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Spatial distribution of recoiling atoms with a specific momentum generated in a collision cascade
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The spatial distribution of the momentum spectrum of recoiling atoms in an elastic collision

cascade, produced by an energetic ion injected into a random solid, is investigated. Recoils are

counted when accelerated from rest, or decelerated from above an energy boundary E] irito an

energy interval [EO,ED+ dED] in a single collision. Pronounced cascade anisotropies are ob-

served, the magnitude and direction depending on the recoil energy and the depth,

Evidence on the evolution of a collision cascade
during ion bombardment of solids can be gained
from the differential sputtering yields resolved in en-

ergy and direction of the ejected particles. ' ~ Such
spectra are images of the momentum distribution in

the substrate surface. In the regime of linear cas-
cades, the gross picture is we11 described by the
model of an isotropic cascade and refraction in a
planar surface potential. 5 Anisotropies in the cascade
have also been considered, ' and the effect of an-

isotropy on the energy and angular sputtering spec-
trum has been estimated" ' by using momentum
spectra, integrated over all depths rather than the
spectrum in the surface layer. The depth distribution
of the cascade momentum in the limit of completion
of the cascade has been thoroughly considered. '
Anisotropy in the cascade also has to be considered
in applications of cascade theory to the calculation of
damage distributions and atomic mixing.

This Communication reports on the depth distribu-
tion of the specified recoil momentum in a linear col-
lision cascade generated in a random solid during
self-ion bombardment (ion mass Mt equals target
atom mass M2, Mt =M~=M). We consider the
average number of recoils F(E, e,Ep, ep x)dx dEpd ep
moving in the iayer [x,dx] of the target, with energy
in [Ep,dEp] and direction in the solid angle [ep, d ep]
= [Hp, dHp,'Xp, d Xp), per ion incident on the surface
x = 0 with energy E and direction e = (H, X = 0).
Several reasonable constraints can be imposed on the
counting of the number of recoils F (see, e.g. , Ref.
13). We have preferred the following "specific"
choice: F includes all recoils excited into [Ep,dEp]
from rest and all recoils deexcited into [Ep,dEp) from
an energy above a boundary value E~ in a single col-

lision. In this way the energy evolution of the cas-
cade is stopped at energy E& and a "frozen in" pic-
ture of the cascade for Eo (E] is obtained. E~ now
acts as a threshold for reproduction of the effects to
be described by F. %e can illustrate the function of
E~ at its role in the Kinchin-Pease model" for the
formation of Frenkel pairs. In this model a crystal
atom will generate one and only one Frenkel pair,
when it receives an energy between the displacement
energy Eq and 2Ed. If it receives an energy & 2Ed, it
starts a subcascade, which may lead to the formation
of more than one Frenkel pair. Thus, for the appli-
cation of the cascade theory, as discussed here, to the
production of Frenkel pairs E] =2Ed. Another appli-
cation can be found in the production of focusing col-
lision sequences. A focusing collision sequence can
be generated, when a recoil in the cascade receives an
energy (E~ (focusing energy), provided its direction
is in a small angular interval around a low index crys-
tallographic axis." The cascade theory, developed in
this paper, lends itself well to calculate the probability
of generation of such sequences. Evidently, E]= E~
in this case. The previous calculations on the depth
distribution of the deposited momentum have been
performed for the case Et/E ( 10 ' (unspecified
deposited momentum).

An expression for F(E, e,Ep, ep, x) is obtained
from a backward transport equation, containing two
source terms (see, e.g. , Ref. 15). One source term
describes the contribution of the direct recoil, the
other the contribution of the scattered projectile (we
are dealing with self-ion bombardment) to the speci-
fied momentum interval. The transport equation is
solved by taking spatial averages' and using an ex-
pansion (in spherical harmonics) in the angular vari-
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ables. The equation for the zero-order moment is solved following the approach as put forward in Ref. 7 aad this
solution is used in the recurrence scheme to obtain the higher-order moments.

This results in the following expression for F:

f (Ec/Et) I FE(x,Et,E) F~(x,Et,E) ec
F(E, e,Eat eptx) = +3

4n iii(1) —i'(l —m) Ei Ep J2~Ea

with

i m N
Eii Ep Ep Et Ei

(i.e., scattering from a potential V (r ) ~ r t~, 0 ( m( 1). FE(x,Et,E) and F~(x,Et,E) are defined as the
specified deposited energy and specified deposited
momentum, respectively, at depth x, i.e., for a partic-
ular value of Ei/E and are independent of Ea
Fs(x,Et,E) and F~(x,Et,E) are constructed from
the spatial averages. A construction of 4E
=FE(x,Et,E)/E using the method of Pade approxi-
mantss'3 is shown in Fig. 1(a). Evidently qis
depends only weakly on Ei/E, and, even for larger
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FIG. 1. Depth distribution of the specified deposited en-

ergy (a) and the specified deposited momentum (b). The
1

units are scaled to the used power potential (m =—). Indi-
3

cated is the mean value {x)F of the specified deposited en-
E

ergy. The inset in (b) gives the detailed specified momen-
tum near the surface x = 0 for values of Ei/E ranging from

0.01 (bottom curve) to 0.11 (top curve). Step width in EI/E
is 0.01. (N is the target density, C the constant of the po~er
cross section. )

A = I +3QEp/E tp~ equi/Cis (2)

We will briefly discuss A at the surface (x =0), for
normal incidence (tt =0) and E1=2Ea. Fol' Et/E
=0 we obtain an isotropic distribution. An increase
of Ei/E leads to preferred outward momentum,
which reduces again to an isotropic distribution for
Ei/E = 0.045. If Ei/E ) 0.045 the momentum is
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FIG. 2. Polar plots of the anisotropy parameter 3 for
18=0, m =
3

at x =0. For an explanation, see text.

values of Et/E, differs very little from the unspecifed
(i.e, Ei/E =0) deposited energy. ' For Ei = nEc,
n ) 1 the isotropic (FE) term constitutes an Ec
spectrum. " A construction of ipse, F~(x,Et,E)/
42ME is shown in Fig. 1(b). Quite opposite to C E,
ip~ depends strongly on Ei/E. For Ei = ctEc, n ) 1

this anisotropic term in Eq. (1) leads to a Ea spec-
trum.

For an assessment of the relative weight of the two
contributions inspect the anisotropy parameter A

(Fig. 2):
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preferably directed inwards [see also Fig. 1(b)].
In conclusion, the anisotropy parameter A

represents the modification of the cascade with

respect to complete isotropy and is seen to be strong-
ly dependent on the recoil energy both absolutely as
well as relatively to the projectile energy. Applied to
sputtering it will result in an overcosine distribution
when A & 1, a cosine distribution when A = 1, and
an undercosine distribution when A & 1 (see Ref.
18). This makes it the first calculation, which poten-

tially predicts both observed distributions of sputtered
particles.
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