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Soliton energy in an easy-plane quantum spin chain
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We investigate the quantum corrections to the energy of the static soliton in the XY-

like ferromagnetic spin chain in a symmetry-breaking external field. We apply a semi-

classical continuum approximation which allows us to treat the leading-order deviations

from idealized planar behavior. The equivalent quantum-field theory, an extension of the

quantum sine-Gordon theory, is renormalized and its soliton energy is shown to depend

strongly on this deviation. The quantum-field-theoretical renormalization, however, does

not affect the energy of the magnetic soliton, which is calculated to leading order in 1/S,
where S is the spin length. The sine-Gordon limit is found applicable only for very large

anisotropies; for realistic anisotropies, the reduction of the soliton energy owing to quan-

tum effects is enhanced and depends only on S. A quantitative calculation for the S= 1

system CsNiF3 is likely to require higher-order terms in 1/S.

I. INTRODUCTION

Recently much interest has been devoted to the
nonlinear soliton mode of the one-dimensional

magnetic system given by the Hamiltonian

H = —Jg S„S„+) 4-A g (S„')

—p8 gS„",

characterized by an exchange energy J& 0, a
single-ion anisotropy A &0, and a magnetic mo-
ment p=pttg. Nonlinear modes of the Hamiltoni-
an (1.1) were originally investigated by applying
the classical continuum approximation and assum-

ing very strong xy anisotropy. Under these as-

sumptions the system described by Eq. (1.1) can be
mapped' to the classical sine-Gordon (SG) chain (a

mapping which becomes exact for A ~ ao). The
Hamiltonian (1.1) therefore exhibits the well-

known nonlinear soliton modes of the SG theory.
The implications of this observation have been test-
ed in several investigations, both experimental and

by computer simulations. ' From these investiga-
tions increasing, although not completely undisput-

ed, evidence has emerged for the importance of the
soliton mode in the dynamics of CswiF3, an S =1
magnetic chain compound, which is widely be-

lieved to be described by the above Hamiltonian.
In the present paper we will study the quantum

aspects of the excitation energy of the soliton
mode. The validity of the classical approximation
to the Hamiltonian (1.1) has previously been stud-

ied qualitatively ' with the result that it requires
' 1/2

1 2A

2mS J (1.2)

a condition which is quite well satisfied in CswiF3.
A more quantitative investigation of quantum ef-

fects was performed by Maki, using a mapping of
the Hamiltonian (1.1) to the quantum SG chain.
This field-theory model was then treated in the
semiclassical approach of Dashen, Hasslacher, and

Neveu (referred to as DHN in the following). The
resulting renormalization of the soliton energy of
about 20%%uo appeared to be in agreement with ex-

perimental findings.
In the following we will investigate quantum ef-

fects in the semiclassical approximation including,
in addition to the SG approximation, effects from
the out-of-plane degree of freedom S' to lowest or-
der in J/A. At first sight, this seems to be a small

correction to the SG approximation; however, there
exists a qualitative difference to the SG approach:
The quantum correction to the soliton energy as
given by DHN for the SG theory is the result of
two contributions —the change in the energy of
zero-point vibrations between the ground state and

the one-soliton state, and the contribution from
normal ordering {which is necessary to render the
field theory finite). Both contributions are ultra-
violet divergent, but the divergences cancel, leaving
a finite quantum correction. The ultraviolet

behavior, however, is very different for the mag-
netic chain system and its SG analog: In the con-
tinuum limit the frequencies of small vibrations
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co(q) for large wave vectors q are the following':

co(q) -q,
co(q) -q

(1 3)

II. THE MAGNETIC-CHAIN HAMILTONIAN
IN SEMICLASSICAL FORMULATION

In this section we will derive the semiclassical
continuum representation of the Hamiltonian (1.1)

for the SG chain and the planar magnetic chain,
respectively. It is the purpose of the present paper
to investigate the consequences of this difference
for the soliton energy in the realistic magnetic
chain with S =1; in the course of this work we
must also discuss the relevance of the mapping to
a continuous field theory for the nonlinear excita-
tions of the Hamiltonian (1.1). In Sec. II, we will

apply a semiclassical continuum approximation to
Eq. (1.1), which allows us to include the deriva-
tions from the idealized planar behavior to leading
order in J/A. The resulting Hamiltonian density
suggests the structure of an equivalent quantum
field theory, which will be studied in Sec. III. We
will show that the quantum corrections to the stat-
ic soliton energy depend strongly on the parameter
measuring the strength of the out-of-plane fluctua-
tions in the magnetic analog. In Sec. IV we will
make the connection between the magnetic and the
field-theory problems. We find that the process of
renormalization, which is essential for the continu-
ous field theory, is not relevant for the treatment
of the magnetic Hamiltonian (1.1). We will calcu-
late the quantum corrections to the magnetic soli-
ton energy and discuss the application of our re-
sults to CsNiF3. A short summary will be given in
Sec. V.

for large values of the anisotropy energy A. Owing
to the easy plane symmetry induced by A & 0 it is
natural to make use of the planar representation of
spin operators as introduced by Villain':

s„+=e "[1—(s„') —s„'/S]' (2.1)

with

s„=S„/AS',

S =S(S+1), (2.2)

z E[y,s„]=—5„
S

We have introduced the operators cp and $' since in
the classical limit they become the quantities y and
cos0, which are generally used in a polar-
coordinate representation of the classical spin vec-
tor. In a formulation starting with Eqs. (2.1) and
(2.2), quantum-mechanical corrections arise natur-
ally as an expansion in 1/S. We will now make
use of the following approximations to simplify the
Hamiltonian (1.1):

These approximations transform Eqs. (1.1) and
(2.2) into (fi and a will be set equal to 1 in the fol-
lowing)

(i) the continuum approximation, i.e., expanding
in the lattice constant a and keeping only terms
which survive the limit a —+0,

(ii) the xy approximation, i.e., expanding in s„
and keeping only terms up to second order,

(iii) the semiclassical approximation, i.e., expand-
ing in S and keeping terms up to second order.

H =const+ JS dx
1 Bg
2 Bx

+—(s') — cosy&+-A, 2 p8 1 8$'
J JS 2 Bx

2 '2
, a—2$ $ + ~$ cos+$

Bx 2 JS

(2.3)

[q&(x),s'(x')] =—5(x —x') .
S

(2.4)

In carrying through the semiclassical approxima-
tion, all terms in Eq. (2.3) appear multiplied by ex-
pressions of the type 1+O(S ); these corrections,
however, must be neglected since they depend on

the order of operators in neglected higher-order
terms. On the other hand, the occurrence of S in-
stead of S in Eqs. (2.3) and (2.4) is significant to
the order considered.
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It is instructive to illustrate the occurrence of S
by the following simple example: Consider only
the single-particle Zeeman term in Eq. (1.1),
—pBS", which evidently has the value in the
ground state of pB—S H.owever, if we treat this
term using Eqs. (2.1) and (2.2) we obtain

pBS—(cosy —,s*—co~s'+ ),

'2r

H =const+ JS g dx — + —,m
1 B@
2 Bx

p8 1 cosg4, (2.5)
JS g'

which, to second order in 4 and s, is easily diago-
nalized to give the ground-state energy
—juBS[1—1/(2S)+ ]. This agrees with the
exact result to 0(S ), and higher-order terms will

be needed to recover the exact result. This exam-
pie demonstrates that the occurrence of S in Eq.
(2.3) is directly connected to the quantum correc-
tions which appear as an expansion in 1/S.

If we consider the limit A ~ 00 in Eq. (2.3) and
rescale s* by re�/J, we notice that the last three
terms in this equation become of order J/A. Thus
these terms describe the deviation from ideal
planar behavior. In previous treatments along
these lines these terms have been neglected. Then
the Hamiltonian (2.3) can be transformed to the
SG representation,

2
2

H =E g dx — +—
m — cosg4

1 84 i 2 m
0 2 Bx

a~+y2 a

'2
1 2——g 7T
2 Bx

'2

+ , m—m(cosg4)n, (3.1)

[4(x),m(x')]=i5(x —x') . (3.2)

For the moment we consider E0, m, y, and g as
parameters of the field theory; their relation to the
parameters of the quantum magnetic chain will be
discussed later. We will investigate the energy of
the static soliton solution to Eq. (3.1) for small
values of y, i.e., for small deviations from the SG
theory, which is exact for y=O. We will do so fol-
lowing the Wentzel-Kramers-Brillouin (WKB)
treatment of DHN (Ref. 9) for the SG system, thus
restricting the calculation to the weak-coupling
limit g «1. This WKB theory of DHN is based
on the use of exactly known classical solutions for
the nonlinear excitations of interest. Fortunately,
the static classical SG soliton continues to be an
exact solution to the classical equations of motion
which follow from Eqs. (3.1) and (3.2) for arbitrary
values of y:

'2
ae a'~, ac
Bt Qx' Bx

+g

[4( x),m (x') ]=i 5(x —x'),

by the transformation

(2.6)
—m (cosg4)n. (3.3)

J
g4~ s g

2A

]/2
2A

JS2

' 1/2

(2.7)

(2.8)

Bn B@ m
sing@

Qx2 g

g K +2g 7T
, ,a'e, a~ aa

Bx Bx Bx

Our aim is to perform and to discuss the analogous
transformation for the full Hamiltonian (2.3). Be-
fore approaching this transformation in Sec. IV,
we want to investigate in the next section the
field-theory analog of Eq. (2.3) without referring to
the magnetic chain.

III. A SINE-GORDON —LIKE FIELD
THEORY

The results of the preceding section suggest that
the quantum magnetic chain is related to the fol-
lowing field theory:

2 2 ~—
2 Pl K g Sing@ (3.4)

4s ———arctane
4 mx

g

~s =0

Es =8mEo

(3.5)

(3.6)

(3.7)

In the following we will restrict ourselves to con-
sidering the static soliton. Additional approxima-

Here inverse time is measured in units of Eog .
An exact static solution of the soliton type to these
equations is
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tions would be required to treat a moving soliton,
but no drastic changes are expected for a slowly
moving soliton.

Following DHN the soliton energy in the semi-
classical approximation can be written in the fol-
lowing way:

Es =Es +5Ezp+5Eno . (3.8)

(3 9)

Here,

is the difference in zero-point (zp) fluctuations in
the one-soliton state (frequencies. co~ of small vibra-
tions) and in the ground state (frequencies a&~ ').

5E„, is the energy difference owing to normal or-
dering (no) of the Hamiltonian (3.1), which is
necessary to avoid ultraviolet divergences from
closed-loop (cl) integrations. In the SG theory,
both 5E,p and 5E„, diverge logarithmically with
an ultraviolet cutoff A, but these divergences can-
cel leaving the finite result,

2

s=Es 1
8m'

(3.10)

To carry through this program for the field theory
(3.1), we renormalize H by normal ordering which
to lowest order in g leads to

N(H)=Eog f dx —(1+yg (~ ))
2 Bx

2

+ 1+kg 7T

2

g
2 (1+—,'g (@ )+—,'g y(w ))cosg@

1 aK
+y

r 2

——g m n+ —m .(1+—,g (4 ))vrcosg4~2

2 ~x 2 (3.11)

One readily convinces oneself that with these choices of renormalizing factors all one-loop divergences can-
cel. The additional soliton energy owing to normal ordering is obtained by inserting the classical solution
(3.5) and (3.6) into E(H) H, subtrac—ting the ground-state contribution and integrating over all space:

'2

5E„,=Eog m ( 2 (4 )+—,y(m. )) f dx(1 —cosgC's)+ —,y(n. ) f dx
Bx

=8mE g ( , (4 )+—,—y(d)). (3.12)

The ground-state expectation values in (3.11) and
(3.12) are calculated from the noninteracting part
of H as (L is the length of the system)

(3.13)

(m )= gaq,
q

where

1/2

(3.14)

(3.15)q +m
y(q +m )+1

Thus both (4 ) and (m ) diverge linearly with
the ultraviolet cut-off momentum A, and the diver-
gence of 5E„,with A is seen to be

I

In the SG theory, on the other hand, one had to
deal only with (4 ), which in that case diverges
proportional to lnA.

In order to calculate the contribution 5E,&
to the

soliton energy (3.8), we have to find the frequencies
of small oscillations co~

' and co~ as well as the
discrete values of q to be used in the summation in
Eq. (3.9). The latter are determined by the asymp-
totic phase shifts of these phononlike modes.
Linearizing Eqs. (3.3) and (3.4) in 4 and n (corre-
sponding to considering sma11 vibrations based on
the ground-state configuration) leads to the well-
known spin-wave spectrum,

a)q
' Eog V y [(q +m ——)(q'+m +y ')]'i2 .

(3.17)

5E„,— Epg v yA .4m
(3.16) In order to discuss small vibrations based on the

one-soliton configuration we linearize Eqs. (3.3)
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and (3.4) in 4—4, =P and rr to obtain

Bip =m. —y —m (1—6 sech mx )m
2

Bx

c)1r 8 f& —m (1—2 sech mx )tp .2

Bx2

(3.18)

(3.19)

iso(q) =2arctanm/q . (3.20)

The problem of solving Eqs. (3.18) and (3.19) for
finite but small values of y is treated in the Appen-
dix. The following results are obtained: In addi-
tion to the zero-frequency bound state there exists
a bound state with frequency

cob ——coq'p(I ——,m y + ), (3.21)

for any y& 0. The remaining states are continuum
states with frequencies coq

' and an asymptotic
phase shift

For y=O these equations simplify to the equations
of motion for small vibrations in the presence of a
SG soliton, which have been solved by Rubinstein"
with the following results: There exists a bound
state with zero frequency, related to translational
invariance in the usual way; the remaining states
are continuum states with frequencies coq ——coq

' and
an asymptotic phase shift

tp(Q) =2arctanl/Q+arctan(a —P)

+arctan(a+P),

a(Q) =
2(Q'+1)+b —'

2

P(Q)=,Q +'
2(Q'+ 1)+b

with

2 2

1+ Q, (3.22)
3Q 1+Q'

2 qrQ

3Q sinhqrQ
'

(0) i (0)
5Ezp z ~q=o+ i (~b ~q=0)

dCOqf dq y(q) (3.23)

The divergence with A is determined by the
behavior for large q of y(q) =4m/q and

dcoq '/dq =Epg ~y2q and the resulting divergent
contribution to 5E,&

is seen to cancel exactly the
divergent term (3.16) in 5E„,, The remaining
corrections are finite and after some rearrangement
one obtains

Q =q/m,

b=m y.
From the knowledge of the phase shifts the con-

tribution of zero-point fluctuations to the soliton
energy (3.8) is calculated to be

5E p+5E 0 =
2 cob +Epg'mV b

r ' 1/2

x —-'(1+b -')'"+—f (x +1) —1
(x'+1+b ')

f dx[(1+x')(1+x'+b -')]'" +, +
00

2 2 —1 1/2 d 0' 2 2
2a dx x'+1 x'+1+b

= —8mEp F(b) .g
8m

(3.24)

2

Es=Es' 1 —g F(b)
8m'

(3.25)

In the limit b -y~ 0 one can show F (b)~ l.
This means that the SG limit is correctly included
in the above calculation. For finite b, F(b) has
been evaluated numerically and the result is given

Thus the weak-coupling result for the soliton ener-

gy is
in Fig. 1. It is obvious that the magnitude of the
quantum corrections depends strongly on the value
of b. Even for rather small values of this parame-
ter the quantum corrections are considerably
suppressed and the soliton energy approaches the
classical limit. Since we have obtained our results

by expanding in y we can trust them only for
small values of this parameter. The negative
values of F(b) in Fig. 1 are probably due to this
approximation.
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i.0
SG L I MI T

we obtain to leading order

Eo ——JS (1 y—g (vr )),
~2 P (1+ yg2(~2) g2(@2))

JS

(4.3)

(4.4)

0.5

J
2A

1 2A
g s

' 1/2

(4.5)

(4.6)

I

0.l

I

0.2 0.5 0.4

Let us first make use of these results to discuss the
limits of validity of our approximations. Actually
one discovers a dilemma when one combines the
condition for the semiclassical approximation

g «1 with the condition for planar behavior

y «1 to obtain

1 J
S

(4.7)

FIG. 1. Relative magnitude of the quantum correc-
tion to the soliton energy for the field theory (3.1) for
b=ym «1.

IV. SOLITON ENERGY IN THE MAGNETIC
QUANTUM SYSTEM

1
S

gS
(4.2)

We will now make use of the results obtained in
the preceding two sections to investigate quantum
corrections to the soliton energy for the magnetic
quantum chain (1.1). For this purpose we have to
establish the. relation between the magnetic chain
parameters J, A, B, and S and the parameters of
the field theory Eo, y, m, and g . It is important
to note that the magnetic Hamiltonian (1.1) is de-
fined on a discrete lattice. Its continuum version
(2.3) therefore has a natural momentum cutoff
A=a/a. Thus the magnetic Hamiltonian should
be mapped to a field theory with a cutoff m. /a im-

posed and both the original form (3.1) and the re-
normalized form (3.11) can be used, giving identi-
cal results for the soliton energy. We prefer to dis-
cuss the mapping to the renormalized field theory
since it parallels previous treatments. '

Mapping Eqs. (2.3) to (3.11) and requiring the
commutator (3.2) to be fulfilled by the ansatz

(4 1)

+5E,„+5E„.,
Es '=8(pBSJS )'

(4 8)

(4.9)

In the SG limit y=O Eq. (4.8) can be written in
the following form [with the use of Eq. (3.24)]:

2

Es Es (1— g {4—)) 1—
Sm

(4.10)

This is equivalent to the statement that the renor-
malized mass'

m=moexp( ——,g (4 )),
mo (pB/JS )'—— (4.11)

must be used (to order g ) in the calculation of the
magnetic soliton energy. The determination of m,
of course, requires making use of the discrete lat-
tice cutoff.

However, with the use of Eq. (3.12) in (4.8) it
becomes obvious that 5E„, and the corrections to

This means that one would have to resort to the
use of unphysically large values of A/J and S to
justify the approximations used. The real situa-
tion, however, may be more favorable, since previ-
ous work has suggested that g /2m. «1 is a
more quantitative condition for semiclassical
behavior; likewise, the success of the XY approxi-
mation for CsNiF3, where J/2A =2, suggests that
the condition y«1 is too stringent.

Using the above results in Eq. (3.8) we obtain

E,=E,"'(1——,
' g'(e') ——,')g'(~') )
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Es' ' cancel exactly, leaving 5E,„as the only contri-
bution. The same result would have been obtained
simply by mapping Eq. (2.3) directly to the field
theory (3.1): The correction terms to Es ' and
from normal ordering then would not occur, leav-

ing again 5E,~ as the only quantum correction.
The discrete lattice cutoff is again required for the
determination of 5E,„.

Using the results given in the preceding section,
we obtain

Es —Es +&E

n/m
=Es '

1 — v b J dx qr(x) [(xi+1)(x~+1+b ')]'~2 — (1+b)' 1+ b—
O dx

(4.12)

We discuss this expression for large values of the
cutoff Ap= ~/m and note that Es depends strongly
on the quantity bAo ——m. y. In the two limiting
cases we obtain (Hy«1 being the SG limit)

2

Es =Es 1 — —+ln, m. y&&
(o) g ~ 2m

8n. 2 m

(4.13)

2

Es Es '
1 ——— —+4m' y, n y»1.

8m 2

(4.14)

I

the value of JS, we have to identify

8S(JSp8)' =Es,c] (4.16)

with the soliton energy used in classical theories.
Thus we obtain the final result

Es Es 'ci [——S —,—+O(—1/S)] . (4.17)

Thus, for S=1, the soliton energy is about 10%%uo

smaller than Es,'] owing to quantum effects. This,
however, cannot be considered a quantitative result
for the quantum soliton energy for the following
reasons:

E(0) 1 +O(S
—2)

2S
(4.15)

In this limit the quantum correction to the soliton
energy no longer depends on the magnetic field as
it does strongly in the SG limit.

A numerical evaluation of Eq. (4.12) for
m =0.185 shows that the approximation given in

Eq. (4.14) is accurate within a few percent down to
yn =1. For smaller values of yn the factor of
g /8m gradually settles down to the limiting value

given in Eq. (4.13). Numerical evaluation also
confirms the statement that for yH »1 the factor
multiplying g in Eq. (4.12) is practically indepen-
dent of m. Since the value of ym of acutal in-
terest for a material as CsNiF3 is of the order of
20, Eq. (4.14) is sufficient for all practical pur-
poses, whereas the SG limit (4.13) is of no quanti-
tative value.

For large values of ym we may actually neglect
m/2 as compared to 4m~y in Eq. (4.14); with the
use of Eqs. (4.5) and (4.6) we thus obtain

(i) The calculation of vibration frequencies and

phase shifts has been done in the continuum ap-
proximation. Taking into account the discrete lat-
tice will lower the frequencies and probably the
quantum correction to the energy as well.

(ii) To the order in the expansion in 1/S con-
sidered here, we find rather substantial corrections.
This leads one to guess that higher orders will

probably contribute significantly as well.

In spite of these deficiencies we want to emphasize
that Eq. (4.17) is the beginning of a consistent ex-

pansion. Our approach is actually rather similar
to the approximate calculation of the ground-
state energy of the linear Heisenberg antiferrornag-
net with arbitrary spin S.' Considering the re-
markable success of the expansion in 1/S in this
example and in other previous applications, ' the
theory presented here should at least be taken as a
qualitatively meaningful first approach to the
quantum aspects of the magnetic soliton energy.

In order to identify the quantum correction com-
pletely we note that the "classical" soliton energy
used in previous approaches' is 8(JS EBS)'~ .
Since, however, in the classical approach the value
of the product JS is found from the magnon spec-
trum, which, according to Eq. (3.17), determines

V. SUMMARY

We have shown that the quantum correction to
the energy of the nonlinear soliton mode for the
magnetic chain Hamiltonian (1.1) is given (apart



5220 H. J. MIKESKA 26

ACKNOWLEDGMENTS

I wish to thank Dr. K. Maki for a useful discus-
sion and Dr. D. Browne for a critical reading of
the manuscript. The hospitality of Dr. S.
Doniach and the Department of Applied Physics
at Stanford University and financial support from
the Bundesministerium fiir Forschung und Techno-
logie and from the Fulbright Commission is grate-
fully acknowledged.

APPENDIX

Here we shall discuss the coupled linear eigen-
value problem defined by Eqs. (3.18) and (3.19).
We start by rewriting these equations by replacing

with the ang. ular variable (the "out-of-plane" an-

gle) 8=v ym. and by introducing the dimensionless
space variable z=mx as well as a harmonic time
dependence with frequency 0:

iQ@=y" —(1—2 sech—z)y,
i Q p= ib'5+0" —(1—6sech z)8—. (A2)

from having to use [S(S+1}]'~instead of S) to
order 1lS by the finite sum of differences in zero-

point vibration energies. We have verified that the
renormalization of the equivalent continuous SG
chain (or of a more complicated field theory which
takes the out-of-plane degrees of the magnet into
account) has no relevance for the magnetic system.
This could, of course, have been realized from the
outset, since the Hamiltonian (1.1) is well defined
owing to the discrete lattice. Nevertheless, we find
the method which uses the field-theory approach,
giveri in Sec. III, useful in describing the relation
of the magnetic chain Hamiltonian to field-theory
models and in clarifying the relation to previous
approaches.

Our final result, Eq. (4.17), gives a soliton ener-

gy, which for the S =1 magnetic chain system
CsNiF3 is about 10% below the classical value.
Although this is not too far from the experimental-

ly observed difference of about 20% it should not
be taken too seriously. Both the use of a continu-
um model to calculate the vibration frequencies as
well as the restriction to the first term of the semi-

classical approximation will very probably be
sources of errors of the same order of magnitude
as the correction obtained here. Thus a quantita-
tive calculation of the energy of the quantum soli-

ton in the S=1 magnetic chain considered in this

paper remains a challenge for future work.

Q is the frequency in units of Eog V ym and b
has been defined in Eq. (3.22). Equations (Al) and
(A2) have the form of coupled Schrodinger equa-
tions with 1 —2sech z and 1 —6sech z playing the
role of an attractive potential. We want to find
the eigenfrequencies both in the continuum and of
possible bound state and the phase shifts of the
continuum states.

In order to calculate the phase shift we have to
consider the behavior of the solutions of Eqs. (Al)
and (A2) at z~ + oo. In these limits we have
plane waves, P-8-e'+, with frequencies

Q(Q) =[(1+Q')(1+Q'+ b ')) '~', (A3)

~nz~+oo, ip-5-e'"*,
z —oo, ip-5-ce'++de

(A4)

From c and d we find the phase shifts X+ (X ) for
solutions which are even (odd) under space reflec-
tion,

2iz+(Q) 1+d'(Q)
c(Q)

(A5)

The separation into even and odd solutions re-
stricts the wave vector to values Q & 0; both even
and odd solutions contribute equally to the sum
(3.9), which is transformed in the usual way to
give the integral in Eq. (3.23) with the phase shift

(A6)p(Q)=X+(Q)+X (Q) .
For b~ 0 (the SG limit) the only term to be con-
sidered on the right-hand side of Eq. (A2) is b '8.
The coupled system of equations then reduces to

bQ y= —ip" +(1—U sech z)ip, (A7)

with U =2. This eigenvalue problem can be solved
exactly"'; the resulting phase shift is

iso(Q) =2 arctan —.1
(Ag)

In addition to the continuum there exists a bound
state with zero frequency and wave function
y-d4s/dx -sechz, which is related to transla-
tional invariance. This zero-frequency state actu-
ally is an eigenstate of the complete system (Al)
and (A2), which is solved by ip-sechz, 8 =0. This
fact is, of course, related to the observation in Sec.
III that the SG soliton continues to be a solution
of the equations of motion for b & 0.

In order to generally investigate Eqs. (Al} and
(A2) for b & 0, we first apply straightforward per-

as already given in Eq. (3.17). We define transition
coefficients according to
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turbation theory in b, considering the terms
8"—(1—6sech z}8as perturbation. To lowest or-
der in b, this again leads to an eigenvalue problem
of the form (A7) with, however,

yo
——e'&'( —iQ+ tanhz },

50= —l&gpo,

a~ ——[(Q'+1)/(Q'+ 1+b ')]'~ .

(A12)

(A13)

(A14)

u=2(1+2Q b },
and with bQ2 on the left-hand side of Eq. (A7) re-

placed by bQ2(1 —Qzb ). From the exact treat-
ment of this problem' we note that, in addition to
the zero-frequency solution discussed before, there
now exists a second bound state. It emerges from
the continuum threshold Q=QO, Qob =1 as soon
as u &2. The frequency of this state is found to
lowest order in b as

In order to treat the perturbation we introduce the
integral equation representation equivalent to the
system of equations (Al) and (A2):

p(z) =tpo(z)+ f dz'Gi(z, z')sech z'8(z'),
(A15)

@(z)=SO(z)+ fdz'6 z(z,z')sech'z'8(z') .

(A16)

Q=QO(1 ——,b . ) .8
(A9)

Here the Green's functions 6; are to be determined
from

i Q@0 —po' (1——2s—ech z—)q&0,

i Qyo= b'50+—8o' (1—2 se—ch z )50,

(A10)

(Al 1)

and can be solved to give the continuum states

One might think that, going beyond perturbation
theory, the frequency of this mode will go down to

1

zero at b = —, to become the dynamical source of
the recently discovered' instability of the soliton
mode [(3.5) and (3.6)] against out-of-plane fluctua-
tions. This is, however, not the case, and an
understanding of this stability in terms of the
dynamics of the system is actually more subtle and
will be published separately.

Use of the above approach to calculate scattering
properties is unfortunately restricted to small wave
vectors, since 8" in Eq. (A2) is a small perturba-
tion only for Q «b '. Since we need to consider
arbitrarily large wave vectors, we now apply a
slightly more sophisticated perturbation theory,
treating + 4sech z8 in Eq. (A2) as a perturbation.
The resulting zero-order equations are the follow-
ing:

—iQ6z —6 i'+ (1—2 sech z )6, =0, (A17)

where primes denote derivatives with respect to z.
To calculate the Green's functions, we use the an-
satz

G;-e' g;(tanhz),

with k to be determined from

(A19)

(k'+l)(k'+1+b ')=(Q'+l)(Q'+1+b ') .

Note that this equation has not only real solutions
ki 2 ——+Q, but also imaginary solutions,

k, 4 +i(Q'+2——+b ')' '=+i~ .

Thus the Green's functions are linear combinations
of four terms of the structure of (A19) with coeffi-
cients depending on z'. We finally obtain for
ZQZ ~

iQGi —Gq'+(b '+1—2 sech z)62 ——45(z —z'),

(A18)

2ag A;
6;(z,z')=

~ 2
e' ' ''(iQ+tanhz')( —iQ+tanhz)

1+a& Q(1+Q')

+ 2
e "" ''( —a+tanhz')(~+tanhz)

s(1—s2)
(A20)

with

A~ ———1, A2 ——ia&,
B& ———i, B2——1/a~,

whereas for z &z' we have to transform Q~ —Q,

s~ —a in Eq. (A20} to obtain —6;(z,z'}.
We now calculate the phase shifts solving Eqs.

(A15) and (A16) in first-order Born approximation,
i.e., using 00 instead of 8 in the integrals. Keeping
consistently terms to lowest orders in b, we obtain
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X+(Q)=arctanl/Q+arctan[a(Q)+P(Q)]

(A21)

vvith a(Q) and P(Q) given in the main text. It can
easily be checked that this result implies that two

states are missing in the continuum, and they ap-
pear as the two bound states discussed before. We
have also checked that the result (A21) for the
phase shifts agrees with that from the simple per-
turbational approach for the small values of Q.
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