theory com-
pletely. The relations (7) go beyond the loop expan-
sion and are exact to the extent that they renormalize
the theory to arbitrary order. Since the first two terms
in the effective potential do not play a role in the
following discussion, the subtractions necessary to re-
normalize them will not be discussed here.

The normal RG procedure may now be applied to
establish the model's critical behavior. " Relations
(7) imply that the coupling constants flow according
to

given by

9 UR

Qf 2
(9b)

Higher-order vertices are given by the corresponding
derivatives of UR.

Since both rf') and 1)%2) obey homogeneous RG
equations, the infrared behavior of u and g

2 may be
determined by solving (9) simultaneously in the in-
frared (p 0) limit. Specifically, we have employed
the standard matching procedure of integrating out to
a p=p such tllatg (p )=K p

Applying this approach we find a continuous phase
transition at a critical temperature T~ = 1/ksP~ given
by the solution of

pinup exp(4o. +24r p~) = u l

for D = 2. For 1 & D & 2 we find a first-order transi-

tion, while for —, & D ~ 1 we again find a continuous

transition at temperature /3~up= ul. Denoting the re-
duced temperature by r we find that g diverges at T~

as

du; 2
bA.

p
' = —D—

/3
u; (gb)

'r '/'exp(c/r), D =2
—2/(4 —3s) 2 ( L) (1

t 3

(10)

For e 0,

: 1/7r .

Equations (8) are easily solved in closed form. From
(8a) we find

)t(p) =
)i(1)

1 —[) (1)/~P] lnp.)t(1)
, ~(1)(1 p') b/P+. p—'

Thus for D = 2 the theory is asymptotically free,
while for D & 2 there is a stable fixed point at
k'=Pe/b. Finally, from (8b) we obtain

(p ) —u, ( 1 )p
2+ t 3/2 )+ [ )t (p )/ )t ( 1 ) ] l /2

In order to utilize these results we need to consider
the renormalized effective potential U/l(f). The
equilibrium value of the order parameter u = (f ) is

given by the solution of

r,"'(k =o) = ' =o,
Bf

(9a)

and since there is no wave-function renormalization,
the inverse square of the correlation length g

' is

as the length scale is changed by a factor p. The con-
stant b in (8) is given by

b = 2' ' "'~r(~/2)

for r ) 0 (T ( T~), where c is a nonuniversal con-
stant. For D = 2 the correlation length has an essen-
tial singularity, while for

3
& D ~1 we find

) =2/(4-3e)

Furthermore, the mean distance v of the interface
from the pinning potential diverges as

u —1/7

for both
~

& D ~ 1 and D = 2 as the pinning transi-

tion is approached from below. Above T~,
u ' = g

' = 0 so that the interface is delocalized and
rough.

These results indicate a lower critical dimension of
D = —, (bulk dimension d =-, ) for the transition.

For D & —,, the coupling constants u; have stable
2

fixed points at u; =0. Short-range pinning potentials
of the type considered here are therefore irrelevant

2
for D & —, , and we conclude that there is no longer a

pinning transition in this case. The domain wall is
delocalized and rough at all temperatures.

In the first-order region, the size of the jurnp Av '

of v ' from the pinned to the unpinned phase de-
creases as D 1+. Letting S=D —1, Av ' goes to
zero as

-1 e-C/t8

as ~ 0+, where c is a positive constant. As a func-
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tion of D, therefore, the transition in D = 1 is at a
multicritical point.

These methods may be extended to study the
free energy F and the various interface cumulants
(f"),. The singular part of the free energy is found
to scale as

for D = 2 and
3

& D ~ 1. For n ~ 3 the cumulants
2

behave as

const, D =2
—, &D~1,

while for n = 2 we find

length g is given by (10). These results are in com-
plete agreement with known exact results for D =1.

Until now we have ignored any effects of the crys-
tal lattice. For d = 3, however, the lattice plays an
essential role in determining the behavior of the
domain wall. The results obtained here are, in fact,
only applicable for relatively strong pinning potentials
for which T~ lies above TR, the roughening tempera-
ture of the three-dimensional Ising ferromagnet. For
situations in which T~ ) T~ the lattice is irrelevant
and a transition of the type of described here occurs.
For weaker pinning potentials the effect of the lattice
may not be ignored and the situation is more compli-
cated. This case will be discussed else~here.
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