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The theory of superconductive networks put forward by de Gennes and Alexander can be for-
mulated in terms of two generalized Kirchhoff laws. The current law is generalized to the com-
plex parts of quantum-mechanical current and the voltage law to the flux linkage. These laws
are applied to a superconducting quantum interference device (SQUID), to two superconducting
loops connected by a superconducting branch (bola), and a balanced Wheatstone bridge. The
normal-superconducting phase boundaries are obtained in the limit that the thickness of the

wires is neglected.

In the context of granular superconductors, de
Gennes! discusses the onset of superconductivity in a
ring connected to an arm (“‘lasso’’) when all lengths
are comparable to the temperature-dependent coher-
ence length £(r=T/T,) and penetration depth A (¢).
The thickness of the wires is neglected so that
volume contributions to the free energy are not taken
into account. The essential effect the arm has on the
second-order phase-transition boundary is to push it
to higher temperatures when compared to that of a
ring without an arm. Because the arm does not carry
a current it aids superconductivity in the ring. Where
ring and arm join, the order parameters and their
derivatives! satisfy boundary conditions which lead to
an equation which corresponds, in a broad sense, to
Kirchhoff’s current law (KCL). Alexander? writes de
Gennes’s KCL in explicit form and applies it to the
‘““lasso,’’ to a rectangular loop divided symmetrically
by a connecting branch and to a square lattice.

It is our purpose to extend the above principle to
the case where the micronetwork is connected to an
external current source, to state the equivalent of
Kirchhoff’s voltage law, and to obtain the detailed
phase boundary for some simple two-node circuits
which include the superconducting quantum interfer-
ence device (SQUID), the bola,’ and the balanced
Wheatstone bridge. We show the common features
shared by all these systems. The latter are the impor-
tant elements in a flux-locking network.

Consider the Ginzburg-Landau (GL) equations

(iV +2wA/do) 2w — £ 2+ 2mB/E) w2y =0 , (1)

T=—(et/2m)[y*(i V +27A/ o)y +c.c.] . )

We assume that at least one dimension of the net-
work is small enough such that a second-order phase
transition occurs in a magnetic field and that all
branches in Fig. 1(a) are of the same material. The
vectors A and ¥ =79/8/in (1) are along the path /.
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For a branch ab of length L, (1) without the cubic
term has the solution

u() =ei7"’[\lta sin(L —1)+ xp,,e_iy“" sin/}/sinL ,
3)

where / (normalized by ¢) is the curvilinear coordi-
nate along the branch measured from @ and

2 (. T
ya1=T:LA(1)~d1 . 4

If the branch ab of length L is made into a closed

(b)

2L

(d) (¢)

FIG. 1. Shown are (a) general network, with nodes a, b,
and c; (b) a loop with two nodes and current injection
through a velocity field Q, =— Qp; (c) the bola, consisting
of two “‘lassos”; (d) the Wheatstone bridge.
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loop, then for single valuedness , — ¥, and

2w _
b0
where ¢ is the magnetic flux enclosed by the loop.

By use of (3) one can show that the current in a
branch element between nodes ¢ and b is

I fo—
wa—’dT:¢A'd1 = Y,

Jab=_:1i§|\lfa||¢b|Sin(ﬁ—a_%b)/sml‘ . ®

where g, =|y,le’®, ¥, =|y,le’. Equation (5) is
similar to the Josephson current through a weak link,
where now 1/sinL plays the role of the tunneling
probability. If node b is made to approach node a,
(5) can be written as

= ek

== 20
T= lval’Q ,
where
Q=lim (B=a=ya)/L =(Va=2mA/do)

is the gauge-invariant velocity field of the superelec-
trons. Our KCL requires that at each node the sum
of the quantities y*(i ¥V +27wA/po)y belonging to all
branches must be zero. Since at each node the y’s of
all connected branches are the same, it follows that
the generalized KCL is a condition on the derivatives

s[i2 + 2nA(1)]¢n(,)

iy ™ =0, (6)

=0

where the sum is over all branches connected to a
given node. Using (3) and (6) one obtains? at each
node

3 (=g COtL gy + e "®/sinLgy) =0 )

where the sum is over all nearest nodes linked to a,
L,, is the distance along the circuit from node a to
next nearest node n, and y,, is (4). Since (3) applies
near the second-order phase boundary, the set of
linear equations of the form (7), applied to all nodes
in a given network, leads to a characteristic deter-
minant which must be zero for a nontrivial solution.
This secular equation gives the normal-supercon-
ductive phase boundary.

If the network is connected to an external current
source at nodes g and b, such that a supercurrent
enters the network at ¢ and exits at b, (7) holds for
all nodes except a and b. Our generalized KCL gives
for node a

UaQa+i 3 (Yo COtlyy—Ype /sinLe) =0 .  (8)

Q. =— Qy is the velocity field associated with the
external current. Overall charge conservation re-
quires that |g,| = |y,].

The number of independent nodal equations is
equal to the number of nodes in the network. Apply-
ing (7) to a two-nodal network one gets equations of
the form

[a 1 a 12]
afz a»
The equivalent to Kirchhoff’s voltage law (KVL)
in our case states that the sum of the y,,’s along all
branches closing into a loop equals 27 ¢/¢o, where ¢

is the magnetic flux threading the loop.

If a supercurrent characterized by a velocity field Q
enters a circular loop at node @ and exits at b diame-
trically opposite, the nodal equation [Fig. 1(b) and
(8)] for node a is

wa]_
nl=0 - ©9)

o) @

] (e Yab +e Yap )l!"b=0 ,

(Qa+i2cotmR )Y, —

sinmR
(10
where y,f,,”= - 7,,(,}), 'y,faz)= - y,,(,f), and similarly for

node b. From the secular equation the phase boun-
dary is then
sin(y/2) =+ (1—Q%4)sinwR , an

with y =y +y’. From Eq. (10) we obtain also

Q =Q,sind , 12)
where the maximum critical value of Q is
O.=2cos(y/2)/sinmR (13)

and 8=a— B+ (y 3 +yP)/2 is the phase difference
imposed by the external current source. These rela-
tions are those of a SQUID.* The critical current is
defined in terms of a critical superfluid velocity. A
detailed investigation of (11) for R < £(0)/2 shows
that the SQUID alternates between the superconduct-
ing and normal states for 7 =0 when H is swept
even for Q =0. When Q # 0 these alternating re-
gions may exist also for R > £¢(0)/2.

A plane two-nodal bola? is shown in Fig. 1(c) with
nodes a and b. The coefficients of (9) are

ay=-—2cot2wR—cot2L +2cosy/sin2wR, ,
ay=-—2cot2wR,—cot2L +2cosy,/sin27R, ,

ap=ay =e_i7""/sin2L ,
where y;=2w¢;/dpo=2m (wR*H )/ do.
For a symmetric bola (R;=R,=R) one obtains

cosy =cos(27R)

tan(2mwR) (14a)
cot(2mmwR) (14b)

-T%sin(27rR ) x



26 BRIEF REPORTS 5239

with m =L /27w R and L and R normalized by ¢.
Solutions for the phase boundary are shown in Fig. 2.
For L =0 the solution (14a) is that of an isolated
ring. When m > 0 the second solution is of higher
energy than the first and its phase boundary is prob-
ably of no physical significance. One finds that a
branch of length 2L has the effect of lowering the en-
ergy when compared to that of a single loop. The or-
der parameter along the connecting branch is

y(l)= d:,,eiy“’ cos(L —1)/cosL

for the symmetric solution (14a) and

y(l)= eiy"’np,, sin(L —1)/sinL

for (14b) (antisymmetric). The solution for the “‘las-
so”!is (14a).

The balanced Wheatstone bridge is shown in Fig.
1(d). We impose the condition of zero current in the
central branch which leads to

sin(2w 1/ do)/ sin(2wdy/do)=sinL/sinL, .

A circular loop with Ly=2R has solutions

(y=27m¢1/d0),

tanR (15a)

cosy = tcosmR — % sinmR X COtR (15b)

Equation (15a) is similar to (14a), the symmetric

05

¢’1/4’o' n

FIG. 2. Shown are the phase boundaries for a bola with
L=0(m=0),and L =2R (m =1/w). The spatially sym-
metric solution corresponds to the solid line, and the an-
tisymmetric to the broken line. The smallest values of R/¢
correspond to the lowest-energy state; ¢, is the flux through
one loop. The solution is periodic and only half of the
period is shown. If R/£(0) is smaller than the value of the
phase boundary at ¢; =0.5¢3, normal regions appear at ab-
solute zero when the magnetic field is increased. The insert
shows the solution for the balanced symmetric Wheatstone
bridge over a whole period. The antisymmetric solution has
lower energy near ¢ =0.5¢,, where 2¢, is the flux linked
by paths (1) and (2) shown in Fig. 1(d). The fluxoid quan-
tum number is n.

solution of the bola, but with R replaced by R/2 and
m =1/m. ¢ (I) along the branch L, resembles that of
a bola along the branch 2L except that L is replaced
by R. Along the circumference

xp(l)=ei7"’d;,,[sin(7rR —1) xe sinl]/sinwR , (16)

where y from (15) is to be substituted. The insert in
Fig. 2 shows solutions (15a) and (15b). Near
(¢1/do— n) =0 the spatially even solutions has a
lower energy, while near % the odd solution has a

lower energy. For the odd solution |y|? is zero in the
center of Ly and has a maximum on the circumfer-
ence at / = + 7R /2, while for the even solution |y|?
has a maximum in the center of Ly and a minimum
at/=*aR/2.

The finite volume of the superconductor will shift
the NS phase boundary to lower temperatures in an
applied magnetic field.>® A long circular cylinder of
outside radius R and wall thickness d =R — Ry has a
second-order phase transition boundary®

(1+s)wR*H /2,
=n £ [(1+s)R¥Y2&*—n%2(s)1V2 , (17)

where s = (Ro/R )? and the function u2(s) ap-
proaches in the limit that e=d/R << 1 the value
€?/3. Assuming that all phase transition boundaries
in the H -T plane are of second order (no supercool-
ing), the maximum fluxoid quantum number is’
Nmax < V3RY/[£(0)d]. For example, when R /£(0)
=% and d/R = 735 then ny.c=2. Thus solutions ex-

ist only up to n =2. It can be seen from (17) for
d/R — 0 that there are no solutions for values of the
flux in the vicinity of ¢ = (-]2—)d>o, (%)cﬁo, etc., even
at T=0Kif R/£(0) < % Thus a small, very thin-
walled cylinder will alternate between the supercon-
ducting and normal states as the magnetic field is in-
creased. These considerations apply to wires and
more complicated networks at the phase boundary.

We have shown how the generalized Kirchhoff
laws can be applied to simple networks and have cal-
culated the phase boundaries for some two-nodal sys-
tems. When the solutions can be classifed as sym-
metric or antisymmetric, the former has usually the
lowest energy. The balanced Wheatstone bridge is an
exception.

Our analysis shows that the one-dimensional
branches introduced by de Gennes! and Alexander?
can be considered to be weak superconducting links
between nodes in the network. The generalization of
the nodal equations to cases where external currents
are fed into the network allowed us to formulate rela-
tions relevant to quantum interference devices in a
very simple way. We feel that the present approach
to superconductive networks can be fruitfully applied
to more complex geometries.
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