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With the use of the molecular-dynamics technique and nonlinear spin-wave theory, we

investigate the relevance of envelope solitons in dynamic form factors in classical one-

dimensional Heisenberg models with axial anisotropy. We find that magnon bound-state

contributions survive in the classical limit. Their main effects are a central peak, a bound-

state resonance, and the removal of unphysical singularities. The correspondence between

envelope solitons and magnon bound states as obtained by semiclassical quantization

provides an interpretation of these effects as soliton features. Comparison with previous

results for spin —suggests that the structure of the dynamic form factors at finite

temperature is essentially independent of the spin value.

I. INTRODUCTION

In recent years important progress has been
achieved in the understanding of the excitation
spectrum of one-dimensional (1D) systems. The
development of the inverse-scattering technique
(IST) has allowed the determination of the complete
set of eigenmodes of a series of classical systems, in-

cluding the Heisenberg and Landau-Lifshitz
models. ' These models are completely integrable
and their eigenmodes can be classified in terms of
linear modes and solitons. The corresponding
quantum spin- —, Heisenberg and XYZ models on a
lattice have been exactly diagonalized using the
Bethe ansatz, or the quantum version of the
IST.'-'

However, the calculation of measurable quantities
such as dynamic form factors still presents unsolved
difficulties. Exact calculations have been per-
formed only for some special cases, like the spin- —,

XY model for all temperatures and the axial aniso-
tropic model at zero temperature. ' For other
anisotropies and finite temperatures numerical and
approximate analytical methods have been
developed. ' We used the molecular-dynamics tech-
nique to calculate dynamic form factors for the
classical axial anisotropic Heisenberg model, con-
centrating on variables specially adequate to detect
soliton features. Nonlinear spin-wave theory in the
classical limit was used to interpret the results and
identify the different contributions.

While originally, investigation of 1D systems was
motivated mainly by their mathematical properties
and by their relative simplicity compared with

higher dimensional ones, discovery of a series of
quasi-one-dimensional magnetic substances has

given them direct physical significance. " ' In
this context the question arose to what extent the
classical soliton eigenmodes have experimentally ob-

servable effects. ' '" The main conditions for such
effects are the following: Firstly, the quasi-one-
dimensional system must be describable with

enough accuracy by a 1D Heisenberg model with
anisotropies (XYZ, Landau-Lifshitz models).
Secondly, the classical approximation should be
valid under the conditions where the soliton effects
are to be observed. Since the solitons are defined

only in the continuum model, a further requirement
is that the soliton effects have a certain stability
when one goes from the continuum to the lattice
model. This can be expected, at least for some
values of the parameters for which the discrete
model is well approximated by the continuum one.
Finally, the solitons should have clear-cut contribu-
tions in experimentally observable quantities: ther-
modynamic quantities, like the specific heat or the
susceptibility, or dynamic form factors, which can
be measured in neutron" or light scattering' ' ex-
periments.

For the 1D ferromagnet CsNiF3 in a field, which
can be described by a Heisenberg model" with
single-site easy-plane anisotropy (EPH), Mikeska'
proposed a mapping to the sine-Gordon model, sug-

gesting an interpretation of neutron scattering ex-
periments in terms of sine-Gordon solitons. Un-
fortunately, numerical studies on the EPH and the
sine-Gordon systems showed that the validity of the
mapping is limited to a small region in the parame-
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ter space where three-dimensional ordering and
quantum effects are important. '

In this paper we investigate the relevance of soli-
ton features in dynamic form factors of Heisenberg
ferromagnetic chains with single-site and exchange
anisotropies of axial type. Their classical continu-
um version belongs to the class of Landau-Lifshitz
models. They are completely integrable, and their
solutions can be classified in terms of linear modes
and envelope solitons. The envelope solitons are
traveling waves of permanent localized profile with
an inner degree of freedom ' whose form remains
unchanged after collisions. They are similar to the
breather solitons of the sine-Gordon system. The
axial anisotropic models we consider, with boun-
dary conditions S'(+ co ) =S, do not have topologi-
cal soliton solutions of the type of the sine-Gordon
kinks. For a detailed discussion of the soliton solu-
tions of the Landau-Lifshitz models see Refs.
23 —25.

The corresponding classical discrete models are
not expected to be completely integrable. However,
for parameters close enough to the continuum limit
the excitations can be interpreted using the continu-
um concepts. Moreover, we found that the soliton
effects in some form factors remain essentially un-

changed when some of the parameters are driven
further away from the continuum limit. Although
there are no strict solitons for these parameters, by
a continuity argument one can interpret them as
soliton features.

The quantum-mechanical spectrum of the axial
anisotropic Heisenberg models is known to consist
of magnons, multimagnon continua, and magnon
bound states. ' For the spin- —, model with an-

isotropic exchange of axial-type (AEH), the com-
plete bound-state spectrum was obtained by
Gochev. For the (EAH), the spectrum was ob-
tained through a mapping to a gas of bosons with
attractive 5-function interactions. ' ' The rela-
tion between the classical and the quantum elemen-

tary modes was established by applying semiclassi-
cal quantization procedures to the solutions of the
classical equations. ' The quantized linear
modes and envelope solitons were identified with
magnons and magnon bound states, respectively.
%e shall use this correspondence to identify the
contributions of the envelope solitons in dynamic
form factors.

The procedure is the following. %e calculate the
dynamical form factors numerically, using the
molecular-dynamics (MD) technique. It consists of
numerically solving the classical equations of

motion for a large finite chain with periodic boun-
dary conditions, using starting configurations
chosen according to a canonical-ensemble distribu-
tion. The time-dependent correlation functions are
obtained by averaging over the starting configura-
tions.

In order to interpret these results and identify the
different resonances, we use an approximative
analytical calculation valid for low temperatures
and becoming exact at T =0. We calculate quan-
tum Green's functions, where the contributions of
magnon and magnon bound states can be easily
identified, and then take the classical limit. The
bound-state resonances survive the classical limit,
and according to the semiclassical correspondence,
they can be identified as envelope soliton features.

II. DEFINITION OF THE SYSTEMS

We consider the following general form of the
ferromagnetic Heisenberg Hamiltonian that in-
cludes the two types of anisotropy we shall investi-
gate:

H = —Jg S)*Sf+ i +—(S("S)"+,+S("S(+i )

+a +sf agsf, —
1

J&0, D&0, g&1.

In the quantum treatment (QM), the S~ are spin
operators obeying the commutation relations

[S, ,S']=&'Xe»S, S,r .

%e shall use the following nomenclature for the
different choices of anisotropy parameters g and D:
EAH is the easy-axis, single-site anisotropic ex-
change where g = 1 and D ~ 0; AEH is the anisotro-
pic exchange of axial type where 1(g(ao and
D =0; g = oo corresponds to the Ising limit. A
characteristic of these models is that the Hamiltoni-
an commutes with the z component of the total spin
5'„„which allows the classification of the eigen-
states of H in terms of 5t t In the ground state all
the spins are aligned parallel to the anisotropy axis.
To establish the correspondence with the classical
model ' we define the normalized operator
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1
s = S,A'&S(S+1)

which obeys the commutation relations

(3) [si', sJP]=i@ ~r sf .
5I)

&S(S+1}
In this notation, the Hamiltonian is

(4)

r

H = —JA S(S+1)g sI'sf+&+ —(si"sr"+i+sfsf+&) +A'&S(S+1)h QSI' DA—S(S+1)gsI'
I I

The classical limit (cl) is defined as

S~ oo, A~O, SA=S,
~
——const.

In this limit, the commutators (4) are equal to zero. The spin operators go over to classical vectors of length

S~~, A~O, Sfi=S,
~

——const .
N N N

H„=—JS„g sf'+~+ —(s~"s~"+, +srs~+, ) +hS, ~ +sf DS,~
—g s~ (7)

1=1 1=1 1=1

dSI i

dt
(9)

or directly from the Hamiltonian function (7) using

This expression shows that the dependence on the
length of the classical spin is trivial, since it can be
absorbed into the constants JS,], hS,~, and DS,~.

The classical spin vectors S obey the equation of
motion

dSI

dt
= SI R J(S~+,+St

+2SI AD SI+SI h, h,

J=diag(J/g, J/g, J), D =diag(O, O,D),

obtained as the classical limit of the Heisenberg
equation for the spin operators

I

the Poisson brackets

dSI =
I H, SI )I,

I SI,S~~I = e~r5(qSIr . —
(IO)

When there is no possible confusion, we shall drop
the notation cl.

In order to obtain the continuum limit of the
model, we put into the interactions an explicit
dependence on the lattice constant a, which is ab-
sorbed in the strength of the coupling constants

J=J/a, 1/g = 1 —5a

D=Da, h =ha .

The Hamiltonian can be written up to constant
terms as

J (SI —Sl+)) J 3
(S("—S(+) ) (S( —S(+) )H= — a a 5 +

2 ) a 2 I a Q

—J5+aSf DgaSf +h g—aSI'.
I

(12)

Taking the continuum limit a~O, QIa~ f dx,
which according to (11) also implies a weak aniso-

tropy limit, one obtains

'2

H= —f dx (x)
J Bs
2 Bx

(D+J5) f dx [S'(x—)] +h f dxS'(x),

(13)

I

which is a special case of the Landau-Lifshitz
model. Thus in the continuum limit both the
AEH and the EAH lead to the Landau-Lifshitz
model. The continuum model should be a good ap-
proximation of the discrete model for long wave-

lengths and small anisotropies.

III. CORRELATION FUNCTIONS;
GREEN'S FUNCTIONS

We shall concentrate on the following dynamic
form factors:
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S~(q, ui) = f dt e' (S q(0)Sq(t)), (14)
2~

and one (AEH) or two (EAH) bound states. The
top and bottom of the continuum are given by

Sq —— g ' 'Si", (15) 1 0 1
co&c ——4JS 1 ——cos +4DS 1 ——+2h,

g 2 2$

which probe the fluctation of one-spin deviations,
and

Sij(q, co)= f dt e'"'(Ai, (0)Aqi(t) )

(24)

ccrc ——4JS 1+—cos +4DS 1 ——+2h .
1 1

g 2 2$

(25)

Ai= — ge'q'(St+St+1+St Si+J) .
v'2X (17)

IV. DYNAMIC FORM FACTORS AT T)0

Sec and S» probe fluctuations of two-spin devia-

tions located at the same and neighboring sites,
respectively.

The dynamic form factors can be calculated from
the corresponding Green's functions

To calculate the Green's functions at finite tem-
perature, we use the Dyson-Maleev bosonization
of the spin operators, defined as

Siiii (q) co ) = 2Gi'i'ii (q) co ) —Pleo
(18)

a a
Si+ Si"+iS——i =(2S)' fiat 1—

2S

which in the classical limit become

1 „T
Ski(q, to)=2—Gs'ii(q, co)—.

N
(19)

4"e use the notations 6' and 6" for the real and
imaginary parts of 6, respectively.

The Green's functions are defined as

Gzii(q, to)=((A;B)) = f dte'"'Gzii(q, t),1

2m

Si St" iS( ——(2S—)'~ fia——i,
St'=A'( —S+ai ai),

(26)

[«ai]=&ti

[ai,a, ]=[a, ,a,. ]=0 .

Their Fourier transform is defined by

(27)

where al are boson operators obeying the comrnuta-
tion relations

G„(q,t) = —ie(t)([A (t),B (0)]),
and obey the equation of motion

(20)

(21)

1 ~ iklQl= ~Qke
N k

t «aQl= / ake
N ~

(28)

fit((A;B))= ([Aq(t =0),B q(t =0)])
2

+(([A,a];B)) . (22)

coq=2JS 1 ——cosq +2D(S ——)~h . (23)
1 1

The two-magnon spectrum consists of a continuum

The spectral representation of the Green's function
shows that its poles correspond to the elementary
excitations of the system. The two-magnon spec-
trum can be determined by locating the poles of a
two-magnon Green's function as Soo or S&&. At
T =0, the equations of motion can be solved exact-
ly. There is a one-magnon excitation branch
with dispersion

The main limitation of the bosonization is that
while for a given spin Sl' can only assume 2S+1
values, the corresponding boson operators can take
an infinite number of states. This difference leads
to what Dyson called the kinematical interaction.
Et can be taken into account by projecting out all
the unphysical states. The kinematical interaction
becomes less important with increasing spin. In our
case, since we are interested in the classical limit,
which corresponds to S=ao, the kinematical in-
teraction can be neglected altogether. Moreover, it
has been shown that the Dyson-Maleev bosoniza-
tion gives the exact result for Soo(q'co) at T =0 even
for spin —,.

In terms of the boson operators, Hamiltonian (1)
reads
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1H =Eo+g fuo ka ka k+ —g aq /2+ k aq /2 k aq /2 +k 2aq/ 2 k2~ I'(k1 k2 'q /2),
k k), k2, q'

where
r

JP1$~S2 PQ) fg2S2
2S

(29)

(30)

1 1
&uk

——2JAS' 1 ——cosk —h +2AS'D 1—
2S

(31)

V k ),k2, = —Jcosk2 cosk )
— cos'2 g 2

—D 1—1

2S
(32)

The factor 1 —1/2S appearing in the single-site an-

isotropy term, ensuring that it vanishes for S = z,
is obtained in a straightforward way from the
Dyson-Maleev bosonization for the magnon energy

ek. For the interaction term V, a more elaborate
analysis is needed (see Ref. 40). In the classical lim-

it (S~ 00 ), the correction 1/2S vanishes. The vari-
ables A and S"can be written in the form

« S1+,SJ » = 2Sfi « a1 ', af » A«—a1 ac a1,'aj » .

(39)

Calculation of the two-boson Green's function
using its equation of motion in the renormalized
spin-wave approximation leads to the following ex-
pression for S~(q, co ) (Ref. 36):

S'= —,(S++S-), (33) S (q, co) =— [ 5(co —
coq( T) )

1 ST
2 co

(S+S++S-S-) . (34) +5(~+~q( T))], (40)

S+ and S are Hermitian conjugates to each other,
(s-)'=s+.

The identity

where coq(T) is the temperature renormalized mag-
non frequency

G„1st(a1) = Ggs ( —co) (35)
coq(T) =coq+hcoq(T) coq+a (T)+—b (T) cosq

(f and ~ denote Hermitian and complex conjuga-
tion, respectively) allows us to write

G (~)=-,' &&s++s-;s-+s+ &&

=-,' [«S+ S-»(~)+ &&S+;S-&&*(—~)],
(36)

G„„(~)=-,' &&(S+S++S-S-);(S-S-+S+S+)&&

=-,' [ «S-S-;S+S+»(~)

a ( T)=T ——+ —(21+4D)
1 E
S 2S

1

[(~2/4) (~2S2/g2)]1/2

b(T)=T ——
s 2S g

J

(41)

(42)

+«S-S-;S+S+» ( —~)]. (37)

It is thus sufficient to calculate the Green's function
corresponding to one of the summands in (37),
which we shall denote by Gzq,

Ggg(CO) = —,[Ggg(co)+Gag( —co)] (3g)

The spin Green's functions can be expressed in
terms of boson Green's functions,

1

[(It '/4) —(4&'S'/g')]'"

(43)

K =4JS+2h +4DS .

Results for the spin-wave damping for the AEH
have recently been reported by Lovesey. ' The
four-spin Green's function can be expressed as
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5"
((Si S;S,.+S+))= 4S R I — '

((a&a;a; aj )) 2—SA ((aia;a; aj aj.ai))
2S

—2Siri ((a ia;a; a; a1 a; )) +A ((aia; a; a; a;a~ a~ al )) . (44)

The three last terms are 1 or 2 orders higher in T
than the first term. For low temperatures, we can
make the approximation

5;J
((Si S;S;+SJ+))=4Sfi 1 — ((aia~;a; aj )),

2S

which is also consistent with the decoupling ap-
proximation used to calculate ((aia~;aiaj )). In
the classical limit, we obtain

((S, S;S;+Sj+)) =4S,', iii'((a, a;a;ta; )) . (46)

S~~ =4S [Gq~ (q, co)—G)~1 .(q, —co—}],
CO

(47)

6 (I+2~JR) 2n JCBi-
Goo(q, co) = 1+L

(48)

B2+2rrD(G B2 Bi}-
Gii(q, co)=

1+L (49)

where

The remaining A is compensated by a factor 1/fi
appearing in ((aia;a; aj )) and by a factor from
(19), leading to a well-defined finite expression for
SJJ(q,co).

The solution of the equation of motion for the
four-boson Green's function is given in the Appen-
dix. The method is based on a decoupling scheme
for the six-boson term, representing a low-magnon
density approximation, which becomes exact at
T =0. Its range of validity for finite temperatures
can be estimated by comparison with the
molecular-dynamics calculation.

The explicit expressions for the form factors in
the classical limit are given by

1+L (q, co) = (1+2nDG }(1+2mJR)

I+L'(q, co)=0 . (55)

For T&0, in the decoupling approximation, the
structure of the integral equation (A18) is the same
as for T =0. Therefore, the poles appear as contin-
uum and discrete points, which are related to the
quantum-mechanical spectrum by a temperature-
dependent shift. The structure does not change
when the classical limit is taken, and we can relate
the classical resonances to the quantum spectrum.
On this basis, we loosely use the denomination of
continuum and bound states also found in the clas-
sical limit at T)0. According to the semiclassical
correspondence, in the classical limit the bound-
state contributions can be identified as envelope-
soliton effects. An important difference between
the quantum and the classical results is that the
classical form factors at T =0 are identically zero,
i.e., all the resonances are thermally induced.

Figure 1 shows the location of the bound-state

1/0 = 0.8 % =0.15

4' J—DCBi .

At low T the form factors Soo(q, co) and Sii(q, co)

have a contribution that extends between coiic(T)
and coTc(T) related to the continuum, and one
(AEH) or two (EAH) 5-function resonances corre-
sponding to the two-magnon bound states. The re-
lation between the resonances at finite low T in the
classical limit and in the quantum-mechanical spec-
trum is the following. In the quantum treatment at
T=O, the poles of Goo or G&& give the complete
two-magnon spectrum consisting of a continuum of
scattering states Ngc&N&&Tc, and bound states
located at the zeros of

G (q, co)= —g Gp~(q, co},PP

B„(q,co}=—g G~z cos"p,
PP

C(q, co) =Bi (q, co) —cos—6 (q, co), —o

g 2

R (q, co) =B2(q,co) ——cos—Bi(q,co),
1 g

g 2

(50)

(52)

cn+

3
2

I I

0 0.5 0.6
I I

1 0 0.5 0.6 1

q /71

FIG. 1. Location of the two-magnon bound state
(—.—) and continuum in the classical limit for the AEH
at T*=0.33, h*=0.
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T for q@m.
roc(T) boa( T—)— (56)

This gives us an indication that at low T the
bound-state resonance will be difficult to resolve
from the continuum. On the other hand, if the
temperature is raised, broadening of the resonances
prevents a good resolution. However, in the AEH
model, evaluation of Eq. (49) shows that the contri-
bution of the continuum to S~~(q, co) vanishes at

S»(~,co) =a&5(co—era),

where
' 1/2

T K Q'
a) ——8 1 — 1—

ro Q' K'

and boa is the bound-state frequency

2
1/2-

cog ———K+8TJ 1 — 1—E Q'
QI2 lt 2

(57)

(58)

(59)

resonance and the two-magnon continuum of the
AEH, as given by Eqs. (55) and (56), at
T*=T/JS =0.33. We have taken a small aniso-

tropy 1/g =0.8, such that at long wavelengths the
system is close to the continuum model, and a
larger anisotropy 1/g =0.13. The gap between the
continuum and the bound state as it appears in the
decoupling approximation increases with the aniso-

tropy, thus allowing a better resolution of the reso-
nances. The temperature dependence of the gap
goes classically as

10

8

3
6

4
0 0.3 0.6

FIG. 2. Location of the two-magnon bound states

( ——) and continuum in the classical limit for the EAH
at T*= 1, h ~ = 1, D* = 1.

[Q, Q', E, and K are defined in (A21) —(A25).]
Thus at low temperatures S~&(vr, co) for the AEH

will consist of a single peak related to the bound
state. This is very well confirmed by the MD re-
sults (Fig. 6). For qQm. , the resolution of the bound
state is improved for increasing anisotropy g. Then,
however, the system is further away from the con-
tinuum limit. The interpretation of the classical
bound-state resonances as soliton effects is still jus-
tified by the fact that the structure of the form fac-
tors remains unchanged when the anisotropy is in-
creased.

For the EAH the situation is similar, as shown in

Fig. 2. In this case, a second bound state appears
close to the zone boundary. ' For realistic values
of the single-site anisotropy the EAH shows
stronger resolution problems than the AEH.

It is interesting to compare (48) and (49) with the
classical linear spin-wave theory results, obtained by
neglecting the magnon interaction, i.e., by setting
V=0 in (29):

p 32T2S2
Soo(q, co) =

S»(q, co)=Soocos b

[~' tan'(q/2)(~ —~ac)(~rc ~)][(~ ~ac)(~rc ~)]'" (60)

2T'g' (co+4JS+2h +4DS)'
m J [cos (q/2)co sin (q/2)(co —coac)(~rc —)][(~ ~ac—)(~rc ~)]

(61)

where coac and core are given by (24) and (25).
Both Spp and S» have square-root singularities at
the top and bottom of the continuum. By taking
into account the interaction, these unphysical singu-
larities disappear and the bound-state resonances

appear. The rounding-off of the singularities by the
interaction is already found in the quantum model
at T =0, where SzJ can be calculated exactly, which
confirms their unphysical character. In this
respect, these singularities differ from the ones

I

found, e.g., in the S = —, XF model, which have a

physical nature and appear even at finite tempera-
tures. Their appearance there is to be attributed to
the equivalence of the XY model to a gas of nonin-

teracting fermions.

V. COMPARISON WITH MOLECULAR
DYNAMICS

The theory developed in the previous sections is
expected to be valid for low temperatures. We com-
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pare these predictions with numerical molecular-
dynamics (MD) calculations for the following pur-
poses: First, we want to check the range of validity
of the theory and specifically of the decoupling
scheme (A12). Furthermore, we know that the
bound-state. 6-function resonances, as well as the
boundaries of the continuum, will be broadened at
any finite T. We use the numerical results to check
to what extent the bound-state resonances can be
resolved from the continuum. Finally, we investi-

gate whether some new phenomena appear at higher
temperatures where the theory is no longer valid.
The criterion to identify envelope-soliton effects in
the dynamic form factors is based on the following
considerations: In the preceding section, we have
seen that the bound-state resonance in SJJ.(q, co) sur-
vives the classical limit. The identification of semi-
classically quantized envelope solitons with magnon
bound states provides a natural interpretation of
these resonances as soliton effects. This criterion
can be applied to any bound-state-originated reso-
nances that survive in the classical limit.

Checking the validity of the decoupling scheme is
important, since, due to the absence of long-range
order at T & 0, its applicability is not guaranteed. It
is known, for example, that in the isotropic Heisen-
berg model, in zero field the Dyson-Maleev bosoni-
zation combined with a similar decoupling scheme
does not reproduce the symmetry of the form fac-
tors in the x, y, and z directions. In the AEH. and
EAH the axial anisotropy avoids this problem. In
spite of the absence of long-range order in one di-
mension at finite T, the existence of well-defined
spin-wave resonances has been established.
This can be explained by the strong short-range or-
der at low T, characteristic of one-dimensional sys-
tems.

The good agreement at low T between the
molecular-dynamics and the theoretical results cal-
culated using the decoupling scheme (e.g., Figs. 3
and 6), even in the absence of an external field, is
also to be attributed to the presence of this strong
short-range order. For higher temperatures some
modifications must be expected due to scattering of
the magnons on the boundaries of the domains of
different mean orientation, and, in general, to
higher-order processes.

We give only a very schematical description of
the molecular-dynamics technique. A more com-
plete account can be found in Refs. 44 —49 and in
Ref. 6. The method used for the present calcula-
tions is based on the numerical solution of the equa-
tion of motion (8) for a finite chain of X classical

spin with periodic boundary conditions. The algo-
rithm used has the advantage of being stable over
long integration times.

A set of initial configurations, such that they are
representatives of a canonical ensemble, is con-
structed using a Monte Carlo procedure. Then,
each of the initial configurations is allowed to
evolve completely deterministically according to (8).
From the data time-dependent correlations are cal-
culated by averaging over the initial conditions. Fi-
nally, the dynamical form factors are obtained by
Fourier transformation. " They are smoothened by
Gaussian convolution to eliminate oscillations pro-
duced by the finiteness of the chain and of the in-
tegration time. The finite integration time sets a
limit to the resolution in m. This means that the
method would not be sensitive to long-time tail phe-
nomena, since the long-time (small co) behavior is
taken from the Gaussian convolution. However,
this does not affect the present calculations since we
are looking at nonconserved, fast-relaxing variables
at low temperatures that correspond to a collision-
less, i.e., nonhydrodynamic regime.

The accuracy and convergence of the method has
been checked for the isotropic Heisenberg
model by comparison with exactly known stat-
ic properties. ' An inner check and improvement
of the results are obtained by taking longer chains,
more initial configurations, and smaller time steps.

In our calculations we used chains of length
N =1000 spins and 20 different starting configura-
tions for each set of parameters. The seed configu-
ration for the Monte Carlo thermalization was tak-
en completely ordered or completely random, lead-
ing to the same results in both cases. The conver-
gence of the method was heuristically checked by
comparing with calculations on chains of length
N =50 and 10 to 40 starting configurations which
could already reproduce the results of the larger
systems. In general, MD, in a way similar to any
experimental measurement, give accurate results for
the positions of the resonance peaks, while their
heights are subject to stronger variations due mainly
to statistic and resolution effects.

We begin by discussing some results for the
EAH. The parameters are given in reduced units,
T*=T/JS, h* =h/JS, D~ =D/J, co* =co/JS.
We consider a low and a higher temperature. The
range of validity of the approximate theory depends
on the type and strength of the anisotropy, as well
as on the applied field. Figure 3(a) shows

Soo(q =O,co) at T*=0.1. The theoretical curve cal-
culated from Eqs. (47) and (48) agrees very well
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FIG. 3. Soo(q, co ) for the EAH at q =0, h ~ = 1, D*= 1

and (a): T*=0.1, {b): T*=1. MD:; theory:
———(continuum); ——and l (bound state).

FIG. 5. S (q, ~) for the AEH at T*=O.l, h*=O. (a)

1/g =0.8, (b) 1/g =0.13. The arrows indicate the renor-
malized spin-wave frequencies.

with the MD curve. The bound-state resonance
cannot be resolved from the continuum. Figure 3(b)
shows Soo(O, co) for the same parameters at a higher
temperature T~=1. The difference between the
theoretical and MD curves is already quite pro-
nounced. However, the location of the bound-state
resonance coincides accurately with the peak max-
imum. Figure 4 shows S„„(q,co) for T~ =1. Al-

though the magnon peaks are already quite broad,
their location agrees with the renormalized spin-
wave frequency (41).

For the AEH, we have chosen two different an-

isotropy parameters, 1/g =0.8 and 1/g =0.13. For
1/g =0.8 the system is, at long wavelengths, close
to the continuum model, and the interpretation of
bound-state contributions as soliton effects is very
direct. For the larger anisotropy 1/g=0. 13 the
structure of the resonances is qualitatively the same,
but the resolution is better, and the resonances are
better defined because the dispersion curves are less

steep. The interpretation of the bound-state contri-
butions as soliton features is more indirect, based on
their qualitative invariance as a function of the an-

isotropy. Figure 5 shows S~(q, co) at a low tem-

perature T*=0.1. The location of the magnon res-
onances agrees with the renormalized spin-wave

prediction.

Figure 6 shows S~~(q, co) at T~ =0.1, q =0, and

q =v. For 1/g =0.8, q =0, the bound state is so
close to the continuum that it cannot be resolved at
all. For 1/g =0.13, q =0, the left-peak maximum
coincides very accurately with the location of the
bound-state resonance. Its height and width are
about twice the theoretical continuum prediction.
The difference is produced by the bound-state reso-
nance. For both anisotropies, at q =m there is a sin-

gle resonance at the bound-state frequency, as
predicted by Eq. (57), since the continuum contribu-
tion vanishes in leading order in T. This gives the
most clear-cut bound-state or soliton effect, due to
the absence of any resolution problems. Figure 7
shows Soo(q, co) at T~ =0.1. The main contribution
to the left peak comes from the bound state. For
q =0.6a it appears even clearer since the continuum
gives rise essentially to only one peak.

We now look at a higher temperature T*=0.33,
at which important deviations from the approxi-
mate theory are already present. The position of
the bound-state resonance in S» (q, co) is still
correctly predicted, but the continuum contribution
is much smaller than predicted. Moreover, a new
feature, a central peak around co=0, appears (Fig.
8), which is unexpected from the low-temperature
theory. A similar effect is found for Soo(q, co) (Fig.
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FIG. 4. S (q, co) for the EAH at T*=1, h*=l,
D* =1. The arrows indicate the renormalized spin-wave

frequencies.

FIG. 6. Sl~(q, co) for the AEH at T*=0.1, h*=O. (a)

1/g =0.8, (b) 1/g=0. 13. q =0: MD:; theory:
———(continuum), & (bound state). q =m". ""..
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9) and for S~(q, co) (Fig. 10).
The origin of these thermally-induced central

peaks can be understood by the following compar-
ison with recent quantum S = —, finite-chain calcu-

lations, ' where they have also been observed. In
this approach the Hamiltonian corresponding to
chains of eight to twelve spins is diagonalized nu-

merically, yielding the eigenvalues and eigenvectors.
On this basis, the form factors can be calculated ex-
plicitly, thereby allowing an analysis of the peak
structure in terms of the underlying transitions.
The central peak appearing in S (q, co ) at
T~ =0.33 was traced back to the transitions
co ] +c02y 602 ~c03 and co3 ~co4. ~„~co denotes a
transition between an n-magnon and an m-magnon
bound state. In S»(q, co) the central peak is pro-
duced mainly by the transitions co j ~co3 and

co2~co4. Comparison with the classical results
shows that these resonances survive in the classical
limit. There, these processes correspond, according
to semiclassical quantization arguments, to col-
lisions involving envelope solitons. Thus the central
peaks observed in the classical form factors S
S11, and Soo can be identified as soliton effects.
They do not appear in our low-temperature theory
because the decoup1ing schemes exclude higher-
order bound-state contributions.

The dispersion of the m-magnon bound state for

w/OS

FIQ. 7. Soo(q, u) for the AEH at T~ =0.1, h =0. (a)

1/g =0.8, (b) 1/g =0.13. MD:; theory:
(continuum); ——and l (bound state).
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FIG. 9. Soo(q, co) at q=0, 1/g=0. 8, h*=O. MD:
; theory: ———(continuum), J, (bound state). (a)

T~ =0.1, (b) T*=0.33.

S=—, is given by

co (q)= —. (coshmg —cosq)+mh,
J sinhP

g slnhm

cosh/ =g . (62)

For h =0 and large m, co~(q) becomes independent
of q and goes to the limit

lim 10 «=J(1—1/g )'~1 .
m~no

(63)

For large anisotropies (e.g., 1/g =0.13), this limit is
almost reached already for small m (m =3). The
energy difference between the bound states is small
and q independent, which explains why the the tran-
sitions among them give rise to a central peak. For
small anisotropies (e.g., 1/g =0.8), the asymptotic
value (63) and the q independence are reached only
for higher m (m=7). This produces a much
broader central peak as well as stronger broadening
of the one- and two-magnon resonances.

The effect of a magnetic field h on the form fac-
tars can be predicted from the dependence of the
m-magnon bound-state energy on h [Eq. (62)]. The
field shifts the branches by mh, so that asymptoti-
cally, co —+J(1—1/g )' +mh. For low T the
field will only shift the resonances in S~ and S~J..
For a higher temperature (e.g., T~ =0.33), a strong
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FIG. 8. S»(q, co) for the AEH at 7*=0.33, h*=O.
(a) 1/g =0.8, q =0. MD:; theory: ———(con-
tinuum), —.— l (bound state). (b) 1/g =0.13. MD:

— q =0, "-"q =m,' theory: l (bound state).

0 4
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0
0

FIG. 10. S (q, co) at T*=0.33, h» =0. & renormal-
ized spin-wave frequencies. (a) 1/g =0.8, (b) 1/g =0.13.
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enough field will cause the disappearance of the
central peak, because the higher energy gap will

lower the occupation of the excited states. There-
fore, we can expect an applied field to extend the
validity of our low-temperature theory. This is con-
firmed by the MD calculation for S~, S&i, and Soo
as shown in Fig. 11 for S». A further consequence
is that when the transitions between bound states
acquire observable thermal weight, their contribu-
tions to the central peak will be shifted by -hmh,
producing a broadening or even splitting of the cen-
tral peak. This splitting effect has been observed'
in a recent finite-chain calculation for S = —,.

The close similarity between the S = —, and the
classical (S= ao) form factors suggests that the
essential features of the thermally-induced reso-
nance structures in AEH ferromagnets are indepen-
dent of the spin value. This view is supported by
the results at T =0 (QM), where the form factors
can be calculated exactly for all spin values.
Changes in S produce only minor quantitative
differences. This fact must be attributed to the sim-

plicity of the ground state in axial anisotropic fer-
romagnets. For systems with more complicated
ground states, e.g., with planar anisotropy (where
no exact results are known, even at T =0), prelimi-
nary numerical results show a strong dependence
on the spin value.

In conclusion, we have seen that the classical lim-
it of magnon bound states, and thus the envelope
solitons, produce several important effects in the
dynamical form factors of axial anisotropic Heisen-

berg ferromagnetic chains: At low T there is a
two-magnon bound-state resonance in Soo(q, co) and

S»(q, co) which is difficult to resolve, except at
Sii(q =ir, ra) in the AEH, where it is the dominant
contribution. At higher temperatures, magnon
bound states are responsible for the central peaks
observed in S~(q,ai), Soo(q, co), and S&&(q,co). Fi-
nally, the qualitative invariance of the form factors
for spin values ranging from —, to oo supports the
interpretation in terms of envelope soliton features
of experiments on quasi-one-dimensional axial an-

isotropic ferromagnets with S & —,.

0.03

—0.02—
3
CT'

0.01—

0
0 '|0

FIG. 11. S]1(q,co) at T*=0.33, h*=l, 1/g=0. 13,
q =0. MD:; theory: ———(continuum), —.—

&

(bound state).
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APPENDIX: SOLUTION OF THE EQUATIONS
OF MOTION

We calculate Go(oqco) and G&i(q, co) by solving
the equation of motion of the corresponding two-
boson Green's function

GJJ(q, co)= i [GJJ(q,co)+GJJ(q, —co)], (A2)

Goo(q, co) =4S iri 1 — Goo(q, co), (A3)

Gac(q, co) =—g Gpp (q,co),b 1
pp

G»(q, co)=4S fi G»(q, co),

G»(q, co) =—g cosp Gpp (q, co)cosp' .
1

pp

The equation of motion of Gpp (q, co) is

(A4)

(A5)

(A6)

Gpp ('q N ) = ((aq/2+p aq/2 p aq/2+p aq/2 p ))

(Al)

to which, for low T, they are related by

fi I~Gpp ( [ q a2 /p +aq/p2&aq/2+p aq/i p ] / + (( [aq/2+paq/2 p 0] aq/2+p aq/'i p ))2~'
The first commutator yields

([ q/2+p q/2 pq/2+p' q» p'] / (~pp'+—p p')( +"q—/2+p+ "q/2 —p)—
where nk are Bose occupation numbers

(A7)

(A8)
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nk ——(akak & =(l "—1)

The classical limit gives

T
lim fink =

fr~0, S~oo Nk
AS=S )

The second term yields

~ f(( [~q/2+paq/2 pi~1—iaq/2+p'aq/2 p' &&—

2 2= A'(a)q/z+p+coq/g p)Gpp +—
+fan V(p, kp, q'/2)Gk, pp q —p pp

(A9)

(A10)

2+—g +V«i kz e'/'»( &q pq+-k ((aq -k aq+paq+k aq k, a-q+p'aq p»-
ki, k~, q'

+ q+p, q'+k&» q' ki q p—q'+kz—q' kz q+p—'aq —p' (A 1 1)

For low T the six-boson Green s function can be approximated in terms of four-boson functions using the fol-

lowing decoupling scheme:

~q —p, q'+ki ( q' kiaq+p q—'+k& q' k&& q+p' —q —p' &

~q q'~p, —k& q+pGk&p'+~q —pq'+k&'5k&, —k& q' —k|Gpp'+~q —p q'+k|'4|, kPq' —k|Gpp' ~ (A12)

The second and third terms are proportional to Gpp, and thus have only the effect of renormalizing coq/~+p in

(Al 1). The decoupling scheme (A12) becomes exact at T =0, and we recover the exact solutions of Refs. 7
and 9. This shows further that the Dyson-Maleev bosonization gives exact results at T =0 for all spin values.
The third term of (Al 1) becomes

fi (n /z+ +n /z )
—g V(P, kz, q/2)Gk, p+A G p

—g V(k&, k q|i2+P —k&)n /z+
k~ ki

+A' Gp
—g V(kl, k&, q/2 —p —ki)nq/p
4

pp ~ (A13)

We have used the symmetries V(p, k, q)= V( —p, k,q) and V(p, k&,q)= V(p, —k&,q). We insert (A7) into the
equation of motion and introduce the shifted frequencies cok.

with

~q/2+p q/2+p+ QRV(k&, k&,q/2+p —k&)nq/z+p zk
ki

(A15)

Setting V=O, we get the noninteracting spin-wave
theory result

0 p.p'+ p, -p' +"q»+p+ "q»-p
Gpp

——
27T CO —6)q)2+p —

COq y2

(A16)

We define Gpp as Gpp, but including the shifted fre-
quencies

0 p,p+5p, p 1+nqf2+p+nqi2 p

CO —N q]2+p
—Q)q]2

(A17)

The equation for Gpp can be written as

(A18)

Gpp Gpp +2MGpp Q——V(P, k„q/2)Gk—,p .
pp ~
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E 2JS
cosk

2 g

co/q2+p +coq /2 p K +Q cosp

E =4JS+2h +4DS,

Q =— cos—,Q'= — sin —.4JS 9 , 4JS .

g 2 g 2

(A19)

(A20)

(A21)

(A22)

After performing the integration, the shifted fre-
quencies can be written in the simple form

The solution can be found performing the following
steps: We obtain two coupled algebraic equations
for g Gpp and g cosp Gpp by summing (A18)
over p for the first one, and by multiplying (A18) by
cosp and then summing over p for the second one.
Multiplication with cosp' and summation over p'
gives us Goo(q, co) and Gii(q, co).

The frequency shift can be calculated explicitly in

the classical limit. In the thermodynamical limit,
(I/N)gk can be substituted by (I/2m. )I dk, .
We introduce the following notation:

6 (1+2m%JR) 2—miVCBi
Goo�(q,

co) = 1+L
(A26)

G (q, co)=—g Gpp(q, co),
p

1 -p
8„(q,co) =—g Gpp (q, co)cos"p,7l & ~ PP

(A28)

(A29)

C(q, co) =Bi(q,co) —cos——G (q, co),
1 q p

g 2

R (q, co) =82(q, co) —cos——Bi(q,co),
1 q

(A30)

(A31)

1+L (q, co) = [1+2mfiD(1 —1/2S)G ]

82+ 2rcAD(1 —1l2S)(6 82 —8 i )
Gii(q, co)=

1+L
(A27)

where

Q=Q+ (4JS/g ) —K
[g 2 (4JS/ )2]1/2

Hq/2+p +Nq/2 p =K+Q cosp,

4D(S —1}—2h +1
[K —(4JSlg) ]'

(A23)

(A24)

(A25)

X (1+2~fiXR )

4m fi JD(1——1/2S)CB, . (A32)

The real and imaginary parts of the functions
6 (q, co), B„(q,co), and thus C(q, co), R(q, co), and

L(q, co} can be evaluated explicitly in the classical
limit.

Inspection of the formulas for Goo(q, co) and

6» (q, co) gives us the general structure of the form
factors at low T:

Goo ——[ [6 (1+2m.fiJR'} 2m.fiJC'8 i ]L—"
—[6 (1+2WPcJR')+2rrk16 R" 2mAJ(C"8 j—+C"8', )](1+L')]/[(1+L')~+L "2], (A33)

6 i(
——

I
—[(I+2irfiDG )Bp 2m AD(G Bi'+—BI —Bi' )]L"

+[Bg'+2nfiD(6 Bg'+G 82 —28'iBj')](I+L')] /[(1+L'} +L" ] . (A34)

The imaginary parts F" are nonzero in the continu-

um

0 & coBc &—
I Q I

&~ &&+
I Q I

=~rc

Outside the continuum the F" goes to zero propor-
tionally to e. There, Gpp is of the form

and

fie+fi.~ +f3~
G )i = llm

o (1+L') +e

=f i 5(1+ L'(q, co) ) . (A36)

br' p6
Gpp ——lim--o (1+L')'+e'

=fo5(1+L'(q, co) } (A35)

Introducing into (A33) and (A34) the expressions
for the functions G, B„,C, R, and L, one sees that

GJJ are of the form
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btt $ ~bit
(A37)

(A37), and (19) are combined to give SJ7(q,co):

Ab
where GJJ. depends only on the classical spin

S,i ——SA.
The factors I/fi cancel out when (A2), (A3), (A5),

SJJ(q, to) = 4S,~

—
[G~~ (q, co) G~—~ (q, —to)] .

(A38)

%e note that for coy0 and co &0, the second and
the first terms vanish, respectively.
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