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Inelastic scattering of neutrons by surface spin waves on ferromagnets
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We present a theoretical analysis of the inelastic scattering of thermal neutrons from the
surface of a ferromagnetic crystal, under conditions where the angle of incidence of the
neutron exceeds the critical angle and its wave function attenuates exponentially as one
moves into the crystal. Under these conditions, we evaluate and compare the cross section
for scattering off surface and bulk spin waves, for a model of a localized-spin ferromagnet.
The formalism we use here should prove useful for analysis of a variety of similar prob-
lems.

I. INTRODUCTION

For a number of years, the influence of a surface
on the magnetic properties of crystals has been an
active area of theoretical study, at temperatures well

below the bulk ordering temperature where surface
spin waves appear under a variety of cir-
cumstances, ' and near the bulk ordering tempera-
ture where the influence of the surface on critical
behavior may be explored. However, there are few
experiments that probe surface magnetism in a mi-

croscopic fashion, yielding data that may be placed
in direct contact with theory. Spin-polarized elec-
tron scattering is a potentially powerful probe of
these issues, and we have data from two excellent
experiments in hand at the time of this writing.

In a recent Communication, Felcher suggested
that neutron scattering may be used to probe the
magnetic environment near the surface. At first
glance, this suggestion is surprising, since the mean
free path of neutrons in most crystals is very long;
consequently the scattered neutrons give informa-
tion primarily on bulk properties of the crystal.
However, Felcher points out that in many sub-

stances, the sign of the average nuclear scattering
length is such that the effective index of refraction
of the crystal for neutron propagation is less than

unity. Then, just as in crystal optics, there is a crit-
ical angle of incidence 9, beyond which the neutron
wave is totally reflected from the crystal surface.
The neutron wave function penetrates into the crys-
tal interior, but is exponentially attenuated as one
moves into the crystal interior.

A consequence is that neutrons scattered off the
surface give information only about the near vicini-

ty of the surface if the incoming beam strikes the
surface at grazing incidence with the angle of in-

cidence greater than the critical angle 0, . We have
the intriguing possibility that the neutron scattering
method, which has proved to be such a powerful
probe of bulk magnetic properties, may be used also
to examine the near vicinity of the surface. It is in-

teresting to note that inelastic light scattering exper-
iments (Raman scattering) have been carried out
under conditions similar to those just described.

While Felcher's Communication explored only
the possibility of examining the spatial variation of
the average magnetization, it was suggested that in-
elastic scattering experiments may be carried out in
such a geometry to observe excitation of surface
spin waves by a neutron beam that strikes the crys-
tal at grazing incidence. The purpose of this paper
is to present a formalism in which such experiments
may be analyzed, and to report numerical calcula-
tions of the cross sections with the use of the
method described below. The standard discussion
of the scattering of neutrons by spin waves consid-
ers the wave function of the particle to be a plane
wave, assumes that the neutron interacts with the
spins only while it is within the crystal, and sup-
poses that the spin waves themselves are simple
plane waves. In the scattering geometry of present
interest, the neutron wave function is more com-
plex, as outlined above. Also, spin fluctuations near
the surface produce fluctuating magnetic fields in
the vacuum above the crystal surface, so the neu-
tron interacts with the electronic spins in the ma-
terial not only when it is within the crystal, but also
while it is in the vacuum above the crystal, either
approaching it or exiting from it. Finally, due ac-
count must be taken of the influence of the surface
on the spin dynamics in its near vicinity. This is
obvious if one wishes to examine the scattering of
neutrons by surface spin waves, but it is important
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to note that the surface affects the nature of the
spin fluctuations nearby, produced by thermally ex-
cited bulk spin waves.

A theory that incorporates all these effects neces-
sarily leads to final expressions for the inelastic
cross section that are more cumbersome and less
elegant than the familiar Van Hove formulas en-

countered in the literature of neutron scattering
from bulk spin-wave excitations. But for the pic-
ture of the surface scattering experiment we use

here, which we believe is sufficiently realistic for
the results to be quantitatively reliable, one may ob-

tain closed algebraic expressions for the various
contributions to the inelastic cross section. While
the basic approach we use here is an adaptation of
earlier theories of small-angle inelastic scattering of
electrons from surface excitations, the modifica-
tions required for the discussion of neutron scatter-

ing are nontrivial in nature.

II. THEORETICAL ANALYSIS

We consider a semi-infinite lattice of localized

spins, with S; the magnitude of the spin on lattice
site i, and suppose that a neutron is incident on the
crystal from above. The surface of the crystal coin-
cides with the x-y plane of a Cartesian coordinate
system, and the lattice of spins occupies the half
space z & 0. The Hamiltonian is thus

H =H„+H„g+Hg,

where

I'
nH„= + Vo(x~~,z),

2M„

(2.1)

(2.2)

where P is the momentum of the neutron, I„is its
mass, and Vo(x~~,z) describes the interaction of the
neutron with the array of nuclei. The second term
in the Hamiltonian describes the interaction of the
neutrons with the electronic spins, ' here regarded
as highly localized. " We have, with r the position
of the neutron and s its spin,

+ 4m s S;5(r —R~)

(2.3)

» Eq. (2.3), R; is the location of spin S;, the elec-
tronic moment associated with the site is gp&S;

with pz the Bohr magneton, and p„ is the neutron
magnetic moment. Finally, Hz describes the spin-

spin interactions in the crystal. We shall be content
to consider the following Heisenberg spin system
with nearest-neighbor exchange:

Hs ———,—JQQS(1) S(1+5) . (2.4)

We ignore changes in the exchange near the surface,
since they will play no essential role in our discus-
sion. The influence of altered-surface exchange
constants is readily incorporated into the discussion
through use of appropriate Green's functions which
enter the discussion below.

The principal approximation we make is the fol-

lowing. The potential Vo(x~~,z) is formed by sum-

ming over the interaction of the neutron with the

array of nuclei in the crystal. We shall replace this

potential by a spatially averaged (possibly complex)

optical potential Vo. Since the crystal occupies the
half space z g0, we have

Vp(x((, z) = Vp6(+z)

within this scheme, with 8(x) the step function that
equals unity for positive values of its argument and
that vanishes for negative values. A consequence of
this smearing out of the crystal potential is that we
obtain a neutron beam specularly reflected off the
surface, but no Bragg beams. The description of
the inelastic scattering includes "X processes" for
which wave-vector components (parallel to the sur-

face) are conserved, but not "U processes" where
wave-vector components parallel to the surface are
conserved only to within a nonzero reciprocal-
lattice vector (parallel to the surface). To carry out
the analysis within a scheme that fully includes the
Bragg beams in the semi-infinite geometry can sure-

ly be done, but the increase in algebraic complexity
is substantial. The approximation outlined above
allows us to explore a number of questions of in-

terest, within the framework of a tractable analysis;
for example, the breakdown of wave-vector conser-
vation in the direction normal to the surface that is
a consequence of the attenuation of the neutron
beam into the medium is fully incorporated.

Once the approximate form for Vo(x~~,z) is
chosen, we proceed by treating H„q as a small per-
turbation. The neutron encounters the spin system
in the eigenstate ~M) of Hs, its incoming wave
function is

~
g„), so the wave function of the whole

~y~t~~ i»ts initial ~tate is lt)jo&

Then, in the presence of H„z, the wave function be-
comes

~ p ) =
~

l(to ) +
~
its ), where to first order in
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H~ the Schrodinger equation gives

(P„'/2M„)+ V, +H, E—
(2.5)

with E the total energy of the system, E=@„+E~,
with e„ the kinetic energy of the incoming neutron,

and EM the energy of the spin system. By using the
identity operator

I.,=g J a'r'~N)
i
r')(r'~(N) (2.6)

N

with
~
N) once again an eigenstate of Hs, one may

write for the probability amplitude (r
~
(N

~ fs)
for finding the crystal in eigenstate ~N) of Hs,
with the neutron at position r, the result

(r~(Ã~gz&= —J d'r (r 'z F')(&&'IH.s~&'&l~&4. ~"'&
(P„/2M„)+ Vo —„

(2.7)

where 1(&„(r ') is the wave function of the incoming
neutron. It is not a plane wave, but rather the ap-
propriate eigenfunction of H„defined in Eq. (2.2).
It thus consists of an incoming plane wave in the
vacuum above the crystal, a specularly reflected
wave, and, if the neutron angle of incidence is
greater than the critical angle discussed in Sec. I, a
piece which penetrates into the crystal, but which

decays exponentially as one moves into the crystal
interior. The explicit form of f„(r) will be given
below. In Eq. (2.7), e, =EM E„+e„w—ill be the
energy with which the inelastically scattered neu-

tron emerges from the crystal.
The quantity

G(r, r ';e) = r r
(P„/2M„)+ Vo —e

(2.8)

is the Green's function for the neutron in the pres-
ence of Vo. This function may be constructed
straightfo~ardly for our approximate fo~ of Vo

I

I

by noting that it satisfies the differential equation

p2
+ Vo —e G(r, r ';e) =5( r —r '),

(2.9)

which is subject to the outgoing boundary condi-
tions relevant to the present problem. It is con-
venient to Fourier transform this function. Let the
z axis be normal to the surface, r

~~
and K~~ the pro-

jection of r and K onto the x-y plane, and write (we
use units with %=1}

d EllG(r, r ';e}= g(z, z', K~~, e)
(2m )

Xexp[iK~~ (ri~ —r~~)j .

(2.10)

Then g(z,z', K~~e) may be shown to have the follow-
ing form:

2iM„
)+~i+

(2.11)

(2.12a)

and also

where, with e~=e —K~~/2M„, we have Kj =(2M„)' e~, K~) =(2M„)' (Ez —Vo)' with the square-root
convention such that Kq & 0 (we shall only consider scattering geometries where ez is positive), and we have
Im(Kq ) &0. The functions &)(&)(z;K~~,e) and tP (z;Kz, e) that enter Eq. (2.11) are given by

exp(iK& z), z&0
(z;K,e)= '

A lexp(/Kl'z)+A2exp( —iKL'z)„z (0,

Aqexp(iKi z)+A &exp( iK& z), z —&0

exp( i' z), z&—0. (2.12b)
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One finds that Ai (E——i +Ei )/2Ei and A2 (E——i E—i )/2EJ
To complete our discussion, we require the wave function of the incoming neutron. If e now refers to the

energy of the incoming neutron, and K~~ refers to the projection of its wave vector onto the x-y plane, then

lP (i )=e P (z;K~~,e)= 8 4P (z', K~[,e)Il~

2Eg
exp(iEi z), z)0

E,'+E,'
E~~ —E~~

exp(iEi z)+ exp( iEi—z), z(0.E,'+E,'
(2.13)

(2.14)

With these results, the scattered wave function can be written in the form, in the vacuum below the crystal,

d E .g&s&. , M„e
-IX&8 &'S

&r
I

&N I|('s&= J z. e '
"

(s i
&N'S IH~s IM'~&

(2~)'i

where, here and in what follows, the superscript S or I means that the quantity involved is to be evaluated at
the energy e and K~

~

appropriate to the scattered or the incoming neutron. In Eq. (2.14) we have defined

&N'S
f
H s f

M;I) = J d r
j[ dz'exp[i(K~~

' —K'g') r j[]

)&P' "'(z';Kii, e g' "'(z', K' ',e )&N iH„(r') iM) . (2.15)

In order to evaluate the scattering cross section
(more precisely, the scattering efficiency to be de-
fined below), we require the behavior of the neutron
wave function far from the crystal. If K=K~~
+zEJ with E,=(2M„e K~~

)' ', and—4(K) is a
slowly varying function of K, then with the method
of steepest descents one may show that if'z

(2.16)

one has

lim g(r)= 2mi@(Er) —e' ",

(2.17)

where cos8 is the angle between the z axis and r.
With this result one finds that the total neutron
current which passes through the area r dQ(Es),
and hence which is scattered into the solid angle
dQ(Es), is given by

ME
, 1&N;S~H„s~M;I) ) dQ(Es),

(2ir)

(2.18)

and we write

&¹S
~
H„s j

M;& &
= y &N

~

V(I,S;S;)
I
M &,

where &N j V(I,S;S;)
~

M) is the contribution to the
matrix element from the interaction of the neutron
with the particular spin S;. If we then sum over all
final states of the crystal, and average over the ini-
tial states with P~, the probability of finding state

~
M) in the statistical ensemble that describes the

crystal, then the total current per unit solid angle
dj's/d Q(Es), is given by

M Es
g P~ M g V'(IS;S;) N)dQ(Es) (2n )

XX VASSS, M .
J

(2.20)

We want the scattered neutron current per unit
solid angle, per unit energy range, to discuss the in-
elastic scattering cross section. If we use the identi-

ty

J des5(e +E„e' EM)=1, — —(2.21)

and then use the well-known Fourier transform
form of the delta function, one may extract the con-
tribution to Eq. (2.20) from neutrons with scattered
energies in the range from es to as+des. If we de-
fine

(2.19)
V(i)= g V(I,S;S,(t)), (2.22)



26 INELASTIC SCATTERING OF NEUTRONS BY SURFACE SPIN. . . 5179

where the spin operator in Eq. (2.22) is in the
Heisenberg representation formed with the operator
Hs, then for the scattered current per unit solid an-

gle, per unit energy, we have

d' ME +I dt '"'( Vt(t) V(0) )
d Q(Ks )d es (2n. )

(2.23)

where Q=es —et is the difference in energy be-

tween the scattered and the incident neutron.
We shall evaluate the scattering efficiency per

unit solid angle, per unit energy range,
d P'/dQ(Ks)des. The quantity

[d P'/dQ(Ks)des]dQ(Ks)des

is dimensionless, and equal to the probability that
the neutron is scattered into the solid angle dQ (Ks)
with energy between es and as+des. This is found

by dividing Eq. (2.23) by the total neutron cur-
rent which strikes the crystal, which is
[A(K(t'/M„]coset, where A is the surface area of

y I dQe 'n'(Vt(t) V(0))&.

(2.24)

The next step is to evaluate the matrix element in

the definition of V(t) Th. e algebra is tedious, but
straightforward, so we only quote the result, If we

let

K (2.25)

with K~~ and K~~ the projection of the wave vector(S) (I)

of the scattered and incident neutron onto the xy
plane, then the quantity V(I,S;S;}defined in Eq.
(2.19) is given by

the crystal, and Ht is the angle of incidence mea-

sured from the normal. Thus with factors of (5 in-

serted, our basic formula becomes

MgS
d Q(Ks )d es (2n } fi K cos8t

'}=""['QllSll +ALIIS ]['Qll II+~ll

+ [ 'Qll II +~ll ][ 'Qll II+~ll ]+
where s is the spin of the neutron, and Ql I

=
~ Qll ~

. The quantities I z' are given by

-Q ~z.
—

Qi UZI

(() 2nÃPsIJ n .- -(t) r
T

g II II g + (K"+K") g + (K"—K")

(2.26}

Qll r Q/( i

II+.(K"—K"}
" "

&II
—(K,"+K", }

r(K] + +K] ~ )z —Q))z.
(2.27a)

i (KS& & +K &I
& )z,- —i Q

I l

R

(2.27b)

and

(i)r,'= —4 gI,~„a,a,

The quantity
I

terior, while

(2.27c}

A, =2Ki /(Ki +Ki ) (2.28a) A„=(Kj~ Ki )/(Ki +Ki )— (2.28b)

is the amplitude of the neutron wave function
transmitted through the surface into the crystal in-

is the amplitude of the reflected wave. The first
four terms in Eq. (2.27a) have their physical origin
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y =i (Kg +Kg ), (2.29)

a quantity with a negative real part (recall
ImK~~ &0), and we write the above expressions in
the forms

II (I e ~+I e II &) (2 3()a)

(2.30b)

I

in the interaction of the neutron with the fluctuat-
ing magnetic field in the vacuum above the crystal
as it either approaches or exits from the vacuum.
These terms are very similar to those which control
small-angle electron scattering from surface interac-
tions, where coupling of the electron to the oscillat-

ing electric dipole moment of the surface species
dominates the cross section. We refer the reader
elsewhere for a discussion of these terms, most par-
ticularly at very small scattering angles where the
incoming or exiting particle feels the fluctuating
field when it is quite far from the surface. The
remaining terms in Eq. (2.27) describe contributions
to the matrix element that come when the neutron
is inside the crystal. In what follows, we introduce

—i R ''~ll 1I I3 e 31e (2.30c)

The next step is to calculate the expectation value

& v'(l, s;s, (r)) v(I,s:s,(o)) &,

and to express it in terms of the quantities defined
above. We do this, and retain only those terms
which contribute to the energy-loss cross-section
peaks from either creation or absorption of spin
waves by the neutron, i.e., we ignore elastic scatter-
ing from the spatial inhomogeneity of the magneti-
zation near the surface. For this purpose we orient
the saturation magnetization of the crystal along
the z axis (normal to the surface). Then, the terms
which contribute to this portion of the cross section
are those proportional to the correlation functions
&S„'(t)$„'(0)), &S„'(t)s,'(0)), &S,'(t)S„'(0)), and fi-
nally &S~(t)S~J(0)). One may show that the contri-
butions from &S„'(t)s&J(0)) and &Sz(t)S~J(0)) both
vanish for the Heisenberg ferromagnet, while the
contribution from &S~(t)S~J(0)) equals the contribu-
tion from &S„'(t)SJ(0)). After some algebra, we
find that

V I S;S] t VI,S;SJ 0 T

=—[2Q (I',*I,+I"I )+2I"'I' —Q (I',*I,+I","I',+I"'I +I'*I' )] e '"'&S„'(t)s„'{0)).
2F

(2.31)

Our next task is to obtain an expression for the
spin-correlation function which appears in Eq.
(2.31). Some years ago, Maradudin and Mills ob-

tained closed-form expressions for a certain Green's

function that describes spin waves in the semi-

infinite, simple-cubic Heisenberg ferromagnet with

a (100) surface, and with nearest- and next-nearest-

neighbor exchange interactions between the spins.
This Green's function can be used to evaluate the
spin-correlation function that appears in Eq. (2.31)
by a prescription quoted below. For the purposes of
the present paper we prefer to use a somewhat more
general form' of the Green's function that may be
applied to a variety of crystal structures and surface

1

I

geometries, so long as the exchange interactions be-
tween a given spin and its neighbors extends no far-
ther than one atomic plane above or below the spin.
This Green's function contains, as a special case, a
number of surface geometries discussed in the
theoretical literature, including the one explored by
Maradudin and Mills. In Ref. 14 we encounter a
certain Green's function of a complex variable z re-

ferred to as G( 1, 1 ';z), and here we refer
to the same function as G(i j;z) If.
n(Q)=[exp(PQ) —1] ' is the Bose-Einstein func-
tion with P= 1 lk& T, one may obtain the following
relation:

In(Q)[G(i j;Q ie) G(i j„Q—+ie)]—+(1+n'(Q))[G(j,i; —Q+ie) G(j,i; —Q —i—e)]J . (2.32)
1Tl
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It will be useful to quote the explicit form of the
Green's function; as noted earlier, we ignore
changes in exchange constants near the surface,
though changes in surface exchange are incorporat-
ed in the Green's functions obtained in Ref. 14.
The bulk spin-wave spectrum of the material, with

the wave vector q = q II+zq„has the form

IIs ( q
I
I,q, ) =& ( q II

) —B(q I I

)cos(q, ap )

(2.33)

y(qll} =Bi(qll}/Bi(0} (2.35b}

In Eq. (2.3Sb) the sum over 5II covers all sites in the
plane located at aol, z to which a given spin in a
reference plane at l, =0 is coupled. For any partic-
ular crystal structure and model of the exchange in-

teractions, the quantities Bp(qll) and B+I(qll) are

easily evaluated. The bulk spin-wave dispersion re-

lation may be expressed in terms of the following
quantities:

with ao the distance between adjacent planes paral-
lel to the surface. The Green's function of the
semi-infinite crystal may then be expressed in terms
of the objects, with z a complex frequency

A ( q II)= —,[Bo(0)—Bo( q II)]+B (0), (2.36a)

(2.36b)

&q na0
ap +~~+p dq, e

go n~qll~z =
2 f z — s(qll, q

(2.34)

Then the Green's function for the semi-infinite

crystal has the form

i R ' —R
G( '~J ) — $ +'

Lj,z e

and

Bt (qll) =2Sg J(5II+apl, z)e
5((

(2.35a)

If J(5II+z5, ) is the strength of the exchange in-

teraction between a given spin and its neighbor lo-

cated relative to the given spin at the position

5II+z5„ then we also need

Xg(l, l', qll, z), (2.37)

where the position vectors of spin i and spin j are
written R' =R~~ +zaol, and R'J =R~~ +zaol . We
have, in terms of the functions g(n) defined in Eq.
(2.34), '

g(l, l'; qll'z go(l I'; qll—z +t qll, o)[g,(l;qll z g, (l';qll z +g, (l —1;qll'z go(l' —I;qll'z 1

+t(qll, 1)[go(l—1;qll, z)go(l';qllz)+go(l;qll, z)go(1' —1;qll,z}], (2.38)

where

—2y (qll)/B(qll)
t(qll, 0)=

D(qll, z)

[1—y (qll)]go(0;qll, z)+2y'(qll)/B(qll)t(q, l) =

(2.39a}

(2.39b)

and

qll ' = I[y qll)+ ][g(o qll'} —g(l, qll, z}l+2y(qll}/B(qll}J

X I [y(qll) —1][g(0;qll, z) —g(1;qll, z)] —2y(qll)/B(qll) J . (2.39c)

While the expressions above seem cumbersome,
in fact, the sum over i and j in the cross section'

[Eq. (2.24); note Eq. (2.22)] may be carried out in

closed form so that the evaluation of the neutron
cross section reduces to the evaluation of an alge-
braic expression that involves only elementary func-

I

tions. The expression is cumbersome, and we have
evaluated it on a computer as a consequence. We
conclude this section, however, by quoting the final
form of the cross section.

There are two distinctly different contributions to
the cross section. The first comes from scattering
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off of surface spin waves. As discussed elsewhere,

the Green's function g(l, l';q~~, z} has a pole on the
real axis of the complex-frequency plane, at the zero
of the denominator D(q ~~,

z) defined in Eq. (2.39c).
This pole, when combined with Eq. (2.32) leads to a
Stokes or an anti-Stokes scattering process where

the neutron either loses the energy Qs(Q~~) upon
suffering the wave-vector transfer Q~~ parallel to the
surface, or gains this energy. It also scatters off of
bulk spin waves. This contribution, whose form
will be the subject of further discussion in Sec. III,
comes from a branch cut in the function

g(l, l';
q~~, z), which also lies on the real axis and ex-

tends from Q (q~~) to QM(q~~), where Q (q~[) and

Q3r(q~~) are the minimum and maximum bulk

spin-wave frequencies associated with the wave vec-

tor q~~ parallel to the surface. If, in Eq. (2.33) both

A(qll andB(qll) a«positive, then

while

QM«ii =A«ii +

er only anti-Stokes scattering, where eq&ei and
Q&0. The Stokes cross section is obtained from
this by simply multiplying the anti-Stokes cross sec-
tion by exp(11I

I
Q

I
/k&T). ] For Q' in the range

from —1 to + 1, it is convenient to introduce the
angle 0 defined by

the function

1'(I Q' )
~ (2.41)

(2.42a)

and also

(e"+3'e '2s 1)F(x,y) =
(e"+~—1)(e"e ' + 1)(e"e ' + 1)

(2.42b)

When the algebra has been completed, the cross
section for the anti-Stokes scattering off bulk spin
waves is then, with Ao the area of the two-
dimensional unit of a plane of all spins parallel to
the surface,

First, consider the scattering of the neutron off of
bulk spin waves. It is convenient to introduce the
dimensionless measure of energy transfer

d P'

dQ (ks )dEs

M„K' 'n(Q)

(2n ) 111 K' 'Aocos81
(A1+A2),

Q'=[Q —A(q(()]/B(q~~), (2.40)
(2.43)

which lies in the range —1 & Q'(+1 for a process
in which a bulk spin wave is absorbed. [We consid-

where, with y=i(K1 +K1 ) as in Eq. (2.29), one
has

S „„,«I2Q(~[ I
r 21'F(Q~( Q())+ I

r11I'F( —y*, —y)+r'„r, F(—y, Q(()3m'B(Q~~)(1 —Q' )

+r„r;F(Q[[,—y)+ I
r,

I
F( —y, —y}]

+2
I
r, 1 I

'F( —y*,—y) —
Q~~ r12r„F(Q~~, —y)

Q[j) Q~)r11r31F( y —'Y—}'

Q [[r11r31F( y y } Q [[r21r31F( y y )

—Q((r21r31F( —y' —y }] (2.44)
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Im(t2QII[(
~

I » ~
+

~

I 21 ~
+ (

I'
1 ~

)f(y )f(y)+I'„I,2f(y*)f( —Qll)
3@8(QII)(l—Q'2)

+"*I f( —Qll»(y)+ I
I I'f( —Qll)f( —Qll)]

—Qll[«l I,+I „ll,+I'„I„+1„1*„)f(y)f(y)

+I" I f( —Qll)f(y)+I I' f(y*)f( —Qll)]]&), (2.45)

where in Eq. (2.45) we have defined

(2.47)

(y +1)sin8+2ysin8cos8
(y —1)sin8+ i [2y+ ( y + 1)cos8]

In terms of the dimensionless measure of energy transfer Q', the surface spin waves lie in the regime where
~Q'~ &1 always holds true. When surface spin waves exist (see Refs. 13 and 14 for a summary of the

relevant conditions) their dispersion relation is, in the present notation,

&(Qll)
[ +yQII'].

The expression for the cross section involves the variable

q= Q'+(Q' 1)'",—
and the function

(2.48)

h(x) =
eX+~

The cross section for anti-Stokes scattering is then

(2.49)

2~
dQ(Es)dEs

where

&35(Q —Qs(QII) ),
(2m )21r1 A13cos81

(2.50)

y —3y +3y —l
J3f3=

3'�(Q' —1) 8y
I'+

I
l I')h( —y')h( —y)

+P11012h( —y )h(QII)+P»P»h( —y)h(QII)1

2
[(~11~31+~11~31+~21~31+~21~31)h ( ) )h ( y)

+I *, I,h(QII)h( —y)+I' I h(QII)h( —y )]

+ 11 311'h( —y*)h( —» (2.51)

The purpose of this section has been to develop a
method within which inelastic neutron reflection
spectroscopy may be tested theoretically, and then
to carry the calculation through for the case of in-

I

elastic scattering from spin-wave excitations near a
ferromagnetic surface. While the calculation may
be carried through to the end, and so one is left

with only algebraic expressions, the results are quite
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cumbersome in form. One may ask if these results

may be simplified so they become more illuminat-

ing. For example, in the theory of small-angle in-

elastic electron scattering from surfaces, quantita-
tively useful expressions with a rather simple form
emerge from the analysis. We are not aware of a
similar limit in the present problem largely because
in a typical neutron inelastic scattering experiment
the energy transfer is a substantial fraction of the
impact energy, and the wave-vector transfer is also
not small compared to that of the incoming neu-

tron. In essence, there is no small parameter that
enters the kinematics of the scattering process, so
one must employ the full formula with all contribu-
tions included.

III. CONCLUDING REMARKS
AND NUMERICAL CALCULATIONS

We now turn to a brief discussion of the nature
of the inelastic scattering event for neutrons in-

cident on the crystal at grazing incidence. Then we
summarize our numerical studies of the cross sec-
tion based on the formalism described in Sec. II.

The scattering geometry we explore is illustrated
in Fig. 1. The incident neutron strikes the crystal at
a grazing angle of incidence OI greater than the crit-
ical angle O„and we assume that the scattered neu-

tron exits with polar angle Oq & 0, . The wave func-
tion of the incident neutron is thus exponentially at-
tenuated as one moves into the crystal, but that of
the scattered neutron has wave-vector components
normal to the surface that are real (in the limit in

C8

///////

Q))

FIG. 1. Scattering geometry explored in Sec. III. The
~(I)

incident neutron has wave vector K, and strikes the
crystal at grazing incidence, with the angle of incidence

81 larger than the critical angle 8,. Thus its' wave func-
tion is exponentially attenuated as one moves into the
crystal. The scattered neutron exits with polar angle
eq&8„so its wave function is plane-wave-like in the
crystal.

which the optical potential seen by the neutron is
real). Recall that we have averaged over the spin
direction of both the incident and scattered neutron
in our derivation of the cross section.

If the neutron scatters by creating or absorbing a
spin wave, then wave-vector components parallel to
the surface are conserved in the scattering process.
Thus the neutron emerges with the wave vector
parallel to the surface given by (recall that our
treatment does not include umklapp processes)

(S) (I)
Kll =Kll +Qll ' (3.1)

Conservation of energy then provides an additional
constraint,

es EI +——%fly(Q)
)

), (3.2)

and

Oe =n/2 em~ Or =r.r/2 —ei ~—
(I) It (I)( 2 2)1/2ec —e

We may write

and these three constraints uniquely determine the
direction of the outgoing neutron. Conservation of
the wave vector normal to the surface has no mean-

ing here, and the wave vector of the neutron normal
to the surface assumes the value necessary to ensure

energy conservation once Eq. (3.1) is met.
As we have seen, there are contributions to the

cross section for scattering from bulk spin waves

also. The same conditions hold here, and since
wave-vector components normal to the surface are
not conserved, in principle, all bulk spin waves con-
tribute to the cross section. That is, if we imagine
scanning the energy spectrum of neutrons scattered
inelastically from the surface with the fixed wave-

vector transfer parallel to the surface, we shall find
a continuous energy loss band that extends from

'IiQ~(Q))) to AQM(Q))), the minimum and max-
imum bulk spin-wave frequencies associated with
the wave vector Q)).

The numerical calculation presented below
shows, however, that instead of a broad band that
extends from fiQ~(Q))) to ()IQM(Q))), one does see a
well-defined loss peak in the energy spectrum of the
scattered neutrons. Its origin is as follows. If, for
simplicity, we once again regard the optical poten-
tial in the crystal as real, then the neutron wave
function in the crystal has the form exp[ —y(1)z],
where the attenuation constant

y' '=I(.' '(cos O, —cos OI )'

or with
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(I) 1kJ 2+ oo dk~
e 2' k( ) —lf

(3.3)
8, =Be.e
8s= 57
/=0

so that the incident neutron wave function may be
regarded as a linear superposition of plane waves

with a range of wave vectors in the range from
—y' ' to +y' ', very roughly. When 91 and L9, are
both very near m/2 and thus close to each other, y' '

is rather small compared to E' '. To first approxi-
mation the wave function of the incoming neutron
is thus a plane wave parallel to the surface, i.e., the
z dependence of its wave function is controlled by
spatial Fourier components of the small wave vec-
tor. The scattered neutron is a plane wave in the
material with wave vector Ez ' normal to the sur-

face, which is large compared to y' ', under condi-
tions illustrated in Fig. (1), so we expect "near
wave-vector conserving" interactions with spin
waves that have a wave vector normal to the surface

Q, equal to Kj '. That is, a neutron moving
parallel to the surface, if it absorbs a spin wave of
wave vector Q„will be scattered into a final-state
wave vector normal to the surface KI '=Q, .
Equation (3.3) implies that wave-vector components

normal to the surface are conserved only to within
+y( ' on the average, so the bulk spin-wave loss
feature is spread out into a line whose width is con-
trolled by the decay constant of the neutron's wave

function normal to the surface. (Our calculation ig-
nores the finite lifetime of the spin waves, but in

practice, the spin-wave lifetime should be sufficient-

ly long for the uncertainty in the wave vector nor-

mal to the surface to be the controlling factor in the
bulk spin-wave loss feature. )

Our numerical calculations have been carried out
for scattering from a (100) surface of a fcc Heisen-

berg ferromagnet, with nearest-neighbor exchange.
In order to crudely mimic ferromagnetic EuS, we

7
have chosen S= —, for the spin, and set the strength

of the nearest-neighbor exchange so the Curie tem-
perature is 100 K. None of our conclusions depend
sensitively on this choice of parameters. Finally,
the critical angle has been chosen equal to 1'. The
results of the numerical calculations can be summa-

rized briefly, since the magnitude of the calculated
cross section does not vary greatly with scattering
angle.

In Fig. 2 we show d AldQ(Es)dEs for scatter-

ing from bulk spin waves. The cross section is for
absorption of a bulk spin wave; with the neutron in-

cident at 89.9' the scattered neutron emerges with
an angle of 57' from the normal, with its wave vec-
tor in the same plane as the incident neutron. Fi-

N

~ lx IO

Cy

M
hl

I

I.O
I

3.0
I I

2.0 4.0
be/4 xlo

FIG. 2. Cross section, as a function of energy transfer,
for scattering of a thermal neutron (kinetic energy 300 K)
from the surface of a model ferromagnetic crystal. %'e

show the. energy-gain feature produced by scattering by
absorbing bulk spin waves. The scattering efficiency is

plotted against AE/A, with hE the energy transfer.

IxlO

Below, we shall comment briefly on the significance
of this number; we have carried out a number of
calculations for different scattering geometries, and
this seems to be a typical number for the integrated
strength of the bulk spin-wave peak.

Our calculations give an integrated strength for
scattering from surface spin waves smaller than the
result quoted in Eq. (3.4) by a factor of 10 to 20,
typically. This suggests that one should employ a
scattering geometry in which the surface spin-wave
loss or gain feature is well separated from the bulk
loss peak, so that the surface spin-wave feature is
not obscured by the low-frequency wing of the bulk
spin-wave feature. We have not explored the ques-
tion of choosing an optimum scattering geometry,

nally, the scattering plane is aligned along the [100]
direction. We see an energy-loss peak, as described
earlier, with width controlled by y' ', the amount of
"wave-vector smearing" provided by the attenuation
of the neutron wave function in the material. The
position of the peak is given quite accurately by
taking the component of the wave vector of the
bulk spin wave normal to the surface equal to
Ej ', as discussed earlier, with the parallel com-
ponents of the wave vector controlled by the
scattering kinematics. In this example, the integrat-
ed strength of the loss peak is given by

dP' d P'= J dEs ——4X10
dQ(Es) dQ(Es)dEs

(3.4)
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since any conclusions we have reached are specific
to our particular model crystal, and hence, are of
little general interest.

In a typical neutron scattering study we under-
stand that the detector subtends a solid angle of
roughly 10 sr. Thus the scattering efficiency per
unit solid estimated in Eq. (3.4) suggests the frac-
tion of neutrons in the incident beam that strike the
crystal, and determined that the detector in the bulk
spin-wave loss peak will be roughly 4)(10,with a
signal 10 or 20 times weaker for scattering from
surface spin waves. Such signals should be detect-
able, in principle, though experiments of this sort
may prove difficult for a variety of reasons.

Calculations such as those described here may be
carried out within the present formalism for scatter-
ing of neutrons from a variety of surface excita-
tions, and we hope our discussion of scattering from
spin waves near surfaces will prove helpful to those
interested in this class of experiments. It is our
understanding that analysis similar in spirit to the
present one has been undertaken by Rakhecha. "
Unfortunately, we have not seen a detailed descrip-
tion of his work, and so we are unable to comment
on the comparison between the two calculations at
this time.

Note added in proof. We have learned that G.
Vineyard has presented a theory of grazing in-
cidence x-ray diffraction from crystals, with the use
of a formalism very similar to that used here. Vine-
yard also treats the crystal as a semi-infinite con-
tinuous medium in his description of the reflection
and refraction of the incident x ray but, in addition,
he checks this approximation by replacing the con-
tinuum by a series of stratified layers to find only
very small corrections to this picture. We wish to
thank Dr. Vineyard for a copy of his paper in ad-
vance of publication, and for helpful discussions of
the relationship of his work to ours.
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