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Model of localized moments for dilute PdFe alloys
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A model that describes several magnetic properties of PdFe alloys with concentrations of
0.03 &c &0.5 at. % Fe is presented. An expression is derived for the magnetic-moment
distribution of the magnetization cloud which gives results that agree with experimental
data. An expression for the moment-dependent part of the energy is obtained. From this
expression an effective Heisenberg interaction between magnetization clouds is derived.
The stiffness constant of spin waves is calculated and found consistent with experimental
results. With the use of the Monte Carlo method for a classical Heisenberg system, the
critical temperatures and the magnetic susceptibilities are estimated and show good agree-
ment with experimental data at different concentrations. The model supports the idea of
polarization clouds produced by first-neighbor interactions between moments.

I. INTRODUCTION

Alloys of PdFe have long been considered typical
examples of giant-moment ferromagnetic systems.
Magnetization data' and neutron-diffraction mea-
surements ' give a 10pz moment per iron atom.
Most of this giant moment resides in the palladium
atoms, which form a polarization cloud around
each iron atom with an extent of —10 A, as has
been measured with neutrons by Low and Holden.
At concentrations as low as 0.1 at. % Fe, the mag-
netization clouds overlap making the alloy fer-
romagnetic at low temperatures.

Doniach and Wohlfarth developed a theory for
dilute PdFe alloys in which the palladium d holes
are polarized by the iron moments through a nonlo-
cal exchange-enhanced susceptibility. Zuckermann
extended the theory in order to include local ex-

change effects. These theories did not yield the
shape of the magnetization cloud, and the predicted
value of the spin-wave stiffness coefficient D was
much smaller than the experimental one.

Recently we developed a model for Ni-Pd and
Ni-Pt alloys which successfully described the static
magnetic properties of these systems. When this
model was applied to PdFe it correctly predicted
the range of the polarization clouds.

Our theory, in the PdFe case, reduces to a model
where local palladium moments are proportional to
the moment of its neighbors. Linear-response
theory is justified by the value of the Pd moment,
0.07pz for a first neighbor of an Fe atom, which is
small in comparison with the estimated number of

holes per atom (0.36). In contrast to the nonlocal
susceptibility model, the Fe moment polarizes
directly only its first neighbors.

In this paper we extend our previous model in or-
der to include an expression for the energy which
allows us to reduce the interaction between magneti-
zation clouds to a Heisenberg form.

II. MAGNETIZATION CLOUDS

The model we apply to PdFe assumes that the Fe
moments are insensitive to their local magnetic en-

vironment while the moment of a Pd atom at site n
is given by

where Xo is the nonenhanced susceptibility and h-„
is a local field given by

h-„=b-„+JQp-„+ a[1+(a—1)p- s ] .
5

(2)

Here 6-„ is the external field, p- is a site occupa-
tion operator which is equal to zero if a Pd atom is
at m and equal to one otherwise, p-„+ 5 is the mag-
netic moment of a first neighbor, J is the exchange
constant between Pd atoms, and aJ is the exchange
constant between Fe and Pd.

In the case of pure Pd in a homogeneous external
field, Eq. (2) implies that each Pd atom "feels" an
additional field of value Jp from each of its Z first
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neighbors. The actual susceptibility is then, not +0,
but the following enhanced susceptibility:

(3)

and

m(K)=
&bp[1 —I F)( K )]

(10)

where the magnetic enhancement factor I is given

by

With the scattering of polarized neutrons in

single-crystal samples, it is possible to measure the
Fourier transforms of the moments

I =JZ)go. (4) M(K)=m(K)+(1 —a)pp, .
%e may use this model to calculate the magneti-

zation cloud produced by a single Fe atom at site 0.
The calculations become simpler if we introduce the
variable m„, defined to be equal to p„ for Pd atoms

and to o.pF, for the Fe atom at site 0. In the ab-
sence of an external field, Eq. (2) becomes

(K) g~ eiK n
n

=~&Fe—JXp Z)p)+JXpm ( K ) g e' "' s

5

which can be rewritten as

aPF, —I P~m(K}=
1 —IFi(K)

(7)

rn „=XpJg et „+s +5 „p (a)Mp, —Xp Jz ]p ] )

5

(5)

where p& are the moments of the iron-atom first
neighbors. This equation can be solved by a Fourier
transformation giving

The scattering of unpolarized neutrons, on the other
hand, is roughly proportional to [M( K )] . In each
case, for polycrystalline samples, the scattering in-

tensity is .proportional to the spherical average of
the respective expression, and the large K values

give pF, . Low and Holden report a value of
pp, ——(3.5+0.4)ps. The moment per cloud, M(0),
has been determined with neutrons or by magneti-
zation measurements' as M(0) = 10pz. From Eq.
(10) we can now see that knowledge of I also yields

CXPFe'

The value I =0.947+0.009, for pure Pd, was
determined by us in a previous work in which a
similar theory was applied to the Ni-Pd alloys. Us-

ing these values, we get apz, ——(0.44+0.09)pz. A
value of I so close to 1 indicates the high polariza-
bility of palladium which is resporisible for the gi-
ant moments that appear when iron atoms are in-

troduced in this metal. Mueller et al. ' have calcu-
lated the band structure of Pd and they have es-

timated the enhancement factor as X/Xp
=14.9+1.1; equating this value to (1—I ) ', we

get I =0.933+0.005 which is barely consistent with
our value.

where we have used the first-shell structure factor
F~( K ) =Z& ' g s

e' '
and the enhancement

parameter I . The value of m-„can be determined

by the inverse Fourier transform.
At this point it is convenient to introduce the

Fourier coefficients 4„of the expansion

[1—I F~ ( K )] ', which are given by

10.0

7.5

e
—i K ~ nd3

V, 1 —I'F)( K)
2.5

The coefficient 4p has an analytic expression for
the fcc lattice. Owing to relation (7}, the m„'s are
proportional to the 4„'s, therefore
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FIG. 1. Spherical average of M(E) using our model
(continuous curve) is compared with experimental values
(points) from Ref. 4.
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III. INTERACTION BETWEEN CLOUDS

The Pd moment-dependent part of the energy for
PdFe alloys must be of the following form:

E= g(1—p-„) —,Xoh-„

J+
2

I" n X& n+ +s 1 P n+ s )

5

+ 0 ~ 0 (12)

where the ellipsis represents higher-order terms in

p. This expression for the energy is consistent with

Eq. (1), in fact, Eq. (1) follows from Eq. (12) by
minimizing the latter with respect to the moments.
Substituting Eqs. (1) and (2) into (12), the following
alternative expression for the energy is obtained:

1E= ——, g (1—p-„)p,-„b-„+Ja g p-„-p-„
5

We calculated the spherical average of M(K),
using Eq. (11),and compared it with the square root
of the experimental values of Hicks et al.,"as shown
in Fig. 1. The agreement is quite satisfactory. The
differences at smaller E could be due to the follow-

ing: (a) a value of I slightly larger than it should

be, and (b) the experiment was done with nonpolar-
ized neutrons and therefore some critical scattering
could be present, as has been found by Verbeek et
al."in some PdFe alloys.

We also calculated the values for the 4's corre-
sponding to our estimated l. The calculation was
performed by numerical evaluation of the integral
of Eq. (8). As shown in Fig. 2, the 4's decay ex-

ponentially above 2 A.

10P

10 3

104 I

2

FIG. 2. Calculated values of the 4's using our es-

timated I .

where

-+1, m

p~p~ J~ ( rt~ ~ g ~ ) (16)

sumed to be the vectorial sum of the moments in-

duced by each iron atom:

(1)p- =apF ~p ) f- '97
7

Here f'-' ' is the magnitude of the moment, in units

of api;„produced by an iron atom at 1 on a palla-
dium atom at site m. The direction of the induced
moment is assumed to be, at any time, the same as
that of the iron moment.

To obtain a new expression for the energy we

substitute the scalar moments, in Eq. (13), by their
vector forms, Eqs. (14) and (15), which in the ab-

sence of an external field yields

I n=IFeIm &
(14)

while the moment of the palladium atoms is as-

(13)

Here we can see that the interaction energy is pro-
portional to the product of the moments of the iron
atoms and the first-neighbor palladium atoms.
Equations (12) and (13) are valid in the case of a
ferromagnetic material where all the moments have

the same orientation.
Near the critical temperatures, the orientations of

the moments are fiuctuating and therefore the

model should be modified to take this into account.
We then write the iron moment in the following

vectorial form:

+ g(1 p~ ~)f~~ ~~

S

(17)

and

(18)

TABLE I. Values obtained with our model for PdFe
alloys.

apq, ——(0.44+0.09)pg
gp ——3.63 X 10 emu/g
J=(766+100) K
Jp ——(147+34) K
E,=(—149+34) K
D/c=(780+180) A K/ at. % Fe
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The resulting energy expression indicates a Heisen-
berg type of interaction between magnetization
clouds centered on each iron atom. The total mo-
ment associated with each cloud is composed of the
central iron moment plus the moments induced by
that iron on the palladium atoms.

The J-,
~

terms correspond to the self-energy of
a magnetization cloud. In the case of an isolated
iron atom, this energy is given by

10o

1O-I

10 2

E,= ——,J Z,
0

(19) 10 3

Jp is a natural unit of energy for the moment
dynamics of the system and can be calculated using
the value of the susceptibility, P =6.85)& 10
emu/g, reported by Verbeek et al. " Using Eqs. (3),
(4), (18), and (19), we obtain the values of Xp,J,Jp,
and E, given in Table I.

As a first approximation, f' ' ' equals

7/4p when one neglects the presence of iron
atoms other than the one located at 1 . In Eq. (17)
this is not a good approximation because there is an
iron atom as first neighbor of the palladium atom.
We can take into account the effect of having an
iron atom at site n by subtracting the contribution
to the moment at rn due to the palladium substitut-
ed by the iron at n, that is

f- =4p (4-
)
—4-„7g- ) ~ (20)

where g' " ' is the normalized moment produced by
the palladium atom taking into account the absence

R/a

FIG. 3. Values of J calculated using Eq. (23). The
continuous curve corresponds to the fitting function
given by Eq. (24).

of a palladium at site 1.
By the above argument we obtain

=@p (@- -. —@7 -.f-(n) —1 (1)

Eliminating gI -"'~ from Eq. (20) we finally have

(21)

f =(4p —4 -)(7) 2 2

X(4- 7@p—4-„74&- -„) . (22)

Using this expression, we can write the value of J
neglecting all effects due to iron atoms other than
theonesat 1 andm:

JpJi - —— X @m+5 —7@p
p —m S+ I —m

J(R)=Jp exp 0.406 —1.105—+R 2.508
a (1+8/a )

which will be used in the next section.

(24)

IV. MONTE CARLO CALCULATIONS

The model developed allows a description of the
ferromagnet-superparamagnet transition for a low-

This result is valid in the low concentration limit.
Note that J

&
is roughly proportional to 4

We calculate J
&

- using the previously determined
4's; the results are shown in Fig. 3, where the con-
tinuous curve corresponds to the empirically found
fitting function

(23)

I

concentration PdFe alloy. From the work of
Chouteau and Tournier we know that above 0.5
at. % Fe the nonlinear interference between magnet-
ization clouds becomes increasingly important as
shown by the decrease of the saturation moment per
Fe atom; on the other hand, the same authors did
not find a ferromagnetic transition below 0.02 at. %
Fe, where the alloys are probably spin-glasses. ' We
performed Monte Carlo calculations within this
range of concentrations for which the expression for
J, Eq. (23), should be valid. When two iron atoms
are first neighbors there is an additional interaction,
an Fe-Fe exchange, which should be larger than the
effective Fe-Fe interaction mediated by the palladi-
urn atoms. Given the low occurrence of iron pairs
at this concentration, we completely neglected this
effect.
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A description of the Monte Carlo method can be
found in the book by Binder. ' N classical spins of
magnitude 1 were distributed at random in a cube
of a size determined by the concentration. The use
of classical spins in the calculations should be a
good approximation at high temperatures because
of the large magnetic moments of the clouds
( —10ps) which correspond, for g=2, to a spin of
S =5. Given the small concentrations we neglected
the crystal lattice. The exchange constants J(R)
were calculated using Eq. (24), and the energy using

Eq. (16) (excluding the formation energy of magnet-
ization clouds). Periodic boundary conditions were
used.

For each concentration, we computed for various
temperatures: the energy E, a component M, of the
total magnetic moment, the average magnitude (M)
of the total magnetic moment (M), the specific
heat (from the average energy fluctuation), the sus-

ceptibility X, (from the average fluctuation of a
component of the total magnetic moment), and a
quantity X which coincides with X for infinite sys-

tems and which is given by the fluctuation of the
magnitude of the total moment, that is,

((m —(M))')
ÃkT

(25)

The calculations were performed in the following

way:
(1) For most concentrations, N =50 was used.

(2) For each temperature, and in order to ensure
the attainment of equilibrium, 500 Monte Carlo
steps per spin were performed before calculating the
averages.

(3) At each Monte Carlo step per spin the instan-
taneous values of the energy and the total magnetic
moment were recorded. 1500 of those values were
used to compute the averages.

(4) The initial configuration of spins, for each

temperature, was set equal to the final configuration
of the previous temperature. %e found the same re-
sults lowering or raising the temperature.

(5) For concentrations c =0.0592, 0.0430, and
0.0287 at. % Fe, systems of N =100 spins and 4000
instantaneous values were used.

For systems as small as these, and for any tern-

perature, the total magnetic moment rotates so that
any component of the moment averages to zero
after a certain elapsed time. This makes very diffi-
cult the estimation of the critical temperatures from
the "true" susceptibility X. On the other hand, the
average value of the magnitude of the magnetiza-
tion changes too smoothly with temperature to al-

Pd 0.3 at. % Fe

10
T (K)

l

20
I

30

FIG. 4. Typical g vs T curve. Critical temperatures
were determined from the maximum of g.

Pd-0. 0592 ot. %Fe
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Q. 00
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0.25
I

0.50
I

0.75

FIG. 5. g vs T curve for c =0.0592 at. % Fe. Below
this concentration, the critical temperatures were diffi-
cult to determine using the maximum of g.

low a precise determination of the critical tempera-
tures. Nor can we determine these temperatures
from the specific heats calculated as fluctuations of
the energy because the large dispersion of the values

disguises the peak at the critical temperature. The
critical temperatures were therefore determined

from the maximum of X. A typical I vs T curve is

shown in Fig. 4. At the lowest concentration it is
difficult to determine the positions of the maxima
of P vs T, consequently we also used the specific
heat determined by the derivation of a cubic spline'

interpolation of the energy; this was done for
c=0.0287, 0.0430, and 0.0592 at. % Fe. The X vs

T curve for the latter concentration is shown in Fig.
5 while the specific heat and the energies are shown

in Fig. 6. The calculated susceptibilities and specif-
ic heat are adequate to determine the critical tem-

peratures but, because of the use of classical spina,

they are not a good representation of the behavior

of the real systems at lower temperatures.
The critical temperatures obtained with this pro-

cedure are shown in Fig. 7 together with the experi-
mental values. ' ' ' There is very good agree-
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FIG. 6. (a) Specific-heat and (b) energy curves for
c =0.0592 at. % Fe. The maximum of C/J0 was also
used to determine the critical temperature of this alloy.
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FIG. 7. Critical temperatures determined with our
model by Monte Carlo calculations are compared with
experimental results from Refs. 1, 2, and 13—19.

FIG. 8. Comparison of calculated magnetic suscepti-
bilities with the experimental values from Ref. 2.

ment for a wide range of concentrations; only for
c =0.0287 and c =0.025 at. % Fe the calculated
T, 's are smaller than the experimental ones. The
experimental T, is proportional to c for c &0.1

at. % Fe, while above this concentration, the T, vs c
curve is well approximated by a straight line. All
these features are also shown by our calculated
values. In our model the shape of the curve T, vs c
is essentially determined by the spatial extent of the
magnetization clouds, i.e., by the value of I . Not
only is the shape of the curve reproduced by the cal-
culations but also the values of T, which are pro-
portional to J. This result checks our value of J
which was determined independently.

We also compared some calculated susceptibili-
ties above T, with experimental values, as shown in
Fig. 8. The susceptibility per cloud was calculated
using the following expression:

S+ 1 M(0) (M, )
S XkT

(26)

where the quantum nature of the spin was taken
into account by the factor (S+1)/S. The tempera-
tures were scaled with the critical temperatures.
Although the experimental and calculated values of
the critical temperatures are close, they are not
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identical and therefore this procedure makes the
comparison easier. There is very good agreement
for the two larger concentrations. As in the case of
the critical temperatures, at c=0.0287 at. % Fe
there is no agreement with experimental values.

V. OTHER RESULTS

The same model can be used for concentrated
Pd-Fe alloys if we include an environment-

dependent iron moment. For example, we may ap-

ply the model to the ordered alloy FePd3. From
Eqs. (1), (2), and (4) one obtains in this case

~&PFe
PPd= (27)

For this alloy, Shirane et al. measured

pF, ——(2.86+0.01)ps. Using this value of the iron
moment, we obtain ppd

——(0.31+0.08)pq, while

Shirane et al. give the value ppd
——(0.34+0.01)ps.

Another quantity that can be estimated with our
model is the stiffness coefficient D of acoustics spin
waves for low-concentration PdFe alloys. From the
Hamiltonian of Eq. (16), we obtain the stiffness
coefficient from the expression

D= QJO-„/ n /'.
6(S+1)

(28)

This is the usual expression for a Heisenberg Hamil-
tonian, ' except that the random position of the
iron atoms, in the lowest order, gives rise to the fac-
tor c.

We calculated D using the J's of Eq. (23) and

neglecting the unknown Fe-Fe first-neighbor ex-
change. We obtain D/c=(780+180) A K/at. %
Fe. This value is consistent with the one estimated

by Smith et al. [D/c=(690+35) A K/at. %%uoFe],
who included in the calculation their own heat-
capacity data and other experimental results, such
as the neutron scattering measurements of Stringfel-
low."

VI. CONCLUSIONS

The model we have presented describes well

several magnetic properties such as critical tempera-
tures, shape of the magnetization cloud, magnetic
susceptibilities, and spin-wave stiffness constant.
This model agrees with the measurements of
Chouteau and Tournier in that this system is a fer-
romagnet for c&0.02 at. %%uoFe. Therefor e, al-

though there is a change in the behavior of T, near
c =0.1 at. %%uoFe, thi s isno t a tru ecritica 1 concentra-
tion. Our model fails for concentrations below 0.03
at. % Fe. This is probably due to a competition be-
tween the ferromagnetic and the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions which are of
longer range. Below 0.02 at. % Fe, RKKY interac-
tions probably dominate making the system a spin-

glass. '

The success of our model supports the idea of po-
larization clouds produced by first-neighbor interac-
tions between localized moments. This is not in
contradiction with the idea of a nonlocal suscepti-
bility since the latter is proportional to our 4„.
However, we may conclude that the high degree of
localization of d electrons in Pd should be taken
into account for a proper calculation of the nonlocal
susceptibility from first principles. We do not be-
lieve, therefore, that the magnetization cloud could
be due to an enhancement of RKKY interactions as
suggested by Verbeek et al."

As a final comment, we may say that a first-
principles theory now only needs to justify the local
character of the Pd moment in order to agree with a
wide range of experimental data.
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